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Abstract. Intracranial Hemorrhage (ICH) is a critical medical condition demanding rapid and 

precise diagnosis, typically achieved through Computerized Tomography (CT) scans. This 

research investigates the potential of the Edge Impulse platform, a symbol of progress in edge 

computing, for the automatic detection of Intracranial Hemorrhage (ICH). The study leverages 

RGB images extracted from CT scans, employing transfer learning techniques. By utilizing the 

“brain ct hemorrhage AMINE dataset” available on Kaggle, this research combines 

Convolutional Neural Networks (CNNs) with the efficiency and adaptability offered by the 

MobileNet framework in a novel approach to address this diagnostic challenge. To ensure the 

models strength, robustness, applicability and a useful approach has been used, this study tested 

setups of the neural network to find the most effective ones. These setups involved changing 

parameters like resolution (ρ) and width multipliers (α) which greatly impact the model’s 

diagnostic performance. The remarkable result was observed in a configuration, with a resolution 

of 160x160 pixels and a width multiplier of 0.5. After optimization this specific setup achieved 

an outstanding diagnostic accuracy rate of 99.8% with negligible loss. This accomplishment 

highlights how edge computing, through Edge Impulse can significantly improve and speed up 

ICH diagnostic procedures. 
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1.  Introduction 

It is widely acknowledged that the Intracranial Hemorrhage, or ICH, is a formidable health anomaly that 

can lead to severe neurological deficits if not promptly and accurately diagnosed. Among the widely 

employed diagnostic modalities, Computerized Tomography (CT) scans emerge as a cornerstone for the 

visualization of brain structures, offering crucial insights into potential pathological disturbances [1]. 

CT scans are indispensable for delineating the subtle nuances in the cerebral anatomy and detecting 

irregularities like ICH. This precision becomes particularly salient, considering the myriad subtypes of 

ICH, encompassing subarachnoid, intraventricular, subdural, epidural, and Intraparenchymal 

Hemorrhages, each with its distinct therapeutic implications [1]. 

The medical repercussions of ICH are severe. Ranging from minor symptoms to dire consequences 

such as permanent neurological damage, coma, or even death, the stakes in ICH diagnosis and 

management are exceptionally high. The heterogeneity in ICH manifestations necessitates impeccable 

accuracy in its detection, making the role of neuroradiologists pivotal [2]. These professionals, 

traditionally, have anchored their diagnostic conclusions on a meticulous analysis of non-contrast CT 
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scans, deciphering the hemorrhage’s nature based on its location, morphology, and relationships with 

surrounding cerebral structures [1]. 

However, the recent deluge of biomedical data, especially from digital health tools, electronic health 

records, and imaging modalities, has both overwhelmed and presented an opportunity for innovative 

interventions [3]. Herein lies a limitation; despite the abundance of data, only a fractional segment is 

harnessed for diagnostic enhancements [3]. The current manual interpretations, though robust, are labor-

intensive and time-consuming, underscoring the exigency for automated solutions. 

Recent strides in AI have ushered in a transformative era for medical imaging. AI-powered diagnostic 

systems have displayed an adeptness in interpreting CT and MRI scans, matching, or even surpassing 

human experts in specific tasks [2,3]. These systems not only amplify the diagnostic accuracy but also 

dramatically slash the diagnostic turnaround times, engendering enhanced patient outcomes. Yet, the 

scalability of these AI solutions remains tethered to vast computational resources, often restricting their 

widespread clinical implementation [4]. 

When it comes to solutions of computational solutions, Edge Impulse is notable for its focus on edge 

computing. The concept of edge computing revolves around processing data in proximity to its origin, 

which reduces the reliance on centralized data centers. By analyzing data it enables real time analysis 

reduces latency and minimizes the expenses associated with transferring data. In the field of imaging 

these benefits result in faster diagnostics without the need, for complex computational setups. 

Edge Impulse, originally devised for applications in the Internet of Things (IoT) devices, has 

showcased its versatility across diverse domains [5]. From industrial machinery health monitoring to 

smart agriculture interventions, Edge Impulse has demonstrated its mettle in harnessing data for 

actionable insights, underlining its prospective utility in health care. 

