
Logistics warehousing system shelving station route planning

based on X-ARM

Pengao Feng

Bartlett, University College London, United Kingdom, WC1E 6BT

ucbvpf@ucl.ac.uk

Abstract. The need for automated control in warehouse and logistics systems has increased

recently, particularly in the area of cargo storage. The use of robot arms in manufacturing is an

important area for development. Multi-arm actions, including switching between multiple arms,

expand the number of potential operations that numerous operators can do, but they also bring

more computing hurdles. Multiple robotic arm systems must operate with careful path planning.

In this study, Based on previous research papers, we propose the utilization of dRRT* and

mmdRRT* algorithms for efficient path planning. The dRRT* algorithm improves exploration

and convergence to an ideal path by combining the advantages of the rapidly-exploring random

tree (RRT) with the optimal RRT* algorithm. To address complicated and dynamic situations,

the mmdRRT* algorithm, on the other hand, uses a multi-modal distribution model. We want to

improve the reliability and effectiveness of path planning for various robotic arm systems by

combining these two techniques.

Keywords: Path-Planning, Logistics and Warehousing System, Coordinating Multi-Arm

Operations, dRRT* & mmdRRT*.

1. Introduction

Warehouse cargo transportation is a necessary but time-consuming process. Effective route design is

vital to guaranteeing smooth operations and increasing productivity, hence it merits in-depth research

[1]. In logistics warehousing, there has been an increase in demand for effective, automated control

systems. The amount of goods handled and housed in warehouses has greatly expanded as a result of

the quick expansion of e-commerce and online shopping. Any goods cannot be delivered more quickly

or accurately using manual transportation or dispersed storage facilities [2]. A popular trend is the

automatic coordination of many robotic arms for transporting warehouse freight. The positioning of

products on shelves must be automated if logistics storage systems are to become more effective and

productive overall. Warehouses can lower operational expenses, eliminate human error, and enhance

inventory control by introducing automated control methods. Additionally, coordinating numerous

manipulators might result in a larger feature set and faster execution [3]. Each robotic arm’s beginning

and ending points can be limited, and numerous robotic arms can be effectively connected to increase

efficiency.

Robotics research was dominated by industrial robots until the 1990s [4] after they were first

incorporated into industrial production lines. The automobile and aviation industries, for example, use

industrial robots extensively. Industrial robots can be reduced to simple robotic arms, which not only

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

138

reduces the amount of workspace needed but also increases operational flexibility without

compromising the level of freedom of the robotic arms. When it comes to repetitive jobs like picking

and placing, transportation, assembly, and other similar ones, industrial robots are quite advantageous

[4]. However, time, energy, and overall system performance are frequently issues with traditional

methods of controlling shelving stations. An improved route planning strategy is therefore required to

streamline operations and reduce inefficiencies. We synthesize many research reports on path-planning

methods for multiple robotic arms and derive two useful methods, mmdRRT* and dRRT*. In this work,

they can be introduced independently and contrasted.

The demand for autonomous warehouse robots has substantially expanded in the warehouse

management system because of their critical function in the supply chain. As a result, various requests

have been made for various components of it.

The construction of the robot arm for the logistics warehouse system must be flexible, intelligent,

and adaptive in order for the robot arm to carry out complicated tasks [5]. However, as robotic arms are

already highly DOF robots, establishing a bigger configuration space (C-space) is necessary to

coordinate many robotic arms at the mission planning level [3].

Simulating the grasping and shelf positioning procedure effectively is one of the study’s main

challenges. The two robotic arms are arranged linearly to simulate their cooperative working procedure.

The best plan for this circumstance is determined by contrasting the dRRT* and mmdRRT* techniques.

This necessitates the use of a reliable modelling and simulation tool that can faithfully depict the

dynamics and kinematics of the robotic arm. A good foundation for modelling and simulating such

complicated systems is offered by Matlab, a widely used numerical computation and simulation program.

This study models the robot arm and analyzes its motion trajectory using the Matlab robot toolkit. This

study intends to address this challenge by enhancing the automation of the item placement process in

logistics storage systems.

Overall, the X-Arm model-based automated control mechanisms that are being developed for

logistics storage systems are a result of this research. The course of the robot arm is improved by

combining the earlier research techniques. Future research to enhance the automation of the logistics

storage system can use the study’s findings as a guide.

2. Algorithm Principle

This section primarily explains the fundamentals of the robot arm’s route planning. This session’s first

part examines the link functions of two distinct sampling techniques and introduces the link function of

the robot toolbox that is necessary in Matlab. The second portion of this section compares and

summarizes the two path planning techniques that the robotic arm uses: dRRT* and mmdRRT*.

