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Abstract. With the rise of big data and artificial intelligence (AI), Convolutional Neural 

Networks (CNNs) have become instrumental in numerous applications, from image and speech 

recognition to natural language processing. However, these networks’ computational demands 

often exceed the capabilities of traditional processing units, leading to a search for more effective 

computing platforms. This research aims to evaluate the potential of Field-Programmable Gate 

Array (FPGA) technology in accelerating CNN computations, considering FPGA’s unique 

attributes such as reprogrammability, energy efficiency, and custom logic potential. The primary 

aim of this research is to compare the efficiency and performance of FPGA acceleration of CNNs 

with conventional processing units like CPUs and GPUs and to explore its potential for future 

AI applications. This research employs a mixed-methods approach, including an integrated 

literature review and comparative analysis. This paper reviews state-of-the-art research on 

FPGA-accelerated CNNs, benchmark performance metrics of FPGA, CPU, and GPU platforms 

across various CNN models, and compare FPGA-based AI applications with other real-world AI 

applications. The findings suggest a significant potential for FPGA-accelerated CNNs, 

particularly in scenarios requiring real-time computation or power-limited environments. 

However, challenges persist in the areas of development complexity and limited on-chip memory. 

Future work must focus on surmounting these barriers to unlock the full potential of FPGA-

accelerated CNNs. 
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1.  Introduction 

With the surge in Big Data and Artificial Intelligence advancements, Convolutional Neural Networks 

(CNNs) have experienced unprecedented attention, leading the charge in image processing, speech 

recognition, and other related domains. The increased computational demands of CNNs often 

overshadow the capabilities of conventional processing units like CPUs and GPUs. This gap has led to 

an exploration of more potent computing platforms to meet the growing demands of AI applications. 

Field-Programmable Gate Arrays (FPGAs) emerge as a significant contender in this space due to their 

adaptability, energy efficiency, and the potential for tailor-made logic implementations. 

This study primarily revolves around the comparative analysis of FPGA-accelerated CNNs against 

their traditional counterparts. Specifically, this research aims to discern how FPGA-accelerated CNNs 

stand in terms of efficiency and performance when pitted against conventional computing platforms and 
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what inherent advantages FPGAs might offer for the impending generation of AI applications. To 

achieve these objectives, a mixed-methods approach combining literature review and performance 

analysis will be employed. 

Understanding this dynamic between FPGA and conventional platforms is not just a technological 

pursuit but has significant implications for the trajectory of AI evolution. It holds the promise of setting 

new standards for computational efficiency and potentially unlocking AI capabilities previously deemed 

unattainable due to hardware limitations. 

2.  Theoretical Framework and Comparative Analysis of FPGA, CPU, and GPU in CNNs 

2.1.  Introduction to Convolutional Neural Networks (CNNs) and Field-Programmable Gate Arrays 

(FPGAs)  

Convolutional Neural Networks (CNNs) have revolutionized the domain of machine learning by 

providing advanced capabilities for pattern recognition in images, speech, and text [1]. A CNN consists 

of multiple layers of filters and neurons designed to automatically learn the spatial hierarchies of features. 

Despite their efficiency in learning and recognizing patterns, CNNs require immense computational 

resources. 

Field-Programmable Gate Arrays are integrated circuits that can be reprogrammed to perform 

specific logic functions. They offer high parallelism, low latency, and energy-efficient performance, 

making them suitable for accelerating CNNs [2]. The programmable nature of FPGAs allows for 

customizing hardware according to the specific needs of a CNN model. 

2.2.  Detailed Overview of CPU-based CNNs: Advantages and Limitations 

Traditional Central Processing Units (CPUs) have long been the conventional choice for running various 

applications, including CNNs. The architecture of CPUs is general-purpose, allowing them to execute a 

broad range of instructions. This flexibility provides compatibility with most software frameworks and 

ease of development [3]. The advantages of using CPUs include their flexibility in handling multiple 

tasks and instructions, making them versatile in different applications. Furthermore, many frameworks 

are optimized for CPUs, reducing the development complexity. However, limitations include higher 

power consumption due to the lack of specialization in parallel computing, leading to inefficiency in 

energy consumption. Also, CPUs’ lack of specialization in handling the parallelizable nature of CNNs 

limits their processing speed for large-scale models [3]. 

2.3.  Detailed Overview of GPU-based CNNs: Advantages and Limitations 

Graphics Processing Units (GPUs) have emerged as a powerful tool for accelerating CNNs. Their 

parallel architecture efficiently computes CNN layers, providing a substantial boost in speed [4]. The 

advantages of using GPUs are evident in their design for parallel computing, which significantly 

enhances the processing speed of CNNs, and their integration with deep learning frameworks like 

TensorFlow and PyTorch, which often support GPU acceleration. However, they come with higher costs, 

often being more expensive than CPUs, and may require specialized cooling systems. Additionally, 

despite their efficiency in processing, GPUs can be energy-consuming in continuous, large-scale 

applications, and restrictions in memory may limit their application in complex, large-scale CNN models 

[4]. 

