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Abstract. This research project delves into the performance impact of implementing parallel 

programming techniques in physics engine applications. With the advent of multi-core 

processors in contemporary computing environments, optimizing physics simulations through 

parallel programming has become increasingly feasible. A conventional blob collision physics 

engine serves as the benchmark for evaluation, and its performance is juxtaposed against a 

parallel-programmed variant. Experimental findings indicate a significant reduction in 

computational time required for collision detection and response when parallel processing is 

employed. This efficiency gain is particularly pronounced in scenarios involving a large number 

of blobs, showcasing the scalability advantages of parallelization. Moreover, parallel 

programming facilitates optimal harnessing of multi-core processor capabilities, thereby 

enhancing the overall efficiency and performance of the physics engine in question. This study 

not only substantiates the technical merits of applying parallel programming but also illuminates 

the practical benefits, including resource-efficient operation and quicker simulation times. 

Consequently, the research provides valuable insights for developers and engineers aiming to 

fully exploit the capabilities of modern computing hardware in physics-based simulations and 

applications. 

Keywords: Physics Engine, Collision Detection, Parallel Programming, Parallel Optimization, 

OpenMP, Speedup. 

1.  Introduction 

The objective of this project is to engineer a robust physics engine capable of simulating the dynamics 

of hundreds of small spheres in a two-dimensional environment. Such a simulation demands precise 

processing of collision events, as well as meticulous calculation of each sphere's position and velocity 

post-collision. 

To enable real-time or near real-time simulation, the engine must grapple efficiently with 

considerable data and computational load. Given the interactive nature of each sphere with others, 

algorithmic complexity grows exponentially with the quantity of spheres involved. Consequently, 

without any intervention, the simulation speed could be hampered significantly, especially when dealing 

with a high number of interacting spheres. To circumvent this challenge, the project incorporates parallel 

programming techniques. By assigning computational tasks across multiple processor cores, this 

approach facilitates simultaneous processing of numerous tasks. As such, the motions and interactions 

of multiple spheres can be processed in parallel, resulting in a substantial boost in the overall efficiency 
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of the simulation. In summary, the crux of this project lies in devising and implementing a physics 

engine tailored for sphere collision simulations. By leveraging parallel programming methods, the 

engine aims to efficiently handle voluminous data and complex computations, thereby achieving high-

speed simulations under real-time or near real-time conditions. 

2.  Relevant theories 

2.1.  Physical Simulation 

Physics engines primarily tackle two core issues: collision detection and collision resolution. Collision 

detection itself is commonly divided into two sequential phases—BroadPhase and NarrowPhase—to 

enhance computational efficiency. The BroadPhase serves as a rapid filtering mechanism, designed to 

eliminate object pairs that are unlikely to collide and thus pose no constraints. Pairs dismissed at this 

stage are not subjected to further scrutiny or resolution. Conversely, object pairs that survive the 

BroadPhase enter the NarrowPhase, where a more rigorous analysis is conducted to ascertain the 

likelihood of constraints. This phase yields precise data such as the collision point between objects, 

penetration depth, and separation normals, among other details. These findings are instrumental in the 

subsequent collision resolution phase, also known as the ResolvePhase. The ultimate aim of the 

ResolvePhase is to manipulate the position or velocity of the objects in question to satisfy a set of 

predefined conditions or constraints. This ensures that the simulated physics are as closely aligned with 

real-world behavior as possible, completing the dual process of detection and resolution that is central 

to the functionality of physics engines. 

2.1.1.  Broad Phase. In the Broad Phase of collision detection, the system conducts an initial screening 

of all potential object-pairs, eliminating those unlikely to collide and thus bypassing further calculations 

for them in subsequent phases. Axis-Aligned Bounding Boxes (AABB) serve as an effective tool for 

rapidly filtering out non-colliding object pairs. The technique involves encapsulating each object within 

a rectangle, followed by a check for overlap between each generated rectangle-pair. Should an overlap 

occur, the corresponding object-pair is considered likely to collide within the current frame. Conversely, 

if no overlap is found, the object-pair is excised from further refined calculations. 

While this screening method is effective, it is computationally expensive due to its time complexity 

of 𝑂(𝑁2).To ameliorate this issue, the Sweep and Prune algorithm is employed for further optimization. 

