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Abstract. Nowadays, the idea of Artificial Intelligence (AI) medical detection has aroused great 

interest around the world. AI has the potential to strengthen medicine in both observation and 

operation. For instance, AI could catch crucial details that are not intuitive to humans. Robots 

controlled by AI could also do micro-operations that are extremely hard on human hands. In this 

study, the author utilizes one of the most focused traditional machine-learning methods, that is 

the Light Gradient Boosting Machine (LightGBM) algorithm for breast cancer prediction. The 

LightGBM performs both well on accuracy and speed in the study’s experiment. The study 

applies the bootstrap aggregating (Bagging) method to cope with the over-fitting problem. As 

the significance of the study, the study shows that the LightGBM can be utilized in designing 

accurate, fast and cheap medical detection devices. Nevertheless, programmers should handle 

the over-fitting problem cautiously while building models based on LightGBM. This could help 

doctors in impoverished areas realize accurate medical detection. People could also do accurate 

self-diagnosing with a cheap, portable device at home. 
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1.  Introduction 

The breast cancer is a significant threat to the modern people’s health. Many factors could lead to a risk 

of breast cancer, such as alcohol abusing and exposing to radiation [1]. As a widely known fact, that the 

earlier a cancer is found, the better the treatment’s effect will be. If there is a misdiagnosis, the patient 

would lose the best time for treatment, which will lead to horrible consequences [2]. Therefore, the 

diagnosis precision and self-diagnosing would be very important in the prevention of breast cancer. An 

Artificial Intelligence (AI) model that enables a quick prediction of breast cancer could be of great help. 

In hospitals, the AI model could offer a reliable reference to the doctors, which could effectively enhance 

diagnosis accuracy. With an AI diagnosis device, people could diagnose themselves at home, which 

provides a convenient self-diagnosing method. 

To realize an AI diagnosis model, researchers are actually doing ‘Data Mining’, which is trying to 

dig out useful but not intuitive information from a big load of data [3]. Many researchers showed great 

inclination toward doing data mining, for there exists a great amount of data, and there lies enormous 

potential value in these data [3]. In the prediction of breast cancer, prior researchers applied various 

algorithms, and constructed many methods to optimize the performance of the model [3]. For instance, 

Islam et al. utilized both the Artificial Neural Network (ANN) and some machine learning methods to 
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do a comparative experiment. They concluded that the ANN performed the best in all methods, and the 

Support Vector Machine (SVM) algorithm performed the best in the traditional machine learning 

methods [4]. There are researchers like Haifeng Wang et al. who got a very high accuracy, that is 97.83%, 

by applying delicate data-preprocessing on the usually low-accuracy Bayes algorithm [5]. M. S. 

Yarabarla et al. investigated the data of machine-learning cancer prediction in medical reality [6]. They 

concluded that the SVM is now the most welcomed machine-learning method in cancer prediction, for 

its high accuracy and low financial cost. They also compared a similar algorithm to SVM, that is the 

Relevance Vector Machine (RVM), and found out that the RVM and SVM are both widely applied in 

actual medical scenarios, but in different situations.  

In this study, the author applies one of the most focused traditional machine-learning methods, that 

is the Light Gradient Boosting Machine (LightGBM) algorithm, on the prediction of breast cancer. In 

the experiment of the code, the input data is pre-processed by dividing the dataset into training set and 

testing set, and that is the only data-preprocessing applied in the study. The LightGBM algorithm has 

many merits in the job of classification. It is well-known for high accuracy, high speed and small storage 

cost. These merits excellently meet the needs of medical application. The LightGBM is also capable of 

processing huge data, which meets the needs of actual medical scenarios. In the code experiment, the 

LightGBM algorithm is evaluated in accuracy, time cost, Area under Curve (AUC) and confusion matrix. 

The result of the experiment shows that the LightGBM algorithm has a satisfying performance, which 

means the LightGBM algorithm is very suitable for cancer prediction. However, its sensitivity to over-

fitting shows that it needs a cautious hyper-parameter adjusting. 