2.1. Core function- Link function interpretation

Table 1. Differences between two D-H parameter tables.

 Standard D-H parameters Improved D-H parameters

Selection of fixed

coordinate system

The connecting rod’s fixed coordinate

system is the rear joint coordinate

system.

The connecting rod’s fixed

coordinate system is the preceding

joint coordinate system.

Determination of the X-

axis direction

The X axis is determined by the cross

product of the current Z axis and the

previous Z axis.

The z-axis of the subsequent

coordinate is multiplied by the

current z-axis to produce the X axis.

Rules of transformation

between coordinate

systems

Between adjacent joint coordinate

systems, the parameter modifications

are made in the following order:

θ, d, a, α

The following is the order of

parameter shifts among

neighbouring joint coordinate

systems:

α, a, θ, d

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

139

For the existing 3D model of the robot arm (X-Arm6), Matlab is imported to carry out trajectory motion

based on forward and inverse kinematics calculation. Download the robot toolbox in Matlab, enter “ver”

on the command line to view it.

The Link function is based on D-H parameters to establish the link, including the main information

of the joint, the input sequence of D-H parameters when establishing the link is joint Angle θ; joint

distance d; link length a; link Angle α; joint type (0 rotation, 1 movement). In this project, the X-Arm6

joints are rotated.

In addition, the parameters of the joint variables are “qlim” specifies joint limits; “jointtype” specifies

the jointtype, the default is a revolute joint, L(x).jointtype= ‘P’ means that the x link is joined by a

prismatic joint; offset is the offset of the initial value of the joint. The format of the Link function call is

L(1) = Link([theta1, D1, A1, alpha1, offset1], ‘standard’) %Standard D-H parameters.

2.2. Path planing using dRRT*

In this work, the problem is first defined. Then, two X-arm6 linear arrangements (m1, m2) are specified.

The end effector is then arranged to be fitted on the X-arm6 vacuum suction cups in accordance with

the first hypothesis. This experiment focuses on the design path rather than establishing information

about obstacles. An empty tree structure is produced by initializing the 3 structure. The root node of the

tree represents the initial attitude, while m1 is at the first starting position and m2 is there. The next step

is to enlarge the sample point, choose a point at random from the sampling space, and locate the closest

node in the tree. The next step in the route search is to compute the path from the closest node to the

sampling point using inverse kinematics solutions, and then connect that path to the tree to create a new

node. Check whether the new node is close to the goal position and meets the requirements to finish

path planning when the previous phases are finished. The process of expanding the sampling points,

searching for paths, connecting paths, and checking targets is then repeated until a path meeting the

conditions is discovered or the predetermined number of iterations has been reached. A specified

number of iterations’ paths is planned after being repeated numerous times. You can apply a smoothing

method or optimization algorithm to shorten the path and enhance the path. The goal is to eliminate

needless robotic arm operating time and length, which can save expenses and enable quick reaction. The

robot arm’s planned path from its starting attitude to its target attitude is known as the ultimate output

path.

The dynamic nature of the dRRT* path planning approach is a benefit. The actual cargo handling

operation frequently deviates from the planned route due to alterations in the working environment. The

sampling point expansion technique used in the dRRT* approach is randomly chosen and then

dynamically altered during path optimization. As previously noted, dRRT* can still determine the

shortest path in accordance with the changing environment even if the environment changes.

2.3. Path planing using mmdRRT*

Similar to the dRRT* approach, mmdRRT* requires the robot arm’s beginning attitude, target attitude,

and any information on potential obstacles to be defined upfront. Still, there is no need to define barrier

information in this study. Create an empty tree structure with the beginning posture as the tree’s root

node next to initialize the tree structure. The least average difference sampling approach is used to

choose a point in the sample space, after which the node closest to the sampling point is chosen from

the tree as part of the node selection process. The path from the chosen node to the sample point is then

calculated utilizing the nodes extended using the appropriate motion planning techniques, such as

inverse kinematics or trajectory optimization. The path from the old node to the new node is determined

when the new node is generated. The new node is then subjected to the target check to see if it is close

to the goal attitude. The path planning is finished if the conditions are satisfied. Until a path is discovered

that satisfies the requirement or reaches the designated number of iterations, the sample point expansion,

node selection, node expansion, and target check processes are again performed. To shorten or enhance

the quality of a path, smoothing techniques or optimization algorithms can also be used. Output the robot

arm’s final path, or its intended route from the starting attitude to the goal attitude.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

140

Since mmdRRT* uses the minimum mean difference during sampling to influence the choice of

sample space, it is more likely to expand along the minimum path. The mmdRRT* technique is better

able to choose the optimum path quickly for a constant working area by removing all the effects of

random factors.

