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Abstract. Federated learning is a type of distributed machine learning that focuses on solutions 

for the properties of training data on edge devices as well as the privacy of the training set. 

Federated learning is a discipline highly relevant to real-world applications, and thus the 

emphasis on different perspectives requires an adaptation of the federated learning framework. 

Although almost every newly proposed federated learning algorithm is compared with some 

existing algorithms, current research on testing comparisons between commonly used federated 

learning algorithms remains vague and complex. Therefore, the purpose of this paper is to test 

and compare several federated learning frameworks, including the representative FedAvg, 

MOON, FedProx, and MOON. Based on revisiting the theory and key steps of these algorithms, 

an analysis of the performance performance will be conducted, evaluating their advantages for 

applications. Furthermore, a summary based on the test results will be provided, pointing out 

possible future challenges as well as research directions. 
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1.  Introduction 

As the use of personal computing devices becomes more widespread, the amount of information that 

can be collected, either from sensors of all kinds or from the users themselves, is incalculable in scale. 

This information seems to make a good training dataset, however, it also naturally involves issues of 

privacy and data security. The act of storing user-generated information directly implies the 

responsibility for security concerns and is subject to strict legal oversight. In order to enable users to 

benefit from global models trained on their data, and to avoid directly involving user’s raw data, 

Mcmahan et al. [1] put forth the concept of federated learning, where the training task is realized through 

a loose federation between clients. The transfer of source data between servers and clients is replaced 

by the parameters of the training process, allowing the information transferred to be reduced to the 

minimum required to update a particular model, thus guaranteeing the privacy involved during the 

training process. 

In a typical federated learning process, clients receive an initial model from the server at first before 

training it locally on the basis of global state along with their local dataset. After a certain round of 

training, local updates are subsequently transferred to the server. Then, the information collected is 

aggregated by the server so as to update the global state, after which new model is sent to clients for the 

next iteration. Distinct from typical distributed optimization, federated optimization has the following 

properties due to its data source for the training process. (1) Non-Independent and Identically Distributed 
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(Non-IID). The local training set of clients could hardly reflect the global distribution. (2) Unbalanced. 

The local training sets of clients are of different sizes. (3) Massively distributed. The scale of clients is 

anticipated to be significantly higher than the scale of clients in the training dataset on average.  (4) 

Limited communication.  

Based on these features and the initial motivation of privacy-orientation, the challenges that federated 

learning needs to address are as follows: (1) Communication. The communication pattern between 

servers and clients (e.g., frequency of communication, the content of communication) is a factor that 

directly affects the efficiency and results of federated learning. (2) Heterogeneity. Heterogeneity could 

be manifested at two major aspects. Systematic heterogeneity is manifested in the variability of clients, 

leading to differences in dimensions such as training time among different clients. Statistical 

heterogeneity is manifested in the bias between global and local models in terms of updated trends. (3) 

Privacy. Although the parameters transferred during the process of federated learning are not raw data 

from the clients, they still contain information about the model and affect model updates. Therefore, the 

possibility of threats such as inference attacks and Byzantine attacks are inevitably taken into account. 

In recent years, several studies have put forth their respective solutions for these three major aspects. 

In terms of communication, Jakub et al. [2] introduced both structured updates as well as sketched 

updates with an idea of a compression scheme over the content of the communication. Lalitha et al. [3] 

proposed fully decentralized federation learning, which restricts communication to one-hop neighbors. 

To address the heterogeneity problem, Active federated learning was put forth by Goetz et al. [4]  to 

improve the efficiency of training by controlling the probability of selecting a particular client. Diao et 

al. [5] proposed HeteroFL to face scenarios where clients are extremely different in terms of 

computational and communication performance. Huang et al. [6] proposed FedAMP, which improves 

the performance of the algorithms by employing the collaboration of clients with similar data. For 

privacy, Wei et al. [7] introduce differential privacy in federated learning and analyze the performance. 

Xu et al. [8] propose VerifyNet for privacy in deep neural networks. All of these methods make their 

own trade-offs for the dimensions of efficiency, accuracy, and security under the framework of federated 

learning. 