2.  Methodology 

2.1.  Dataset description and preprocessing 

In this paper, the author conducts the experiment on the dataset ‘The Breast Cancer Prediction Dataset’ 

from Kaggle [7]. The dataset includes 569 data samples. Each sample has 6 attributes, that are the mean 

radius, the mean texture, the mean perimeter, the mean area, the mean smoothness and the diagnosis. 

For the feature ‘diagnoses, if a sample represents a breast cancer patient, the feature’s value is 1, 

otherwise the feature’s value is 0. And there are 212 samples (37.3%) that represent breast cancer 

patients, and 357 samples (62.7%) that represent healthy people. The data-preprocessing in the study 

simply aims to fit the input data into the model, and the dataset the study chose is already delicate enough 

before any optimization. Hence there’s only one step in the data-preprocessing, that is dividing the 

dataset into training set and testing set, with a proportion of 70 percent and 30 percent respectively. 

2.2.  Proposed approach  

The study aims to find a classifier that has good comprehensive performance. However, the accuracy of 

the classifier is primarily focused. As Fig.1 illustrates, the incipient LightGBM classifier is firstly 

optimized by adjusting hyper-parameters. By decreasing the upper bound of each decision tree’s depth 

and the quantity of leaves in each decision tree, a reduction of the over-fitting problem can be observed 

on the AUC line. The classifier is then optimized again by applying the bootstrap aggregating (Bagging) 

method. The study applies the Bagging method since the LightGBM algorithm is sensitive to over-fitting, 

and the method can reduce the occurrence of over-fitting significantly. The Bagging method divides the 

input dataset into many small datasets, and trains different models on these datasets separately. The 

variance of the classifier is thus reduced, which prevents the occurrence of over-fitting. After all the 

optimizing processes, the input data is fed into the classifier. All three versions of the classifiers are 

evaluated on the comprehensiveness of different metrics. In detail, the metrics are the AUC, the accuracy 

and the confusion matrix. 
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Figure 1. Illustration of the whole process. 

2.2.1.  LightGBM. The LightGBM algorithm is a frame of the Gradient Boosting Decision Tree (GBDT) 

model. Before LightGBM, the canonical method of GBDT was the Extreme Gradient Boosting 

(XGBoost) algorithm. The LightGBM can be viewed as an optimized version of the XGBoost in speed, 

accuracy and storage cost. Traditionally, LightGBM utilizes a method names ‘Gradient-based One-Side 

Sampling’(GOSS) at the beginning to reduce the over-fitting problem. Since GOSS is not used with 

Bagging together, the study didn’t apply the GOSS method. 

To start with, the feature values are processed by a method called ‘Histogram algorithm’. In the 

Histogram algorithm, the eigenvalues of the input data are converted into k discrete integers [8]. 

Compared to the traditional ‘pre-sorted algorithm’ applied in the XGBoost algorithm, the space 

complexity of the histogram algorithm decreases from O(#data*#feature) to O(k*#feature), while 

k<<#data. After the feature values are discretized, LightGBM applies a method to decrease the time cost, 

that is the Exclusive Feature Bundling (EFB). The basic theory of the EFB is that many features in the 

feature space are exclusive [9]. ‘Exclusive’ means the features are seldom non-zero simultaneously, and 

it is harmless to bundle the exclusive features together [9]. By utilizing the EFB, the time complexity of 

building the histogram decreases from O(#data×#feature) to O(#data×#bundle), while 

#bundle<<#feature. After the EFB, it comes to the phase of growing decision trees. The XGBoost 

algorithm utilizes the ‘level-wise’ strategy. As Fig.2 shows, it splits all the previous leaves when 

growing new leaves [10]. In this strategy, some nodes with small information gain are also split into 

new leaves, which leads to resource waste and big time-cost [8]. In the LightGBM algorithm, a new 

strategy called ‘leaf-wise’ is utilized. In the leaf-wise strategy, as Fig.3 illustrates, only those leaves with 

the biggest information gain are split into new leaves [8]. This new strategy significantly reduces the 

time cost of the algorithm, for it traverses much fewer nodes when growing decision trees.  
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Figure 2. Demonstration of level-wise growth. 

 

Figure 3. Demonstration of leaf-wise growth. 