2.4.  Detailed Overview of FPGA-accelerated CNNs: Advantages and Limitations 

Field-Programmable Gate Arrays (FPGAs) introduce a unique and promising approach to the 

acceleration of CNNs. Custom logic designs enable high parallelism, making them energy-efficient and 

potentially outperforming GPUs in certain applications [2][5]. FPGAs have the advantage of 

reprogrammability, allowing them to fit specific CNN architectures, and customization that enables 

optimized logic designs, minimizing energy consumption [2]. They also excel in scenarios requiring 

immediate processing, such as edge computing [6]. However, the development complexity associated 
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with FPGAs requires a profound understanding of hardware design, often leading to a steep learning 

curve. Also, limited on-chip memory can pose challenges in implementing complex CNN models. 

2.5.  Comparative Analysis: Efficiency, Speed, and Energy Consumption 

The comparison between FPGA, CPU, and GPU platforms reveals distinctive characteristics in terms 

of efficiency, speed, and energy consumption. FPGAs demonstrate high energy efficiency due to their 

customizable nature. GPUs follow with better efficiency compared to CPUs, primarily due to their 

parallel processing capabilities [5]. In terms of speed, GPUs typically offer the highest speed due to their 

parallel architecture, with FPGAs competitive in certain scenarios, particularly where real-time 

computation is required. CPUs generally lag in this regard [7]. When considering energy consumption, 

FPGA-accelerated CNNs are often preferred in power-limited environments due to their superior energy 

efficiency [8]. 

The comparative analysis highlights the potential of FPGA-accelerated CNNs as an emerging 

technology that could redefine the paradigms of efficiency and speed in AI applications. The adaptability 

and energy efficiency of FPGAs position them favorably against traditional CPU and GPU platforms, 

especially in real-time and energy-constrained scenarios. However, the complexity of FPGA design and 

limitations in on-chip memory remain critical areas for future research and development. By addressing 

these challenges, the full potential of FPGA-accelerated CNNs could be unlocked, providing a robust 

platform for next-generation AI applications. 

3.  Enhancing FPGA-accelerated CNN Performance 

3.1.  Key challenges faced in FPGA-accelerated CNNs: Development Complexity and On-chip 

Memory 

3.1.1.  Development Complexity. Development complexity is one of the primary challenges in 

implementing FPGA-accelerated CNNs. This complexity arises from the necessity of developing 

custom logic tailored for specific CNN architectures, requiring skills in hardware description languages 

like VHDL or Verilog [7]. The challenge here is twofold. First, the learning curve associated with these 

languages can be steep, and engineers traditionally skilled in software development might find hardware 

description languages challenging, resulting in a slower development process [6]. Second, the need for 

intricate optimizations at the hardware level makes the FPGA development process not only time-

consuming but also prone to errors. Achieving high performance often requires careful design and deep 

understanding of both the hardware and CNN algorithms [2]. 

3.1.2.  On-chip Memory Limitations. Another significant barrier is the on-chip memory limitations 

inherent in FPGA platforms. Modern CNNs’ increasing depth and complexity often require memory 

that exceeds what is available on an FPGA chip [9]. This constraint leads to a reduction in parallelism, 

as data must be transferred between off-chip and on-chip memory, introducing additional latency [10]. 

Additionally, the limitation of on-chip memory also affects the scalability of FPGA-accelerated CNNs, 

impacting the ability to handle larger and more complex models [8]. 

3.2.  Strategies for optimizing the dataflow in FPGA-accelerated CNNs 

3.2.1.  High-Level Synthesis (HLS) Tools. High-Level Synthesis (HLS) tools present a viable solution 

to reduce the development complexity. By allowing developers to write hardware algorithms in C/C++, 

HLS tools generate optimized hardware descriptions automatically, not only simplifying the 

development process but also enhancing productivity, enabling faster prototyping and testing. Moreover, 

the use of HLS tools can also promote cross-platform compatibility, making it easier to translate designs 

across different FPGA platforms [3][6]. 
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3.2.2.  Memory Hierarchy Design. Designing a well-planned memory hierarchy is essential for 

managing limited on-chip memory. Efficient utilization can be achieved by organizing data access and 

storage hierarchically, and employing intelligent prefetching strategies to make better use of memory 

constraints, reducing bottlenecks. Additionally, custom memory hierarchy designs can be adapted to 

different CNNs’ requirements for more efficient data access [7][8]. 

3.2.3.  Loop Optimization. Loop optimization techniques like loop unrolling, pipelining, and parallelism 

can be instrumental in minimizing bottlenecks and enhancing the overall computation speed of FPGA-

accelerated CNNs. These techniques can increase the computational throughput, making real-time 

processing more attainable, and their flexibility allows adaptation to different CNN architectures, 

facilitating custom solutions for varying computational needs [7]. 

3.2.4.  Pruning and Quantization. Pruning and quantization techniques can reduce the model’s size and 

computational complexity without a significant loss in accuracy. By eliminating unnecessary 

connections and reducing numerical precision, these techniques enable more efficient implementation 

on constrained FPGA platforms, while research shows that careful application maintains or even 

improves the performance of the model, despite the reduction in complexity [1][4]. 

