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Abstract. Hand Posture Recognition (HPR) plays a crucial role in enabling effective human-

computer interaction, particularly for individuals with hearing disabilities. The study compares 

five models, including MobileNetV2 96x96 0.35, MobileNetV1 96x96 0.25, MobileNetV1 

96x96 0.1, self-designed Network 1, and self-designed Network 2, based on the Sébastien 

Marcel Static Hand Posture Database. Evaluation metrics - infserencing time, peak RAM usage, 

flash usage, and accuracy - are used to analyze the performance. The experiment workflow for 

each model comprises five major steps. Firstly, a random selection of 120 images from the 

Sébastien Marcel Static Hand Posture Database is converted to JPG format. Then, the images 

are divided into 80% training data and 20% testing data. Subsequently, the original images are 

normalized, and features are extracted for further processing. Subsequently, the models are 

individually trained using the preprocessed data, optimizing their parameters. Finally, the 

trained models are evaluated using the testing data set to assess their performance in hand 

posture recognition. The results indicate that MobileNetV2 96x96 0.35 achieves the highest 

accuracy of 96.69% while consuming fewer hardware resources compared to other models. 

MobileNetV1 96x96 0.1 demonstrates the lowest inferencing time and peak RAM usage, 

making it suitable for real-time applications. Furthermore, self-designed Model 1 exhibits the 

lowest flash usage, making it a viable option for resource-constrained devices. This study 

provides valuable insights into the selection of CNN architectures for HPR, offering guidance 

for practitioners to choose models based on specific application requirements.  

Keywords: Computer Vision, Machine Learning, Image Classification, Hand Posture 

Recognition. 

1.  Introduction 

By 2023, the World Health Organization (WHO) estimates that approximately 430 million individuals, 

comprising 432 million adults and 34 million children, will be in need of rehabilitation to address their 

disabling hearing loss. This accounts for over 5% of the global population, highlighting the significant 

impact and prevalence of this condition worldwide [1]. Sign language connects people having hearing 

disabilities with family members, educators, interpreters, and support personnel associated with the 

deaf community. However, it comes with certain drawbacks, including limited spread, steep learning 

curve, inapplicable to hearing individuals, grammar and expression limitations, and cultural barriers. 

Hand Posture Recognition (HPR) is of paramount importance across various domains, including 

human-computer interaction, virtual reality, gaming, education, accessibility, and medical 
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rehabilitation. By accurately detecting and interpreting hand gestures, machines can facilitate seamless 

and natural communication between individuals and computers, thereby revolutionizing the way 

individuals interact with technology. 

In the early HPR field, there were mainly two classes of methods: feature-based methods and 

appearance-based methods. Feature-based methods focus on the number and location of fingers. Cao 

and Li [2] proposed a HPR algorithm based on topological features, which has high recognition 

accuracy. They chose to use topological features because they are stable and can be computed even for 

undefined gestures. Axak et al. [3] developed a virtual mouse system that can recognize gestures using 

convexity analysis of contours. However, this method only works for some example gestures. Tusor 

and Varkonyi-Koczy [4] use a fuzzy neural network to select feature points, but it requires a lot of 

time and hardware resources to achieve good results. On the other hand, appearance-based methods 

focus on the overall appearance of the hand. Suryanarayan et al. [5] achieved scale- and rotation-

invariant gesture recognition using 3D volumetric shape descriptors. Furthermore, Malassiotis and 

Stintzis [6] used range data for static gesture recognition, achieving 70% to 90% accuracy on 20 

gestures. However, none of the aforementioned studies address the challenge of achieving high 

accuracy while minimizing resource usage. 

In this regard, this paper compares performance of five different Convolutional Neural Network 

(CNN) on the same data set of hand posture in order to find the optimal architecture, which has 

relatively high accuracy and takes relatively few hardware resources. Specifically, the five CNN 

models chosen for this article are MobileNetV2 96x96 0.35, MobileNetV1 96x96 0.25, MobileNetV1 

96x96 0.1, the self-designed Network 1, and the self-designed Network 2. The dataset is Sébastien 

Marcel Static Hand Posture Database [7]. Through evaluating the performance of the neural network 

from inferencing time, peak ram usage, flash usage, and accuracy, this paper finds that MobileNetV2 

96x96 0.35 is the best model with an accuracy of 96.69% and least hardware resources.  