Conclusively, the sequence of the steps in the LightGBM algorithm in the study is shown in Fig.4. 

The LightGBM serves as the core model in this study. LightGBM provides an accurate, highly efficient 

classifier for the cancer prediction task, which enables the data-mining process on the breast cancer 

dataset. 

 

Figure 4. The sequence of steps in the LightGBM algorithm in the study. 

2.2.2.  Bagging. The Bagging method aims to reduce the variance of the classifier, and thus reduce the 

occurrence of over-fitting. It firstly does the process of ‘bootstrap’, that is sampling with replacement. 

For k (k is any positive integer) rounds of ‘bootstrap’, k training sets are formed. After that, k different 

models are trained on these training sets separately. Finally, these different models combine as one 

model, and the task of classification is conducted on this one model. The variance of the model can be 

significantly reduced due to the following mathematical properties of variance, 

 Var(cX) = c²Var(X). (1) 

where c is a constant, “Var()” means “the variance of”, and “c²” represents the square of c. 

 Var(X1 +··· +Xn) = Var(X1) +··· +Var(Xn). (2) 

Therefore, the variance of the combined model is as follows: 
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While training the different models, some of the models might have big variances. As formula (3) 

shows, these big variances are neutralized by other models’ variances in the variance of the combined 

model. In LightGBM, the idea of ‘Bagging’ is reflected in the fact that the classification is based on the 

comprehensiveness of many independent decision trees. The user is applying the Bagging method as 

long as he or she is using LightGBM, even if the user doesn’t set Bagging-related hyper-parameters. In 

order to enhance the Bagging method’s ability on reducing over-fitting, a certain proportion of data 

instances can be discarded in every round’s Bagging (the proportion is defined by setting the Bagging-

related hyper-parameters). The Bagging method in the study serves as a solution to LightGBM’s over-

fitting sensitivity. 

2.3.  Implemented details 

The study utilized Python 3.10.12 and the lightgbm package to implement the LightGBM model. To 

implement the bagging method, the study used the Scikit-learn library. For data visualization, the study 

used the Seaborn and the Matplotlib libraries. The code experiment in the study is conducted on a HP 

Zhan device with an AMD Ryzen CPU. For the setting of hyper-parameters, the study conducted the 

experiment on three sets of hyper-parameters, that are: default, ‘upper-bound of each decision tree’s 

depth =3, quantity of leaves in each decision tree =7’and ‘upper-bound of each decision tree’s depth =3, 

quantity of leaves in each decision tree =7, the frequency of bagging =4, proportion of instances retained 

in every round’s bagging=0.2’. The adjusting of the hyper-parameters aims to reduce the over-fitting 

problem without hurting the accuracy on testing data. 

3.  Result and discussion 

By the evaluation and visualization of the incipient and the optimized LightGBM model, the study shows 

that LightGBM is an accurate and fast model, but quite sensitive to over-fitting. To start with, the AUC 

line of the incipient classifier is shown in Fig.5. The incipient classifier is the LightGBM classifier with 

default hyper-parameters, and doesn’t use the Bagging method. The Fig.5 reveals that although the AUC 

of both the training set and the testing set are very high, the over-fitting problem is obvious, because 

there’s a big difference between the AUC on training set and the AUC on testing set. 

 

Figure 5. The AUC line of the incipient classifier. 

To cope with the over-fitting problem, the junior classifier is worked out by adjusting the hyper-

parameters. In detail, two hyper-parameters are set as follows: upper-bound of each decision tree’s depth 

=3, quantity of leaves in each decision tree =7. As is shown in Fig. 6, the problem of over-fitting is 

significantly reduced. The reason for the reduction of the over-fitting problem in the first optimization 

is as follows: After the hyper-parameters are altered, the max depth and the number of leaves of the 
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decision trees are restricted. Therefore, the model’s structure becomes simpler, and a simple structure 

model has little inclination to have over-fitting problem. However, over-fitting still exists, and gets 

worse as ‘iterations’ grows. 

 

Figure 6. The AUC line of the junior classifier. 

