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Abstract. In this comprehensive exploration of sequence-to-sequence models in Natural 

Language Processing (NLP), we have traced the trajectory of their evolution and contributions. 

Starting from foundational Recurrent Neural Networks (RNNs) to the revolutionary capabilities 

of Long Short-Term Memory (LSTM), In this comprehensive exploration of sequence-to-

sequence models in Natural Language Processing (NLP), we have meticulously traced the 

trajectory of their evolution and impactful contributions. From the foundational Recurrent Neural 

Networks (RNNs) to the revolutionary capabilities of Long Short-Term Memory (LSTM), as 

well as the transformative innovations brought forth by Transformers and BERT, this review 

eloquently highlights the monumental advancements that have fundamentally reshaped our 

understanding and generation of language. The crux of our comparative analysis lies in its ability 

to spotlight the distinctive strengths and limitations inherent in each model. Through an intricate 

examination, we uncover their nuanced applications across a diverse spectrum of NLP tasks. 

Particularly noteworthy is the pivotal role played by Transformers and the transformative 

Bidirectional Encoder Representations from Transformers (BERT). The paper concludes with a 

summary and outlook of the entire paper. 
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1.  Introduction 

The domain of Natural Language Processing (NLP) has, over the past few decades, transformed from a 
niche academic field to a cornerstone of modern technological applications. Central to this 
transformation has been the development and refinement of sequence-to-sequence (Seq2Seq) tasks. 
These tasks, pivotal in applications ranging from machine translation to automated chatbots, involve the 
conversion of one sequence, often a sentence or paragraph in one language, into another sequence, 
possibly its translation in another language or a summarized version of the original. 

In today's digital age, the sheer volume of textual data generated every second is staggering. From 

tweets and blog posts to scholarly articles and e-books, the digital universe is awash with textual 
information. This deluge of data has not only underscored the importance of Seq2Seq tasks but also 
highlighted the challenges inherent in processing such data. Language, with its nuances, idioms, and 
cultural contexts, is inherently complex. Its sequences are dynamic, varying in length and structure, 
making it a challenging domain for computational processing. 
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The motivation for this study is rooted in the pressing need to unravel the complexities of Seq2Seq 
tasks in the context of NLP. As the volume and diversity of textual data continue to surge, understanding 
how to effectively process and manipulate sequences becomes paramount. This study seeks to dissect 
the underlying mechanisms of Seq2Seq models, shedding light on their evolution, strengths, and 

limitations. By doing so, we aim to provide insights into their applications across a spectrum of real-
world scenarios. 

This paper adopts the following structure: Section 2 offers a detailed examination of the models 
utilized in Seq2Seq tasks. It explores the progression from Recurrent Neural Networks (RNNs) to more 
sophisticated models such as Transformers and Bidirectional Encoder Representations from 
Transformers (BERT). This section provides a comprehensive overview and evolution of these models, 
highlighting their significance in Seq2Seq tasks. Section 3 presents a detailed comparative analysis of 
these models, highlighting their respective contributions and limitations. In Section 4, we draw 

conclusions from our analysis and discuss potential directions for future research in Seq2Seq tasks. 

2.  Evolution and Variants of Seq2Seq Models 

2.1.  RNNs and its Variants 

⚫ RNNs 

RNNs have been a cornerstone in the field of sequence modeling due to their inherent ability to 
remember past information and use it to influence future predictions. Traditional RNNs process 
sequences element by element, maintaining a hidden state that captures information about the processed 
parts of the sequence [1]. 

⚫ Basic Architecture and Working Principle 

At the heart of the RNNs architecture is the concept of a hidden state, which captures information 
from previous time steps. At each time step, the network updates its internal state, which enables it to 
retain a type of memory about the sequence.  

Mathematically, the recurrent mechanism of an RNN can be represented as: 

     ℎ𝑡 =  σ(Whhht−1 + Wxhxt + bh)                                          (1) 

          𝑦𝑡 =  𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦                             (2) 

Where: 

⚫ ℎ𝑡 denotes the hidden state at time step t. 