Although the above efforts have greatly contributed to the research progress in federated learning, 

the efficiency of various algorithms in various contexts has received scant study. In order to provide 

some decision basis for algorithm selection in real scenarios, this paper introduces basic theories of 

representative algorithms in detail and quantitatively compares their experimental results in different 

scenarios. The major contributions of this paper are as follows: (1) Test a variety of federated learning 

algorithms in different contexts and compare their test results. (2) Analyze possible reasons and 

speculate on the practical applicable contexts based on the test results. (3) Infer subsequent challenges 

and research trends of federated learning. 

2.  Related Work 

Federated learning has become one of the hotspots of research in recent years as a solution for principles 

of focused collection as well as data minimization applied to reality. FedAvg proposed by Mcmahan et 

al. [1] is the first and relatively fundamental framework of federated learning, which achieves the goal 

of reducing the number of communication rounds by increasing computation on individual clients, and 

datasets with unbalanced or non-IID properties are taken into account for the first time. Li et al. [9] put 

forth Model-Contrastive Federated Learning (MOON) for the context of image-based datasets under 

deep learning models. This method utilizes resemblance between model representations to instruct the 

learning process of individuals for the purpose of optimizing the performance of federated learning on 

image training sets. When facing systematic heterogeneity problems, FedAvg generally drops clients 

with relatively poor performance based on a certain standard, which may lead to bias in the global model. 

Li et al. [10] proposed Federated Optimization in Heterogeneous Networks (FedProx) as an adapted and 

generalized version of FedAvg to address this problem and improve average performance in highly 

heterogeneous scenarios. For the problem of inconsistency within the minimum of experience loss 

between local device-level and global-level during communication, Acar et al. [11] proposed Federated 
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Learning based on Dynamic Regularization (FedDyn). This method introduces a dynamic parameter to 

each client for every update to ensure consistency between global and local solutions. This entitles the 

framework theoretically independent of factors such as heterogeneity, communication quality, etc. 

3.  Performance Comparison and Analysis 

3.1.  Experimental Setup 

In this paper, four state-of-the-art methods, FedAvg, MOON, FedDyn, and FedProx, are selected for 

comparison. The experiments are mainly set on two datasets, including CIFAR-10, and Fashion-MNIST. 

Furthermore, two different network architectures are used for testing. For CIFAR-10, the DNN network 

was selected as the model, while the CNN network was selected for Fashion-MNIST. All federated 

learning frameworks tested were based on PyTorch implementations. For all the framework, batch size 

was set to 10 and local learning rate was 0.005. The number of global rounds was set to 50 since the 

tested frameworks obtained little or almost no accuracy improvement in the subsequent rounds. The 

training data was set to be Non-IID and unbalanced to simulate realistic scenarios. Dirichlet distribution 

was used to generate these datasets to characterize the unbalanced distribution of data samples. 

3.2.  Accuracy Comparison 

For the four federated learning frameworks, the accuracy of the fixed global number of rounds is tested 

first. The accuracy corresponding to the number of rounds could to some extent reflect the efficiency of 

the algorithm and the performance of the output results. For frameworks that include additional 

hyperparameters such as FedProx, parameters that ensure better performance (μ = 0.01 for the CIFAR-

10 dataset) are selected. 

Figure 1 demonstrates the accuracy of the four federated learning algorithms based on the Fashion-

MNIST dataset. As can be seen, FedAvg, MOON, and FedProx perform relatively similar to each other. 

All three reach a relatively high accuracy rate at the early stage, indicating that they could perform well 

and consistently in smaller contexts. FedDyn, on the other hand, exhibits larger fluctuations and unstable 

performance, which might be a result caused by the framework’s greater emphasis on communication 

performance at a large scale. 

  
(a) FedAvg (b) FedDyn 
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(c) FedProx (d) MOON 

Figure 1. Accuracy in different number of global rounds on Fashion-MNIST. 

Figure 2 demonstrates the accuracy of the four federated learning algorithms on the basis of CIFAR-

10 dataset. FedAvg and MOON perform similarly and close to their performance on the Fashion-MNIST 

dataset. FedProx, on the other hand, subsequently achieves a higher accuracy rate while performing 

similarly at early rounds to FedAvg. Possibly due to the small number of clients in this test, FedDyn’s 

performance is still relatively unstable, but its final result is similar to that of FedAvg and MOON. 