The underlying principle of this algorithm posits that if two AABBs overlap, their projections onto the 

x and y axes must likewise overlap [1]. An AABB projection onto any axis simplifies to a straight line. 

Hence, if the projections do not overlap on at least one axis, the AABBs cannot intersect, streamlining 

the detection process. In the context of the Sweep and Prune approach, the relative positioning of objects 

can shift as they move. However, due to the continuous nature of object movement, drastic changes 

within a single frame are unlikely. As such, the utilization of insertion sorting significantly accelerates 

the sorting process, thereby enhancing the overall algorithmic efficiency. 

2.1.2.  Narrow Phase. In the Narrow Phase of collision detection, objects identified as potential collision 

candidates during the Broad Phase are subjected to more rigorous scrutiny to ascertain actual collision 

events. Specifically, between two spheres, the determining factor for a collision is whether the distance 

between the centers of the circles exceeds the sum of their respective radii. By calculating this distance 

and comparing it to the sum of the radii, a direct conclusion about the occurrence of a collision can be 

drawn. 

2.1.3.  Resolve Phase. When two objects collide or are subject to an artificially defined constraint 

relationship, it becomes essential to resolve these constraints. Through this resolution process, attributes 

like the position, orientation, and velocity of the involved objects are adjusted to adhere to the 

corresponding constraint equation or inequality. 
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First, when two objects collide, the law of conservation of momentum is met. Let's say the 

momentum of the two objects before the collision are 𝑚1𝑣1 and 𝑚2𝑣2, and then according to the 

momentum conservation theorem, the sum of the momentum of the two balls after the collision 𝑚1𝑣3 

plus 𝑚2𝑣4 still remains unchanged. And the formula is as below. 

 𝑚1𝑣1 +𝑚2𝑣2 = 𝑚1𝑣3 +𝑚2𝑣4𝑚1𝑣1 +𝑚2𝑣2 = 𝑚1𝑣3 +𝑚2𝑣4 (1) 

Second, two objects meet the law of conservation of mechanical energy before and after collision. 

That is, if no external force does work and only conservative forces do work in the system, the 

mechanical energy of the system remains unchanged. Let's say the mechanical energy of the two objects 

before the collision are 
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Therefore, by combining the law of conservation of momentum, and the law of conservation of 

mechanical energy, the velocities after the collision, 𝑣3 and 𝑣4 can be calculated. 

2.2.  Parallel Optimization 

Details of parallelization are explored using OpenMP to enhance the efficiency of collision detection, 

which involves extensive loops and floating-point calculations. Certain OpenMP pragmas, theoretically 

suited for this task, are selected for implementation. The efficacy of these pragmas is subsequently 

verified by measuring the time required for frame updates. 

2.2.1.  Profiling. Before embarking on any code modifications, it is crucial to identify the key 

performance indicators for the project. Utilizing a benchmarking tool can help establish a baseline 

performance metric. Once this baseline is established, profiling tools can identify the functions within 

the code that are most time-consuming [2]. Subsequent steps involve optimizing the algorithms for these 

bottleneck functions and implementing parallelization techniques to further improve performance. After 

these changes are implemented, performance metrics should be reassessed and compared to the initial 

baseline. This comparison will indicate whether the modifications have led to performance 

improvements. A decision can then be made on whether the updated performance is satisfactory or if 

further optimization is required. Given that the project is developed using Visual Studio on a Windows 

OS, the built-in diagnostic tools of Visual Studio serve as the profiling tool of choice [3]. In this 

particular program, the primary focus is on the time consumption of each individual function. 

Accordingly, optimization efforts are primarily targeted at the most time-consuming functions. 

2.2.2.  OpenMP. In the realm of thread-level parallelism, several options exist including pthreads, 

OpenMP, and MPI. Given that the focus is not on cluster computing, MPI is set aside in favor of 

OpenMP for its stability and ease of implementation. The OpenMP API offers an assortment of compiler 

directives, library functions, and environment variables. This provides a parallel programming model 

compatible with architectures from a variety of manufacturers, with several companies offering 

dedicated OpenMP API compilers [4]. 