⚫ 𝑥𝑡 represents the input at time step t. 
⚫ 𝑊ℎ,  𝑊𝑥ℎ,  and 𝑊ℎ𝑦 are weight matrices. 

⚫ 𝑏ℎ and 𝑏𝑦 are bias terms. 

⚫ σ is an activation function, often the hyperbolic tangent [2]. 
Due to the vanishing and exploding gradient problems encountered by traditional RNNs, researchers 

have introduced a novel solution called the Independently Recurrent Neural Network (IndRNN). This 
innovative architecture was designed to overcome the limitations that hindered the effectiveness of 
traditional RNNs in handling long sequences. 

Unlike traditional RNNs where all neurons in a layer are interconnected, in IndRNNs, neurons in the 
same layer operate independently. This independent operation allows for more effective regulation, 

preventing gradient-related issues and enabling the network to capture long-term dependencies. 
The architecture of IndRNNs is visually depicted in the figure 1 below: 
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Figure 1. depicts the (a) basic architecture and (b) residual architecture of IndRNN [2]. 

Bidirectional Recurrent Neural Network RNNs extend the traditional RNN(BRNN) by processing 
sequences from both directions (forward and backward). This allows them to capture both past and 
future context, making them particularly useful for tasks where understanding the entire context is 

crucial, such as named entity recognition or part-of-speech tagging [3]. A BRNN is uniquely structured, 
comprising two distinct RNNs. One of these RNNs processes the sequence in a forward pass, from the 
beginning to the end, while the other operates in a backward pass, processing from the end to the start. 
At each time step, the outputs from both RNNs are merged, typically through concatenation, and this 
combined output is then channelled to subsequent layers. This bidirectional processing empowers 
BRNNs to adeptly capture intricate patterns in sequences, as they can assimilate context from both 
preceding and succeeding elements seamlessly. 

While traditional RNNs consist of a single layer of recurrence, Deep RNNs stack multiple RNN 

layers on top of each other. This added depth allows them to capture more complex patterns and 
hierarchies in the data, leading to improved performance on a variety of tasks [4]. Deep Recurrent Neural 
Networks (RNNs) utilize multiple stacked layers of recurrent units to process input sequences. Starting 
at the bottom layer, the input sequence is initially processed, and as the data progresses through each 
layer, it operates at an increasingly abstract level. This hierarchical learning approach allows the network 
to capture both fine-grained details and broader patterns within the data. While the added depth enhances 
the network's capacity to model intricate sequences, it also introduces training challenges, particularly 

the risk of vanishing and exploding gradients. 

2.2.  LSTMs and Their Variants 
Long Short-Term Memory (LSTM) networks, a specialized type of RNN, were created to excel at 
identifying patterns spanning considerable time durations. At the heart of the LSTM's architecture lies 
its cell state, functioning akin to a conveyor belt for information transfer, maintaining data integrity. 

This cell state's behavior is influenced by three gates: the Input Gate, employing a sigmoid activation 
function to ascertain the quantity of new information for preservation; the Forget Gate, responsible for 
determining the segment of the cell state to remember or discard; and the Output Gate, which employs 
the cell state and input to dictate the subsequent hidden state. The cooperative functionality of these 
gates empowers the LSTM to uphold long-term dependencies, a trait pivotal for its proficiency in tasks 
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such as predictive sequence analysis and natural language processing. Additionally, the intricate gating 
mechanism serves to alleviate the vanishing gradient predicament, a prominent challenge in 
conventional RNNs. LSTMs adeptly manage the flow of information through their gates and cell state, 
ensuring robust performance while preserving the core essence of the original text. LSTMs regulate 

information flow through their gates and cell state: 

 𝑓𝑡   = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                 (3) 

 𝑖𝑡   = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                 (4) 

 ht = (1 − zt) ⊙ ℎ𝑡−1 + 𝑧𝑡                                     (5) 