2.  Method  

2.1.  Dataset preparation 

The Sébastien Marcel Static Hand Posture Database [7] used in this study is a comprehensive 

collection of hand posture RGB images captured from various angles and positions. There are six 

different categories of hand posture in this database, and they represent ‘A’, ‘B’, ‘C’, ‘FIVE’, 

‘POINT’, and ‘V’ shown in Figure 1 respectively. The total number of images in the original dataset is 

4,872. In this study, 200 images are selected from each category randomly and therefore the total 

number of images in the dataset this study uses are 1200. Originally, the images are all based on ppm 

format. In this article, all the images are converted into JPG format in order to fulfil the requirement of 

Edge Impulse platform. Individual images in the original dataset vary in size, from 50×50 to 100×100. 

In this study, the size of all images is limited to 96×96 to ensure the convenience of normalizing. 

Moreover, during the normalization process, the value of each pixel’s channel in the image is 

transformed into a floating-point number ranging from 0 to 1. If the image is in grayscale, each pixel is 

converted into a single value using the ITU-R BT.601 conversion, which considers only the luminance 

(Y’) component. 

 

Figure 1. Examples of six hand postures representing ‘A’, ‘B’, ‘C’, ‘FIVE’, ‘POINT’, and ‘V’ from 

left to right. 
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2.2.  Edge impulse-based MobileNet for HPR  

2.2.1.  Introduction to Edge Impulse. Edge Impulse is an integrated development platform that 

facilitates the creation, training, and deployment of machine learning models for edge devices. The 

term “edge” refers to computing that occurs closer to the data source or device, rather than in the cloud. 

This approach has gained traction due to its ability to process data locally, reducing latency, preserving 

privacy, and conserving bandwidth.  

2.2.2.  Introduction to MobileNet. MobileNet is a collection of neural network architectures that are 

specifically engineered for mobile and resource-limited devices, with an emphasis on being 

lightweight and efficient. These architectures prioritize efficiency and low computational demands 

while maintaining a reasonable level of accuracy in tasks such as image classification, image 

recognition [8]. MobileNetV2 96x96 0.35 [9,10] is a variant in the MobileNetV2 family designed 

specifically for image inputs with 96x96 pixel resolution with a width multiplier of 0.35. This means 

that the model is suitable for processing smaller resolution images while maintaining efficiency and 

lightness, e.g., for real-time face recognition or gesture recognition and other resource tasks on 

constrained devices. MobileNetV1 is the first version of the MobileNet family and a lightweight 

convolutional neural network architecture for computationally resource-constrained environments. 

MobileNetV1 96x96 0.25 is a variant in the MobileNetV1 family designed for processing images with 

96x96 pixel resolution with a 0.25 width multiplier. MobileNetV1 96x96 0.1 is also a special variant 

in the MobileNetV1 family optimised for image inputs with 96x96 pixel resolution and a width 

multiplier of 0.1. Although it makes a large reduction in model capacity, it can still be used for a 

number of basic image analysis tasks, providing scenarios where computational resources are scarce 

with a lightweight visual processing solution. Apart from pre-trained model MobileNetV1 and 

MobileNetV2, two self-designed neural networks are implemented in this study. For the self-designed 

model 1, it sequentially incorporates a 2D convolutional layer with 32 filters and a kernel size of 3x3, 

followed by pooling, further enhancing the feature hierarchy through a subsequent 2D convolutional 

layer with 16 filters. The dropout rate is 0.25 in the dropout layer, which serves as a regularization 

mechanism. Finally, the architecture culminates in an output layer comprising 6 neurons, each 

representing a distinct class. For the self-designed model 2, it begins with an input layer 

accommodating 27,648 features, which is succeeded by two consecutive layers of 2D convolution and 

pooling. Each of these layers employs 32 filters with a kernel size of 3 and undergoes convolution and 

pooling operations. Subsequently, the feature maps traverse two more analogous 2D convolution and 

pooling layers. Following this, a flatten layer transforms the output into a one-dimensional vector. To 

mitigate overfitting, a dropout layer with a rate of 0.25 is introduced, providing regularization. The 

model culminates in an output layer, which represents the final classification predictions.  

2.2.3.  The procedure of training model. The workflow for each model is divided into five major parts. 

In the Data Format Converting, 120 images are randomly selected from the Sébastien Marcel Static 

Hand Posture Database and converted from ppm format to JPG format. In the Data Input, 80% of the 

images are training data and 20% is testing data by selecting randomly. In Data Preprocessing, after 

normalizing the original image, features are extracted from dataset and become the inputs for the 

Model Training. In the Model Training, five different models are trained individually, and the trained 

model is tested with testing data in the end. The workflow of experiment for each model is 

demonstrated in Figure 2.  
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Figure 2. The workflow of experiment for each model. 