3.3.  Impact of Optimization: Enhanced Speed and Efficiency 

By employing the above strategies, substantial improvements in both speed and efficiency for FPGA-

accelerated CNNs can be achieved. These enhancements extend to real-world applications in sectors 

like autonomous vehicles, medical imaging, and industrial automation, offering benefits such as lower 

latency, reduced energy consumption, and greater adaptability to various computational demands. They 

also have economic implications, providing cost-effective solutions compared to traditional CPUs and 

GPUs, especially in power-limited environments. The ongoing evolution of optimization techniques, 

combined with continuous research in FPGA technology, holds the promise of further potential in the 

growing field of AI [5]. 

The advancement of FPGA-accelerated CNNs is pivotal in the era of AI and big data. Although 

challenges such as development complexity and on-chip memory limitations persist, the strategies 

discussed herein provide a pathway to overcoming these barriers. The integration of HLS tools, memory 

hierarchy design, loop optimization, and pruning and quantization techniques offers promising avenues 

for enhancing the efficiency and performance of FPGA-accelerated CNNs. These efforts contribute to 

the broader goal of making AI more accessible, efficient, and adaptable, solidifying the role of FPGA 

technology in the future of computing. 

4.  Implications for Future AI Applications 

FPGA-accelerated CNNs are poised to revolutionize the field of artificial intelligence by providing an 

alternative to traditional processing platforms that offer a fine-tuned balance of performance, energy 

efficiency, and adaptability [11]. The potential direction for future AI applications encompasses several 

key areas. 

Firstly, the low latency and high efficiency of FPGA-accelerated CNNs make them ideal for real-

time edge computing scenarios [12]. Applications such as autonomous driving, industrial automation, 

and smart healthcare could significantly benefit from this technology, allowing for immediate 

processing and response in critical environments. 

For applications in remote or power-constrained environments, the energy efficiency of FPGA 

platforms provides a compelling advantage. This could foster the deployment of advanced AI 

technologies in areas previously restricted by energy limitations, enabling innovations in locations 

where traditional power-hungry technologies would be impractical. 

The reprogrammable nature of FPGAs allows for highly customized hardware solutions that can be 

specifically optimized for individual CNN architectures [13]. This offers unprecedented flexibility in 
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designing specialized AI systems that cater to unique application requirements. Unlike one-size-fits-all 

approaches, FPGA-based solutions can be finely tailored to the specific demands of a project [14]. 

Future work must focus on making FPGA development more accessible to software engineers 

unfamiliar with hardware design. This could involve the creation of user-friendly development tools and 

frameworks that abstract the underlying complexity. By making FPGA technology more approachable, 

the development gap can be bridged, similar to the role played by current deep learning frameworks for 

GPUs [12]. This democratization of technology could open up FPGA benefits to a broader array of 

developers and industries [13]. 

Finally, the complementary strengths and weaknesses of FPGAs, CPUs, and GPUs may encourage 

the development of hybrid systems, utilizing the best of each technology [14]. Such integrated systems 

could dynamically allocate tasks to the most suitable processing unit, optimizing both performance and 

efficiency. The synergy between different types of processing units could lead to systems that 

outperform any single technology alone, providing a more versatile and robust platform for the next 

generation of AI applications. 

Future research should concentrate on devising innovative methodologies to overcome the 

development complexity and memory limitations of FPGA-accelerated CNNs. Investigating automated 

design tools, exploring new memory architectures, and conducting large-scale empirical studies across 

various applications could pave the way for more comprehensive insights. The fusion of FPGA 

technology with emerging trends like neuromorphic computing also presents a fascinating avenue for 

exploration, potentially unlocking new frontiers in artificial intelligence. 

5.  Conclusion 

The research journey undertaken in this study has shed comprehensive light on the tremendous potential 

and challenges of FPGA-accelerated Convolutional Neural Networks. The comparative analysis 

between FPGA, CPU, and GPU platforms has elucidated distinctive advantages in favor of FPGA 

technology, especially concerning energy efficiency and customization. While FPGAs demonstrate 

clear benefits in terms of real-time computation and adaptability to specific CNN architectures, 

development complexity and on-chip memory limitations have emerged as key hurdles to be overcome. 

Through various optimization strategies, including High-Level Synthesis tools, memory hierarchy 

design, loop optimization, pruning, and quantization, these challenges can be mitigated to achieve 

remarkable improvements in speed and efficiency. 

The findings illuminate the immense potential of FPGA-accelerated CNNs, particularly in settings 

that demand real-time computation or are bound by power limitations. However, we also identify 

significant challenges, such as development complexity and limited on-chip memory, that necessitate 

further research to fully realize the benefits of FPGA-accelerated CNNs.  

The investigation into FPGA-accelerated CNNs underscores the powerful role that this technology 

can play in shaping the future of artificial intelligence. By embracing the unique strengths of FPGAs 

and tackling the challenges head-on, the AI community can herald a new era of computation that is not 

only more efficient but also more responsive to the nuanced demands of an ever-evolving technological 

landscape. The promise of FPGA-accelerated CNNs is bright, and the path forward teems with exciting 

possibilities that will continue to inspire and drive innovation. 
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