When envisioning Edge Impulse’s foray into medical imaging, it’s instrumental to consider its prior 

successes. For instance, in industrial settings, Edge Impulse’s predictive maintenance models have 

preemptively detected machinery faults, obviating costly downtimes [5]. In the agricultural sphere, its 

models have identified pest infestations in real-time, guiding timely interventions. These success 

narratives, stemming from disparate sectors, collectively underscore Edge Impulse’s potential in 

revolutionizing medical imaging, particularly in automating ICH detection from CT scans. 

This study delves into an analysis of the Edge Impulse platform investigating its intricate features 

and powerful algorithms. The major target of this study is to shed light on the potential of Edge Impulse 

in identifying and diagnosing ICH from CT scans. By conducting assessments and empirical validations 

the aim is to assess how effective Edge Impulse is in automating ICH detection its alignment, with 

conventional diagnostic methods and its potential to improve clinical decision making by speeding up 

the process and enhancing accuracy. 

2.  Method 

This research has harnessed the public Intracranial Hemorrhage dataset, colloquially referred to as the 

“brain-ct-hemorrhage-AMINE-dataset”, which is on Kaggle [6]. From this extensive repository, a 

selection was made, while incorporating images from both the test and training sets, aggregating to an 

exact count of 1,022 images. Furthermore, al images are based on the RGB format. From a classification 

vantage, the dataset operates on a binary paradigm. Images are distinctly labeled either as ‘normal patient’ 

or ‘Hemorrhagic patient’. While this bifurcation simplifies the classification schema, it concurrently 

elevates the exigency for precision, especially given the critical ramifications associated with 

intracranial hemorrhages. Illustrative samples from each category have been provided in Figure 1. 

Adopting an adept compression methodology, images were resized to a dimension of 160x160 pixels.  
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Figure 1. The sample images provided in this dataset [6]. 

2.1.  Edge impulse-based MobileNet model 

2.1.1.  Introduction of Edge Impluse 

Edge Impulse stands as a formidable force in the arena of Machine Learning Operations (MLOps) 

platforms with cloud-based, particularly tailored for crafting embedded and edge ML (TinyML) systems. 

With the increasing trend in TinyML, developers faced the conundrum of fragmented software stacks 

and a plethora of deployment hardware, like limited capabilities of computation [7]. This made the 

optimization of ML models a challenging affair due to a lack of portability. To alleviate these challenges, 

Edge Impulse emerged as a practical MLOps platform for crafting TinyML systems on a grand scale. 

By offering support for various software and hardware optimizations, Edge Impulse paves the way for 

a more portable and extensible software stack, adaptable to a multitude of embedded systems [8]. 

With the rapid growth and assimilation of machine learning into embedded systems, technologies 

such as wake word detection, anomaly detection, and visual object detection became prevalent in low-

power devices [9]. However, despite these advancements, the embedded ML development ecosystem 

struggled to keep up with the soaring demand. Traditional ML development for embedded systems 

demanded a specific skill set, often necessitating developers to juggle between a new suite of tools and 

managing conflicting library dependencies. Edge Impulse created a platform to simplify this process by 

offering a comprehensive space, for gathering some significant models, such as data training models, 

deep learning models, and then Edge Impulse deploy them to embedded and edge computing devices to 

fit their user’s demand [8]. 

2.1.2.  Introduction of CNN 

CNNs, where people often called Convolutional Neural Networks, have revolutionized the field of 

learning particularly in areas like natural language processing and computer vision. CNNs form the core 

of Edge Impulses approach. They are highly effective when dealing with grid like data structures such 

as images. 

The CNN architecture consists of three kinds of layers, including pooling layers, fully connected 

layers, and convolutional layers [10, 11]. Convolutional layers perform convolution operations on input 

data detecting patterns and features. Pooling layers then reduce the size ensuring spatial invariance to 

certain image changes or distortions. Finally connected layers interpret these features and generate the 

final output. In the realm of learning CNNs shine due to their unique advantages and transformative 
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applications. They have proven their prowess in tasks like image classification by setting standards with 

models such, as LeNet 5, AlexNet and ResNet [10, 12]. 