To manage irregular yet relatively independent tasks, the directive #pragma omp task is employed 

[5]. This is often combined with #pragma omp parallel and #pragma omp single. Under the #pragma 

omp parallel directive, a team of OpenMP threads execute the code region. Within this parallel context, 

#pragma omp single ensures that only one thread in the team executes the associated structured block 

[6]. However, special settings are required when utilizing task directives in a Visual Studio environment 

[7]. Figure 1 in the documentation illustrates the application of omp parallel, omp single, and omp task 

directives in the broad phase stage of collision detection. This enables x-axis and y-axis detection in the 

Sweep and Prune algorithm to proceed concurrently [8]. Instead of employing #pragma omp taskwait 
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to create an explicit barrier, the implicit barrier provided by #pragma omp single is used to minimize 

overhead. 

 

Figure 1. The using of omp parallel, omp single and omp task directives in broad phase of the stage of 

collision detection (Photo/Picture credit: Original). 

To achieve loop parallelization, the #pragma omp parallel directive is employed. This directive 

signifies that the subsequent 'for' loop will be executed in a multi-threaded fashion, under the condition 

that there is no interdependence between each loop iteration. Upon completing their respective tasks, 

the threads in the team await at an implicit barrier at the conclusion of the single construct, unless a 

'nowait' clause is specified [9]. 

Data-sharing attribute clauses, commonly known as reduction clauses, offer a mechanism for 

executing specific types of recursive calculations concurrently. Reduction clauses are generally 

categorized into two types: participating clauses and scoping clauses. The former describes the 

participants involved in the reduction, while the latter outlines the area where the reduction is computed. 

Each reduction clause specifies a reduction-identifier and one or more list elements [10]. In contrast to 

utilizing lock routines within the 'for' loop, the employment of reduction clauses significantly minimizes 

thread waiting times when attempting to access shared variables concurrently. However, due to version 

limitations, OpenMP within the utilized version of Visual Studio does not support the reduction-

identifier. As an alternative, a unique private vector is designated for each thread, followed by a serial 

merging of these vectors outside the parallel region [11]. The use of #pragma omp critical is integrated 

to ensure that threads populate the 'possible_collision_pairs' vector in a serialized manner, thereby 

maintaining data consistency. Figure 2 showcases the application of 'omp parallel for,' 'omp critical' 

directives, and private vectors in the broad phase of the collision detection stage, enabling the 

parallelization of intersection computations between x-axis and y-axis collision detection results. 

 

1. void State::broadPhase() 

2. { 

3.  this->possible_on_x.clear(); 

4.  this->possible_on_y.clear(); 

5.  this->possible_collision_pairs.clear(); 

6. #pragma omp parallel 

7.  { 

8. #pragma omp single 

9.   { 

10.    detectAxises(); 

11.   } 

12.  } 

13.  intersectAxises(); 

14. } 

15.  

16. void State::detectAxises() { 

17. #pragma omp task 

18. detectAxisX(); 

19. #pragma omp task 

20.  detectAxisY(); 

21. } 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/40/20230654

227



 

Figure 2. The using of omp parallel for, omp critical directives and private vector in broad phase of the 

stage of collision detection, so as to we can parallelize the intersection computation between the results 

of collision detection in x-axis and y-axis (Photo/Picture credit: Original). 

2.2.3.  Evaluation of efficiency. Speedup is the ratio of the execution time for the entire task without the 

enhancement to the execution time for the entire task with the enhancement. And the formula is as below 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑃𝑒

𝑃𝑤
=

𝐸𝑤

𝐸𝑒
  (3) 

where 

𝑃𝑒 is the performance of the entire task using improvement; 

𝑃𝑤 is the performance of the entire task without the use of improvement; 

𝐸𝑤 is the time -consuming of the entire task not using the improvement; 

𝐸𝑒 is the time -consuming of the entire task using the possible improvement. 

Amdahl’s law states the theoretical latency speedup of a task with a given data set in a system whose 

code are optimized. To put it simply, it is a formula that identifies the maximum improvement possible 

by simply enhancing a specific component of a system. And the formula is as below [12]. 

 𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) =
1

(1−𝑝)+
𝑝

𝑠
 (4) 

where 

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is the theoretical latency speedup of the run of the entire task; 

𝑠 is the actually speedup of the run of the optimized task; 

𝑝 is the ratio of time-consuming that the originally enhanced resource portion occupied. 

In addition, 

 

1. void State::intersectAxises() { 

2.  int x{ (int)this->possible_on_x.size() }; 

3.  int y{ (int)this->possible_on_y.size() }; 

4. #pragma omp parallel 

5.  { 

6.   std::vector<std::pair<Object*, Object*>> vec_private; 

7. #pragma omp for nowait 

8.   for (int i{ 0 }; i < x; i++) 

9.   { 

10.    for (int j{ 0 }; j < y; j++) 

11.    { 

12.     if (this->possible_on_x[i].first == this->possible_on_y[j].first && 

13.      this->possible_on_x[i].second == this->possible_on_y[j].second) 

14.     { 

15.      vec_private.push_back(this->possible_on_x[i]); 

16.      break; 

17.     } 

18.    } 

19.   } 

20.  

21. #pragma omp critical 

22.   this->possible_collision_pairs.insert(this->possible_collision_pairs.end(),  

23.  vec_private.begin(), vec_private.end()); 

24.  } 

25. } 
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 {
𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) ≤

1

1−𝑝

𝑙𝑖𝑚
𝑠→∞

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) =
1

1−𝑝

 (5) 

Gustafson’s law is a measurement of how the time-consuming of the system changes as there are 

more processors in the system with a fixed data set scale per processor; i.e., where the data set scale 

increases along with the increasing of the amount of processors. And the formula is as below. 

 𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = (1 − 𝑝) + 𝑁𝑝 (6) 

where 

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is the theoretical latency speedup of the run of the entire task; 

𝑁 is the amount of processors the hardware has; 

𝑝 is the ratio of time-consuming that the originally enhanced resource portion occupied. 

The function is linear, and the slope is 𝑝. As 𝑁 → ∞ , the intercept becomes less important, i.e., 

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑁𝑝 [13]. 

3.  System analysis and application research 

3.1.  Serial 

Initial performance analysis of the ball collision program, along with frame rate evaluation, was 

conducted using Visual Studio's CPU profile performance tool [14]. The examination revealed that the 

"Update" function is a significant CPU time consumer, accounting for approximately 60% of the overall 

program's CPU usage. Additionally, the program suffers from a low frame rate. Observations on CPU 

utilization indicate substantial time expenditure per frame. Specifically, the collision elapsed time per 

frame for a simulation of 200 small balls registers at 800 microseconds. Without any optimization, this 

duration demonstrates considerable potential for improvement. Code scrutiny shows that the program 

employs a 'for' loop for ball collision detection, resulting in an algorithmic complexity of O(n^2) [15]. 

Hence, there are two primary avenues for performance optimization: one is the improvement of 

algorithmic complexity, and the other is the parallelization of the 'for' loop.. 

3.2.  Parallel Optimization 

In this section, the focus initially centers on profiling the time consumption of various functions within 

the program. Following this, the efficacy of parallel enhancements is assessed through a comparative 

analysis between parallelized and serial versions of collision detection, employing speedup as the 

evaluation metric. Lastly, performance gains resulting from parallel optimizations are scrutinized across 

different scalability scenarios.. 

3.2.1.  System Setup. We use Intel i5-7200U CPU as our testbed. It has 2 2.50GHz cores. Each core has 

a 3 MB Intel Smart Cache. And it has 8 GB of memory. The Operating System is Windows 10 64-bit. 

The IDE is Visual Studio Community 2022 (64-bit) - 17.6.5 and the version of OpenMP the IDE use is 

C/C++ Version 2.0. 

3.2.2.  Profiling. According to the Amdahl’s law in Section 3.2.3, A function that accounts for the 

highest proportion of running time is identified for optimization. Table 1, generated through profiling 

in Visual Studio, indicates that 'broadPhase' emerges as the most time-consuming function developed. 

Accounting for 9.41% of the entire program's running time, as displayed in the third column, this 

function is earmarked for significant optimization using OpenMP. 
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Table 1. The result of profiling using Visual Studio. 