The Peephole LSTM, an advanced variant of the standard LSTMs introduced by Gers et al. [5], is 
distinguished by its unique architecture that incorporates peephole connections.  These connections 
grant the gate activations, namely the input, forget, and output gates, direct visibility into the cell state. 
In terms of its working principle, while a standard LSTM's gates make decisions based on the input and 
the previous hidden state, the Peephole LSTM's gates also consider the current cell state. This means, 
for instance, the forget gate can decide to retain or discard information based on the value of the cell 

state itself, offering a more nuanced memory retention mechanism. Such an architectural tweak allows 
the network to make more context-aware decisions, especially beneficial in tasks where the timing or 
duration of events is pivotal. By integrating the cell state into the gating decisions directly, the Peephole 
LSTM provides a richer context, potentially enhancing performance in specific sequence modeling 
challenges. 

The Gated Recurrent Unit (GRU), innovatively presented by Cho and his colleagues [6], emerges as 
a streamlined rendition of the LSTM model. It effectively addresses the long-standing issue of vanishing 

gradients pervasive in conventional RNNs. The structural essence of the GRU revolves around a dual-
gate mechanism: the reset gate and the update gate. 

Reset Gate: The reset gate plays a crucial role in determining the extent to which the prior hidden 
state should be disregarded. By subjecting the sum of the prior hidden state and the present input to a 
sigmoid function, the reset gate facilitates this decision-making process: 

 𝑟𝑡   = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)                                                   (6) 

Modification Gate: The modification gate serves the purpose of allowing the model to decide the 
extent to which the existing hidden state should be modified using the candidate from the new hidden 
state. This gate operates by blending the prior hidden state with the present input, a process executed via 
a sigmoid function: 

 𝑧𝑡   = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)                                                 (7) 

Hidden State Candidate: The hidden state candidate arises from blending the present input with the 
prior hidden state, subject to adjustment by the reset gate: 

 ht = tanh(W ∙ [rt ⊙ ℎ𝑡−1, 𝑥𝑡] + b)                                            (8) 

End State Fusion: The end state fusion involves a linear combination between the former concluding 

state and the potential concluding state, regulated by the adjustment gate. 

 ht = (1 − zt) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ht                                               (9) 

The simplified architecture of the GRU has enhanced its computational efficiency compared to the 
conventional LSTM, all while preserving its capacity to capture prolonged relationships within 
sequential data. This model has effectively found its application across diverse tasks in sequence 

modeling, encompassing machine translation, speech recognition, and time-series prediction. 
Depth Gated LSTM (DGLSTM), an advanced LSTM variant, was developed to counteract the 

challenges inherent in the sequential nature of RNN-based models. As delineated in the research by 
Zhang et al. (2020), DGLSTM represents an entire sentence as a graph, with individual words as word-
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level nodes and an added unique sentence-level node [7]. Unlike traditional LSTMs, which update word 
states sequentially, DGLSTM updates all word states simultaneously through a message-passing 
mechanism. This design not only captures local n-grams effectively but also remains sensitive to long-
range dependencies. The sentence-level node in DGLSTM is particularly adept at tasks requiring an 

understanding of the semantic correlation between different elements, such as slot and intent in spoken 
language understanding. By modeling sentences as graphs and updating word states in tandem, 
DGLSTM offers a robust solution to the limitations of traditional RNNs, ensuring efficient capture of 
both local contexts and overarching linguistic structures. 

2.3.  Bert and its Variants 

BERT, marks a significant advancement in the field of natural language processing. Unlike conventional 
models that analyze text sequentially in a single direction (either left-to-right or right-to-left), BERT 
introduces a novel approach by simultaneously considering both directions. This enables BERT to 
capture contextual information from both preceding and succeeding words for each word in a sequence. 
The foundation of BERT's architecture lies in the Transformer model, which employs attention 
mechanisms to assign varying degrees of importance to different words within a sequence. BERT's 
fundamental concept involves pre-training on an extensive corpus using tasks like the Masked Language 