2.1.3.  Introduction of MobileNet 

MobileNet, an innovation in the realm of deep learning and neural networks, serves as the primary 

computing method when calling upon Edge Impulse in the study. Originating as a response to the 

challenge posed by the intricate and vast neural networks required for image recognition, MobileNet 

emerged as a savior for devices with limited computational resources [13-15]. The standard neural 

networks, despite being highly accurate, are computationally intensive and require a large number of 

model parameters. This makes them ill-suited for mobile and embedded devices that operate under 

constraints of memory and processing power [15].  

MobileNet further fine-tunes its efficiency by adapting two hyperparameters; the resolution 

multiplier (ρ) and the width multiplier (α) [15]. By modulating these hyper-parameters, MobileNet can 

strike a balance between the computational cost, model parameter size, and accuracy. Though adjusting 

these values can lead to a marked reduction in computational demand and model size, it often comes at 

the expense of reduced accuracy [15]. 

The genius behind MobileNet lies in its ability to drastically reduce computational demands without 

compromising significantly on accuracy. Instead of the standard convolution, a cornerstone in the 

domain of deep learning, MobileNet introduces depthwise separable convolution. This type of 

convolution breaks down the convolution into two separate stages; a depthwise convolution is performed 

first followed by a pointwise convolution [10]. The former ensures that each filter uses only one channel 

when input, and it is used for convolution, while the latter integrates the results from the convolution 

from different kernels, executing it with a form where 1*1 one is conducted. This method results in a 

computational cost that is approximately eight to nine times less than the conventional convolution, 

paving the way for faster processing with minimal loss in accuracy [15]. 

2.2.  Implementation details 

Utilizing transfer learning, this study adapted pre-trained MobileNetV2 models to the specific task, and 

the Hemorrhagic patients would be considered as positive sample.  

The rate of positives refers to the likelihood of patients being diagnosed with Intracranial 

Hemorrhage when they are actually perfectly healthy. On the hand the rate of false negatives represents 

the probability of patients being diagnosed as normal when they actually have Intracranial Hemorrhage. 

Lastly the true negative rate indicates the proportion of patients who are correctly identified as normal 

when they are indeed normal. 

In this study, specific attention was given to the hyperparameters. Training encompassed 10 cycles, 

adopting a learning rate of 0.001. The model’s final layer was designed with 8 neurons and incorporated 

a dropout rate of 0.1. This configuration was specifically chosen to target efficient training within the 

40-minute constraint posed by the Edge Impluse. 

Moreover, to balance the computational overhead with accuracy, which is crucial for mobile and 

embedded systems, this study leveraged two distinct MobileNet V2 configurations. The first, with an 

image input size of 96x96 and α set to 0.35, aimed at reducing the parameter count. Another 

configuration with the same resolution but an α of 0.1 offered even more parameter savings. 

On the other hand, a 160x160 input size was experimented with, having an α of 0.35. This 

configuration struck a balance between image resolution and model intricacy. Furthermore, a 

configuration with a resolution of 160x160, but an α of 0.5, was tested, offering a heightened resolution 

without a significant increase in parameters. 

It’s important to note that the choice in configurations was bounded by MobileNet’s limitations. In 

Edge Impluse, the maximum permissible α for a 96x96 model is 0.35, and the least allowed for a 

160x160 model is also 0.35. Consequently, no controls were set for the 160x160, α=0.5 and 96x96, 

α=0.1 configurations. This study noted FP as False Positive, TP as True Positive, TN as True Negative, 

and FN as False Negative. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230729

127



3.  Results and discussion 

The result tables are shown in Table 1, Table 2, Table 3, Table 4 and Table 5: 

Table 1. The Result of Data, ρ = 96*96, α=0.35. 

Loss Accuracy FP TP FN TN 

0.31 92.1% 9.0% 93.5% 6.5% 91.0% 

Table 2. The Result of Data, ρ = 160*160, α=0.35. 

Loss Accuracy FP TP FN TN 

0.21 94.0% 10.1% 100% 0% 89.9% 

Table 3. The Result of Data, ρ = 96*96, α=0.1. 

Loss Accuracy FP TP FN TN 

0.11 96.6% 3.5% 96.8% 3.2% 96.5% 

Table 4. The Result of Data, ρ = 96*96, α=0.05. 