Function CPU total (%) CPU self (%) Module 

std:vector<std::pair<Object *,Object 

*>,std::allocator<std::pair<Object 

*,Object *> > >::operator[] 

7552(29.04%) 5031 (19.35%) multhrphy 

gdi32full.dll!0x00007ffce0939e2e 2881 (11.08%) 2881 (11.08%) gdi32full 

__CheckForDebuggerJustMyCode 2558 (9.84%) 2480 (9.51%) multhrphy 

State:broadPhase 11304 (43.47%) 2448 (9.41%) multhrphy 

ig9icd64.dll!0x00007ffbff10d9a5 2239 (8.61%) 2239 (8.61%) ig9icd64 

ig9icd64.dll!0x00007ffbff10d991 1758 (6.76%) 1758 (6.76%) ig9icd64 

msvcp140d.dll!0x00007ffbffc245cd 640 (2.46%) 640 (2.46%) msvcp140d 

msvcp140d.dll!0x00007ffbffc35778 551 (2.12%) 551 (2.12%) msvcp140d 

3.2.3.  Comparison of Parallel version to Serial version. The comparison between the parallelized and 

serial versions of collision detection utilizes speedup as a key metric across varying data set scales. As 

demonstrated in Table 2 and Figure 3, interesting trends emerge. Specifically, a data set scale of 100 

yields a speedup of 1. Upon increasing the data set scale to 200, the speedup peaks at 2.39. Beyond this 

point, however, the speedup shows a diminishing trend as the data set scale continues to rise. As outlined 

in Gustafson's Law in Section 3.2.3, maintaining or increasing the speedup could be achievable through 

an augmentation in the number of threads in tandem with the increase in data set scale. 

Table 2. The parallelized collision detection, to serial version using speedup as metric in different data 

set scale. And the number of logical threads is 4. 

Data set scale Seq(microseconds) Omp(microseconds) Speed-up 

100 501 502 1 

200 6078 2539 2.39 

400 73801 32466 2.27 

600 272861 145405 1.88 

800 548801 329028 1.67 
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Figure 3. The parallelized collision detection, to serial version using speedup as metric in different data 

set scale. And the number of logical threads is 4 (Photo/Picture credit: Original). 

3.2.4.  Parallel Scalability.Performance improvements from the parallel-optimized version were 

evaluated using speedup as the metric, with scalability tested across varying configurations. The data 

set size remained constant at 200. Both Table 3 and Figure 4 demonstrate the relationship between 

speedup and the number of threads employed. Notably, maximum speedup is achieved at four threads, 

reaching a value of 2.39. Any increase in the number of threads beyond this point results in diminishing 

returns on speedup. This can be attributed to the CPU's architecture, as outlined in section 4.2.1, which 

reveals the presence of four logical cores. Consequently, deploying more than four threads yields a less 

significant advantage from parallelization, while concurrently escalating the overhead associated with 

it. 

Table 3. The performance improvements of our parallel optimization version using speedup as metric 

in different scalability. And the data set scale is fixed at 200. 

Number of Threads Seq(microseconds) Omp(microseconds) Speed-up 

1 6078 6078 1 

2 6078 3835 1.58 

3 6078 3095 1.96 

4 6078 2539 2.39 

5 6078 3243 1.87 

6 6078 3828 1.59 

7 6078 2823 2.15 

8 6078 2265 2.68 

9 6078 3741 1.62 

10 6078 3491 1.74 
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Figure 4. The performance improvements of our parallel optimization version using speedup as metric 

in different scalability. And the data set scale is fixed at 200 (Photo/Picture credit: Original). 

4.  Conclusion 

In this study, the collision processing workflow is refined by introducing an additional stage, resulting 

in a total of three stages. This modification serves to minimize superfluous operations, ensuring that 

CPU time is optimally utilized. Specifically, the Broad Phase employs the Sort and Sweep algorithm, 

contributing to a significant reduction in time complexity. Furthermore, the study reveals that collision 

detection is the most resource-intensive component of the physics engine. Within this stage, the Broad 

Phase consumes the most computational time. By leveraging OpenMP for parallel optimization, the 

study achieves a twofold speedup in performance. To maintain this enhanced efficiency while 

accommodating increasing data set sizes, it is recommended to augment the number of available CPU 

cores. 
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