To eliminate the problem of over-fitting, the classifier still needs an optimization. Therefore, the 

senior classifier is worked out by applying the Bagging method and adjusting hyper-parameters. Fig. 7 

shows the AUC line of the senior classifier. The hyper-parameter is set as: upper-bound of each decision 

tree’s depth =3, quantity of leaves in each decision tree =7, the frequency of bagging =4, proportion of 

instances retained in every round’s bagging=0.2. Fig. 7 shows that the over-fitting problem is well 

handled in the senior classifier. The reason for the reduction of the over-fitting problem in the second 

optimization is as follows: After the Bagging method is applied, some of the training data is discarded 

while training the model. Therefore, the model can only have an incomplete knowledge of the training 

set. This leads to a simpler structure of the model, which reduces the emergence of over-fitting. 

 

Figure 7. The AUC line of the senior classifier. 

After the over-fitting problem is discussed, this section focuses on the accuracy of the classifiers. 

The accuracies of 3 versions of classifiers are shown in Table 1. Table 1 shows that all the 3 versions of 

LightGBM classifiers have a high accuracy of over 90%. By altering the hyper-parameters and applying 

the Bagging method, the accuracy on the training set declines, while the accuracy on the testing set stays 

stable. The decline in the accuracy on the training set can be attributed to the same reason as the reduction 

in over-fitting. Firstly, after the hyper-parameters are adjusted, the structure of the LightGBM becomes 

simpler, and a simpler model tends to have a lower accuracy. Secondly, after the Bagging method is 
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applied, the model can only have an incomplete knowledge of the training set, which leads to a lower 

accuracy in the prediction on training set. 

Table 1 also shows the time cost of the three versions of classifiers. Table 1 reveals that all three 

versions of the LightGBM classifiers have a small time-cost of under 0.5s. This is a manifestation of the 

LightGBM’s high speed. And the time cost declines as the model is optimized. This can be attributed to 

the simplification of the structure of the model.    

Table 1. Accuracy of Different LightGBM Classifiers. 

Classifier 

Performance 

Accuracy on 

training set 

Accuracy on testing 

set 

Time cost 

incipient classifier 0.9975 0.9298 0.452s 

junior classifier 0.9749 0.9181 0.316s 

senior classifier 0.9372 0.9240 0.283s 

 

In order to have a meticulous evaluation of the model’s performance, the confusion matrixes of the 

three versions of classifiers are plotted. As Fig. 8 and Fig. 9 show, the classifiers made precise 

predictions on both the positive and negative instances. The result in the confusion matrix manifests that 

the classifiers have good performance on both the positive and negative instances. 

 

Figure 8. Left: the confusion matrix of the incipient classifier. Right: the confusion matrix of the junior 

classifier. 

 

Figure 9. The confusion matrix of the senior classifier. 
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The mentioned results in the study can serve as an enlightenment on the application of LightGBM in 

actual medical scenarios. Firstly, it reveals that LightGBM is a model with high accuracy and high speed. 

LightGBM is also a traditional machine-learning model, which means LightGBM doesn’t need to work 

on a device with an advanced GPU. People only need a device with a normal CPU to process the 

LightGBM model. Therefore, LightGBM can be utilized in designing a portable, cheap and accurate 

device which helps people measure their health condition at home. LightGBM can also help 

impoverished areas realize accurate medical detection. Secondly, LightGBM is a model sensitive to 

over-fitting. While programming a medical device on LightGBM, the hyper-parameters should be 

cautiously adjusted based on the application reality. Methods like Bagging should also be considered to 

cope with the over-fitting problem. 

4.  Conclusion 

This study constructs the LightGBM algorithm to realize breast cancer prediction. LightGBM meets the 

need for medical reality well due to its high accuracy, high speed and low financial cost. In addition, the 

study adjusts hyper-parameters and Bagging to cope with the over-fitting problem. The study finds that 

LightGBM has great potential in medical detection, but programmers should handle its over-fitting 

sensitivity cautiously. For future work, the study will focus on constructing models based on deep-

learning algorithms. Models based on deep-learning algorithms will be far more accurate than traditional 

machine-learning models. Meanwhile, since the deep-learning models tend to have big time cost and 

big financial cost, the study will try to get a relatively fast and cheap model by optimizing the model on 

many metrics. 
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