Loss Accuracy FP TP FN TN 

0.09 96.8% 3.0% 96.5% 3.5% 97.0% 

Table 5. The Result of Data, ρ = 160*160, α=0.5. 

Loss Accuracy FP TP FN TN 

0.01 99.8% 0.3% 100% 0% 99.7% 

3.1.  Effect of Configuration 

The model that uses a configuration of 160x160. An alpha value of 0.5 shows the best overall 

performance achieving an accuracy of 99.8% with a minimal loss of 0.01. It excels in detecting positives 

and has zero instances of missing any positives. 

In contrast the model with a configuration of 96x96 pixels and an alpha value of 0.35 has the accuracy 

at 92.1%. Its false positive rate is relatively high at 9.0% compared to configurations indicating more 

instances where it mistakenly identifies negatives as positives. 

3.2.  Effect of Resolution 

When the resolution is increased from 96x96 to 160x160 pixels (with an alpha value of 0.35) the 

accuracy improves from 92.1% to 94.0%. Notably the higher resolution model achieves a true positive 

rate (100%). However, this higher resolution model (with a configuration of 160x160 pixels and an 

alpha value of 0.35) does have a higher false positive rate at 10.1% compared to its counterpart with a 

resolution of 96x96 pixels (, with an alpha value of 9%). 

3.3.  Effect of Width Multiplier (α) 

Decreasing the width multiplier from α=0.35 to α=0.1 at a resolution of 96x96 boosts accuracy from 

92.1% to 96.6%. The model with α=0.1 exhibits better metrics across all categories, especially in terms 

of reduced loss and False Positive rate. 

Reducing the width multiplier to a value of α=0.05 at the resolution only shows slight improvements. 

This suggests that as α decreases there are diminishing returns in terms of accuracy and other metrics. 

3.4.  Effect of False Positive and Negative rate 

Among all configurations, the model with ρ = 160x160 and α=0.35 achieves a perfect true positive rate. 

However, it also has the false positive rate at 10.1%. On the hand both models with configurations ρ = 
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160x160, α=0.5 and ρ = 96x96 α=0.1 have zero false negatives indicating that they don’t miss any 

positive samples. 

3.5.  Effect of Loss 

As the width multiplier α reduces or resolution increases, the loss tends to decrease. The model with ρ 

= 160x160 and α=0.5 has the lowest loss, which corresponds to its high accuracy. While all 

configurations perform overall considering its superior accuracy and minimal loss values makes the 

model with ρ = 160x160 and α=0.5 stand out as an optimal choice. 

3.6.  Clinical Implications 

From a clinical perspective, the model’s high true positive rate is significant. Missing an ICH diagnosis 

can lead to severe consequences, including even death. Therefore, a model that detects all positive ICH 

cases, like the one with ρ = 160x160 and α=0.5, would be immensely valuable in a clinical setting. 

Indeed, it’s also crucial to minimize false positives, as they could lead to unnecessary treatments or 

interventions which may carry their own set of risks. 

3.7.  Model Efficiency and Deployment 

Considering the deployment on edge devices, it’s essential to weigh the trade-off between accuracy and 

computational efficiency. While the ρ = 160x160, α=0.5 configuration offered the best performance, it 

might also require more computational resources. In contrast, the ρ = 96x96, α=0.1 model, which offers 

relatively high accuracy with presumably less computational demand, could be more suitable for real-

time applications on constrained devices. 

4.  Conclusion 

This study illuminated the promise of utilizing the Edge Impulse platform, specifically adapting 

MobileNet models, to achieve high diagnostic precision for ICH detection from CT scans. Through 

various configurations, the research underscored the potential trade-offs between computational 

efficiency and diagnostic accuracy. The configuration with ρ = 160x160 and α=0.5 emerged as the 

frontrunner in terms of performance, showcasing the capability of edge computing in medical imaging 

diagnostics. However, the ultimate choice of model configuration would invariably hinge on the specific 

clinical setting, resource availability, and the desired balance between accuracy and computational 

demand. Further studies could delve into deploying the optimized model in real-world clinical scenarios 

to gauge its effectiveness and utility. Additionally, integrating feedback loops where the model 

continually learns from new cases can further refine its diagnostic prowess. 
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