Model (MLM) and Next Sentence Prediction (NSP). BERT's architecture comprises multiple 
Transformer blocks, each incorporating multi-head self-attention mechanisms and feed-forward neural 
networks. A pivotal breakthrough in BERT's design is the incorporation of positional encodings into 
input embeddings, serving to indicate the relative position of words within a sequence. The attention 
mechanism, a cornerstone of the Transformer model and consequently BERT, is mathematically 
described by the following equation: 

 Attention(Q,K,V) = Softmax(
𝑄𝐾𝑇

√𝑑𝑘
)V,                                       (10) 

where Q, K, V are the query, key, and value matrices, respectively, and 𝑑𝑘is the dimension of the keys. 
This equation captures the essence of attention, computing a weighted sum of values with weights 
determined by the query's compatibility with the corresponding key. BERT's bidirectional approach, 

combined with the Transformer architecture, has set new benchmarks in various NLP tasks, 
understanding context from both word directions. The essence of the attention mechanism is captured 
by this equation, which calculates a weighted sum of values based on the compatibility between a query 
and its corresponding key. 

RoBERTa, an optimized derivative of the BERT model, was specifically developed to address some 
of the challenges and limitations associated with BERT. Both models are built upon the transformer 
architecture, a groundbreaking structure in the realm of deep learning, which employs attention 

mechanisms to extract and interpret contextual information from input data. This architecture enables 
models to discern context and intricate relationships between words or sub-words within a given 
sentence. Another significant divergence is RoBERTa's approach to training data. Unlike BERT, 
RoBERTa was trained on a considerably larger dataset, and for extended durations. This rigorous 
training regimen, combined with the vast amount of data, has enabled RoBERTa to consistently 
outperform BERT in a variety of benchmark tasks. Architecturally, while RoBERTa retains the essence 
of BERT's multi-layer bidirectional transformer design, it introduces certain refinements. 

DistilBERT, conceived as an efficient iteration of BERT, emerged as a response to the computational 

and memory requirements posed by the original BERT model. At its core, DistilBERT employs the 
concept of knowledge distillation, a method in which a more compact model, referred to as the 'student', 
is educated to mirror the actions of a larger and more intricate model, known as the 'teacher'. 
Architecturally, DistilBERT integrates a range of adjustments to achieve its streamlined nature while 
upholding its performance. Notably, it adopts a reduced number of transformer layers – precisely six 
layers – in contrast to the BERT-base. An additional prominent deviation is observed in the omission of 
pooling within DistilBERT, a trait inherent in the traditional BERT, designed to attain a consistent-sized 
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representation of inputs that inherently vary in length. This mechanism empowers the model to assess 
the significance of distinct words in a sentence concerning a designated word, thereby shaping its 
understanding [8]. 

ALBERT, which stands for A Lite BERT, presents a transformative iteration of the original BERT 

model. Its meticulous design aims to strike a harmonious equilibrium between model size and 
performance efficiency. This equilibrium is achieved through two primary innovations: factorized 
embedding parameterization and cross-layer parameter sharing. In the context of factorized embedding 
parameterization, ALBERT introduces a clear distinction between the dimensions of the embedding 
layer and those of the hidden layers. By doing so, the model retains a robust embedding capacity capable 
of encompassing a vast vocabulary. Simultaneously, this design ensures that the hidden layers remain 
streamlined, leading to a considerable reduction in computational demands. Conversely, the cross-layer 
parameter sharing strategy constitutes a novel approach adopted by ALBERT. This strategy involves 

the strategic reuse of the same set of parameters across multiple layers of the model. This approach not 
only leads to a significant reduction in the overall parameter count but also serves as a regularizing 
mechanism, effectively addressing concerns related to overfitting that often arise in more expansive 
models [9]. 

3.  Comparative analysis of Seq2Seq Models 

Table 1 is a comparative analysis of various Seq2Seq models, highlighting their strengths and 
weaknesses. 

Table1. A comparative analysis of various Seq2Seq models, highlighting their strengths and weaknesses. 

Model Strengths Weaknesses 

IndRNN 
Efficiently handles long sequences without 

vanishing gradient problems. 
Limited understanding of complex 

context. 