  
(a) FedAvg (b) FedDyn 

  
(c) FedProx (d) MOON 

Figure 2. Accuracy in different number of global rounds on CIFAR-10. 

3.3.  Scalability 

In this paper, the scalability performance of different frameworks is also tested by the adjustment over 

the size of the clients. The effect of increasing the number of clients creates inevitable challenges for 

aspects such as the communication performance of the frameworks. Therefore, scalability performance 

is likely to have a direct impact on the decision of which federated learning framework to apply. 

Figure 3 demonstrates the accuracy of the four federated learning algorithms based on the Fashion-

MNIST dataset as the number of local rounds increases. When local epoch is set to 1, the magnitude of 
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updates per round is relatively small, making the gain obtained from communication low. When this 

parameter is increased, although the gain in updates per round is greater, the local-global consistency is 

also more unstable and even generates errors. According to the test results, this parameter has a very 

small impact on the optimal accuracy. The main factor to be weighed in choosing this parameter lies in 

balancing communication gains with model stability. 

  
(a) FedAvg (b) FedDyn 

  
(c) FedProx (d) MOON 

Figure 3. Accuracy in different number of global rounds on Fashion-MNIST with increased 

number of local epochs. 

Figure 4 illustrates the accuracy of the four federated learning algorithms based on the CIFAR-10 

dataset after increasing the scale of clients. FedDyn shows a more pronounced advantage with the rise 

in the scale of clients and achieves the highest accuracy of 0.4 under the four federated learning 

frameworks. FedProx has the most stable convergence process but ultimately achieves the lowest 

accuracy. FedAvg and MOON perform close to each other, roughly between FedDyn and FedProx. In 

addition to this, Table 1 shows how efficiently these frameworks run in time. MOON requires the largest 

increase in time as the number of clients increases. All four methods show varying degrees of decrease 

in accuracy, with FedDyn being the least affected. 

On the whole, the performance of FedAvg and FedProx is comparatively similar. the performance of 

FedProx is slightly more stable than that of FedAvg in the test. Nevertheless, the running time of 

FedProx is slightly increased due to its need to aggregate the client data that has not completed the 

calculation. It is also worth mentioning that this experiment does not fully demonstrate the advantage of 

FedProx in terms of tolerance of heterogeneous systems. MOON does not show a significant advantage 

in the test, and its performance suffers more with the number of clients in the test, probably due to the 

fact that the method introduces additional calculation over loss function. FedDyn has a relatively 

unstable training process and has its advantage when the scale of clients rises. The fact that the model 

for each device is required to converge towards the global optimum during the training process may be 

one of the contributing factors. 
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(a) FedAvg (b) FedDyn 

  
(c) FedProx (d) MOON 

Figure 4. Accuracy in different number of global rounds on CIFAR-10 with increased number 

of local epochs. 

Table 1. Accuracy and time efficiency on CIFAR-10 with different number of clients. 

 original (5) extra clients (15) 

 Time cost Accuracy Time cost Accuracy 

FedAvg 100% (85.67s) 0.47 350% 0.40 

FedDyn 122% 0.53 422% 0.48 

FedProx 110% 0.51 372% 0.38 

MOON 187% 0.47 556% 0.40 

4.  Discussion and Conclusion 

Federated Learning acts as a distributed learning solution for privacy and training data characterization 

under real-world applications. The framework fully exploits the trend of large total size of client datasets 

and stronger client computational performance while satisfying privacy. Since its introduction, federated 

learning has developed various branches to suit different application environments and has been 

embraced by a large number of researchers and organizations. On the one hand, with the help of 

federated learning architecture, clients can overcome the bottleneck of small local datasets and obtain 

more accurate models and higher efficiency. On the other hand, the global model indirectly applies data 

generated by huge collection of edge devices under the condition of minimizing privacy issues. 

In this paper, the performance of several federated learning algorithms is tested in the same 

environment. The performance of these frameworks in different contexts is analyzed. In subsequent 

research work, federated learning will be further optimized to address issues such as its heterogeneity. 

On the other hand, considering the outstanding scalability of federated learning frameworks, progress 

in other fields is likely to be applied in the improvement over performance of federated learning in 
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specific dimensions, including scheduling on distributed machine learning and new approaches to data 

privacy. 
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