2.3.  Implementation details  

The training of the model utilizes the Cortex-M4F 80MHz, a 32-bit embedded processor architecture 

developed by Arm. For each experiment in the model training, there are 20 training cycles, a learning 

rate of 0.0005, and a validation set size of 20%. 

3.  Results and discussion 

The results are shown in Table 1. Inferencing time refers to the time it takes for the model to process 

an input and produce an output. Lower inferencing times are generally desirable, especially for real-

time or time-sensitive applications; Peak RAM usage indicates the maximum amount of memory the 

model utilizes during inference. This metric is crucial, particularly for resource-constrained devices. 

Models with lower peak Random Access Memory (RAM) usage are better suited for devices with 

limited memory capacity; Flash usage represents the amount of storage space the model occupies in 

flash memory. Smaller flash usage is advantageous as it allows more models or additional data to be 

stored on the device; Accuracy reflects how well the model performs in terms of correctly classifying 

inputs.  

Table 1. Performance of five models. 

Model Type 
Inferencing Time 

(ms) 

Peak Ram Usage 

(KB) 

Flash Usage 

(KB) 

Accuracy 

(%) 

MobileNetV2 96x96 0.35 424 947.8 1600 96.69 

MobileNetV1 96x96 0.25 163 321.1 862.8 74.38 

MobileNetV1 96x96 0.1 86 149.1 180.9 14.46 

Self-designed Model 1 2,410 363.3 84.7 90.91 

Self-designed Model 2 3,021 363.4 143.5 95.04 

 

It is clearly that MobileNetV2 96x96 0.35 can achieve the highest accuracy of 96.69%, with 424ms 

inferencing time, 947.8k peak ram usage, and 1.6m flash usage. Besides, MobileNetV1 96x96 0.1 

takes the least inferencing time of 86ms and peak ram usage of 149.1K. In addition, the Self-designed 

Model 1 takes the least flash usage of 84.7K.  

Comparing MobileNetV2 96x96 0.35 with MobileNetV2 96x96 0.1, the inferencing time the 

former takes is 4.9 times that of the latter, but the accuracy of the former is 6.9 times that of the latter. 

The reason for this is that the width multiplier is a hyperparameter that scales the number of channels 

in each layer of the neural network. A width multiplier of 0.35, 0.25, and 0.1 means that the number of 

channels in each layer is reduced to 35%, 25%, and 10% of the original MobileNetV2 architecture. 

Certainly, though MobileNetV2 96x96 0.35 take more hardware resources, its accuracy can be as 

possible as close to that of the original MobileNetV2 architecture.  

Comparing MobileNetV2 96x96 0.35 with Self-designed Model 1 which consist of a 2D 

convolutional layer with 32 filters and a 2D convolutional layer with 16 filters, the flash usage of the 

former is 19 times that of latter. MobileNetV2, even though simplified to 35%, is still a massive and 
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complicated neural network compared with the two-layers network. Therefore, MobileNetV2 96x96 

0.35 has to take much more hardware resources. 

The choice of model depends on the specific requirements of the application. MobileNetV2 96x96 

0.35, despite requiring more hardware resources, offers the highest accuracy and can be suitable for 

applications where accuracy is critical. MobileNetV1 96x96 0.1, with its low inferencing time and 

peak RAM usage, is more suitable for real-time or time-sensitive applications. Self-designed Model 1, 

with its low flash usage, is ideal for resource-constrained devices. 

To further optimize these models, future considerations could involve exploring different width 

multipliers, such as intermediate values between 0.35 and 0.1 for MobileNetV2, to find a better 

balance between accuracy and resource utilization. Additionally, exploring alternative model 

architectures e.g. ResNet and VGG [11, 12] that can achieve comparable accuracy with reduced 

hardware resource requirements would also be worth investigating. 

4.  Conclusion  

This work aims to find the optimal architecture of CNN model for hand posture recognition. The study 

implements five different CNN models based on Edge Impulse platform and compares them with each 

other based on inferencing time, peak ram usage, flash usage, and accuracy. The selection of a model 

depends on the specific needs of the application. MobileNetV2 96x96 0.35 excels in accuracy, 

MobileNetV1 96x96 0.1 is optimal for real-time applications, and Self-designed Model 1 is 

advantageous for resource-constrained devices. Looking ahead, future optimization efforts could entail 

delving into various width multipliers, such as 0.2 and 0.25, among others. Additionally, researchers 

may explore alternative model architectures as a means to achieve a more optimal equilibrium 

between accuracy and resource utilization. 
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