Bidirectional 
RNN 

Captures both past and future context effectively. 
Computational complexity for 

bidirectionality. 

Deep RNN 
Incorporates multiple hidden layers for enhanced 

representation learning. 
Proneness to overfitting with deep 

architectures. 
Peephole 
LSTMs 

Improved LSTM performance by allowing gates 
to see cell state. 

Complexity in learning gate 
interactions. 

GRUs 
Simple architecture with efficient memory 

storage and gating mechanisms. 
May struggle with modeling long-

range dependencies. 

Depth Gated 
LSTMs 

Adaptable to various sequence-dependent 
problems due to depth mechanism. 

Complexity in training and 
optimization. 

RoBERTa 
Proficient in context understanding and 
relationships with transformer attention. 

Heavy computational requirements 
for training. 

DistilBERT 
Offers significant speed and resource advantages 

with retained performance. 
Slightly reduced model performance 

compared to RoBERTa. 

ALBERT 
Efficient design with comparable or superior 

performance in handling large-scale text data. 
Limited model interpretability. 

⚫ Bidirectional RNNs vs. GRUs 

Bidirectional RNNs (BiRNNs) and GRUs are both extensions of the basic RNN architecture, aiming 
to capture long-term dependencies in sequences. According to the study on biometric electrocardiogram 
classification [10], BiRNNs demonstrated superior performance in capturing both past and future 
context, making them particularly effective for tasks like speech recognition and sentiment analysis. On 
the other hand, GRUs, with their gating mechanisms, have shown to mitigate the vanishing gradient 
problem, leading to better performance on tasks with longer sequences. 
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⚫ ALBERT vs. Depth Gated LSTM 

In the rapidly evolving domain of natural language processing, both ALBERT and Depth Gated 
LSTM have emerged as influential models. A study by Holger Schwenk et al. delves into the 
performance of various deep learning models in text classification tasks [11]. ALBERT, with its efficient 

design, demonstrates comparable or even superior performance to traditional models, emphasizing its 
prowess in handling large-scale text data. On the other hand, the Depth Gated LSTM, with its unique 
depth mechanism, showcases adaptability and efficiency across a spectrum of sequence-dependent 
problems.  

⚫ LSTMs vs. RoBERTa 

LSTMs, with their intricate cell state and gating mechanisms, have been a cornerstone in sequence 
modeling for years. However, the advent of transformer-based models like RoBERTa has shifted the 
paradigm. According to the study, Assessing the Ability of LSTMs to Learn Syntax-Sensitive 

Dependencies [12], LSTMs excel in tasks requiring memory of long-term dependencies, especially 
when the syntax is crucial. On the other hand, RoBERTa, with its attention mechanism, outperforms in 
tasks requiring understanding of context and relationships between different parts of a text, such as 
question-answering and sentiment analysis. The study further elaborates on the LSTM's capability to 
capture syntactic dependencies, emphasizing its significance in language processing tasks. 

While RoBERTa exhibits several strengths, it is important to acknowledge that there are certain 
scenarios where LSTMs still maintain their relevance. One such scenario is in tasks that involve 

syntactic analysis and dependency parsing, where LSTMs have demonstrated proficiency in capturing 
intricate linguistic structures. Additionally, in tasks where interpretability and explainability are crucial, 
LSTMs provide a more transparent view of their decision-making process compared to transformer 
models like RoBERTa. Therefore, while RoBERTa may surpass LSTMs in certain context-based tasks, 
LSTMs remain a valuable choice for tasks that demand in-depth syntactic understanding and transparent 
decision-making processes. 

⚫ RoBERTa vs. Bidirectional RNNs 

The investigation into deep bidirectional LSTM RNNs for acoustic modeling in speech recognition 
delves deep into the capabilities of Bidirectional LSTMs [13]. The study provides a comprehensive 
overview of various training aspects of BLSTMs and their application in automatic speech recognition 
(ASR). The research found that deep bidirectional LSTMs outperformed feedforward neural networks 
for ASR. The bidirectional nature of these networks allows them to capture patterns from both past and 
future data points in a sequence, making them highly effective for tasks like speech recognition. When 
comparing RoBERTa and Bidirectional RNNs, it's evident that while both models are designed to 
capture context from both directions of a sequence, their primary applications differ. RoBERTa, with 

its transformer architecture, is more suited for tasks that require understanding the context between non-
adjacent words in a sentence, making it ideal for NLP tasks. In contrast, Bidirectional RNNs, with their 
recurrent nature, excel in tasks that require understanding the temporal dynamics of a sequence, such as 
speech recognition or time series forecasting. 

However, it's worth noting that the advancements in transformer models like RoBERTa are 
beginning to overshadow RNNs in many sequence-based tasks due to their ability to handle longer 
sequences and capture intricate patterns in data. But, as the study by Zeyer et al. suggests, Bidirectional 

RNNs still hold their ground in specific applications like ASR, where understanding the temporal 
dynamics is crucial [13]. 

⚫ The Relationship Between RNNs, LSTMs, and BERT 
In the realm of sequence modeling and natural language processing, the evolution from RNNs to 

LSTMs, and eventually to transformer-based models like BERT, signifies a continuous pursuit of 
capturing intricate patterns in data. RNNs, with their foundational architecture, laid the groundwork for 
sequence modeling, but their bidirectional variants (BiRNNs) enhanced the capability to grasp both past 

and future contexts. LSTMs, with their specialized cell states and gating mechanisms, further refined 
this approach, excelling in tasks that demand memory of long-term dependencies and intricate syntactic 
structures. Their adaptability is evident in the emergence of various LSTM-based models, such as Depth 
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Gated LSTM, which offers unique depth mechanisms. However, the introduction of transformer 
architectures, epitomized by models like BERT and its efficient variant ALBERT, has revolutionized 
the field. These models, with their attention mechanisms, have set new benchmarks, especially in tasks 
requiring a deep understanding of context and bidirectional relationships within texts. Yet, it's crucial to 

note that while BERT's prowess is undeniable, its computational demands can be a limitation. For 
instance, in real-time applications like chatbots or scenarios with limited computational resources such 
as mobile devices, models like GRUs and LSTMs might be more practical. In essence, the journey from 
RNNs to BERT encapsulates the field's progression from capturing sequential data's basic patterns to 
understanding the intricate nuances of language and context. 

4.  Conclusion 

Throughout this study, we have embarked on a comprehensive analysis to understand the intricacies of 
various sequence-to-sequence models, from the foundational RNNs to the transformative capabilities of 
models like BERT and RoBERTa. The evolution of these models underscores the rapid advancements 
in the field of NLP and their increasing importance in real-world applications. 

From the basic architecture of RNNs and their bidirectional and deep variants, we observed the initial 
attempts to capture sequential dependencies in data. The introduction of LSTMs and GRUs marked a 

significant leap, addressing the vanishing gradient problem and enhancing the model's ability to 
remember long-term dependencies. The transformer architecture, epitomized by BERT and its variants 
like RoBERTa, brought about a paradigm shift, emphasizing the importance of attention mechanisms 
and context understanding. 

Our comparative analysis highlighted the strengths and weaknesses of each model. While RNNs and 
their variants excel in tasks requiring sequential memory, transformer-based models like BERT shine in 
understanding context and relationships in text. However, it's essential to note that no single model is 
universally superior. The choice of model largely depends on the specific requirements of the task at 

hand. 
Looking ahead, the field of NLP is ripe for further innovations. As we continue to generate vast 

amounts of textual data, the demand for more efficient, accurate, and context-aware models will only 
grow. Future research could delve deeper into hybrid models, combining the best features of RNNs and 
transformers. Additionally, with the rise of unsupervised and self-supervised learning, future models 
might require less labeled data, making them more accessible and versatile. 

In conclusion, the journey from RNNs to BERT is a testament to the relentless pursuit of excellence 

in the NLP community. As we stand on the cusp of new breakthroughs, it's exciting to envision the 
future directions this field might take, promising even more sophisticated models and applications that 
can truly understand and generate human language. 
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