2.4. Compared and discussed dRRT* and mmdRRT*

dRRT* (Dynamic Rapidly-exploring Random Trees) and mmdRRT* (Minimum Mean Discrepancy

Rapidly-exploring Random Trees) is an improved version of two RRT* (Rapidly Exploring Random

Trees)-based path planning algorithms [6].

Firstly for dynamic part, dRRT* is a dynamic algorithm that updates the tree structure in real-time

during the planning process to adapt to changes in the environment [7]. It can handle the movement and

removal of obstacles in the environment and the addition of new obstacles. While mmdRRT* is a static

algorithm that performs path planning only for static environments. Once the tree structure is established,

it does not take into account dynamic changes in the environment [8].

Secondly for shortest path guarantee, dRRT* ensures that the global shortest path is found, even if

there are changes in the environment. It keeps optimizing the tree structure to find shorter paths [9].

While mmdRRT* can only ensure that a sub-optimal path is found because it will not be optimized after

the tree structure is established.

Third part is sampling strategy, dRRT* uses the random sampling policy to select one point at a time

in the completely random sampling space for expansion [10]. This can result in a less-than-ideal growth

direction for the tree. While mmdRRT* Improves the tree growth direction by optimizing the sampling

strategy. It uses the Minimum Mean Discrepancy to guide the selection of sample space and is more

likely to expand the tree along the shortcut direction.

Next is real-time performance, dRRT* is superior to mmdRRT* in terms of real-time performance

because it requires only local optimization [11]. However, in high-dimensional environments, the

performance of dRRT* may be limited. While mmdRRT* will do more optimization when building the

tree structure to get a better path. This can lead to longer computation times, especially in high-

dimensional environments.

Last but not least is applicability of both methods, based on the methods of previous papers, the

design of a suitable Minimum Mean Discrepancy (MMD) sampling strategy can help guide the sampling

point selection of mmdRRT* method, so as to improve the effect of path planning. The current study

suggests a multi-modal dRRT* method that focuses on resolving the picking and positioning issues

associated with manipulators with a large degree of freedom [3].

mmdRRT* (multi-machine dual-RRT*) is a method that extends the RRT* algorithm, which is utilized

to address the joint planning issue of numerous robot arms. By simultaneously creating several RRT*

trees, each of which represents the path of a robotic arm, it looks for joint paths. In order to identify a

feasible joint path, the mmdRRT* method takes into account collision detection between robotic arms

while maintaining connections between trees during the search process.

dRRT* (distributed RRT*) is a method based on distributed path planning, which is used to solve the

cooperative motion problem of multiple robot arms. The dRRT* algorithm breaks down the task into

sub-problems, applies the RRT* algorithm to each robot arm separately to search the path, and

coordinates the movement between the robot arms through information exchange to achieve

collaborative movement. The dRRT* algorithm is suitable for scenes with a large number of robotic

arms or a large scale.

These methods can help resolve the issue of route planning multiple robotic arms and the specific

choice of which method needs to be determined according to the specific situation, including the number

of robotic arms, constraints of the workspace, etc.

3. Case Study

The issues that the paper must address are presented in this part. To make things easier, The problem

setting for both robotic arms will be described, with an overview of the issue taken from the conference

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

141

article “Anytime Multi-arm Task and Motion Planning for Pick-and-place of Individual Objects via

Handoffs” [3] based on X-arm6. functioning in a shared workspace are m1 and m2. The results can be

directly applied to more robotic arm sets by examining the data.

Every robot arm in the workspace has its own dimensional C-space (Cm1, Cm2). The composite

configuration space of both robot arms is C= Cm1* Cm2 ⊂Rd1+d2. Then, a composite configuration is Q =

(q1, q2), where qi∈Cmi. Cobs<C is the obstacle subset, where a manipulator either collides with static

barriers or with itself, or where manipulators collide with one another. Cfree = C\Cobs is the valid subset.

The X-Arm6 parameters are introduced into a multi-arm control system. By studying the three

hypotheses proposed in the original text, mmdRRT* and dRRT* methods are used to verify them

respectively. In accordance with presumption one, every manipulator has the end-effector that can

immobilize an object when it is in a relative position to the end-effector (g). The object can be placed

steadily by the manipulator; the end-effector can greatly assist single or multiple-arm systems by

enabling the robot arm to more securely grasp objects. In the case of the X-arm6 parameter, it is

particularly clear that the appropriate end-effector may be a device with a vacuum suction cup.

Hypothesis two is called object support, when the object is set to a stable position, the object maintains

stable contact with the stationary surface, this includes the initial pose pinit, or the item is placed in a

location where it can be carried by one or more manipulators. The problem as a whole has a state space

that is the sum of all its component C-spaces. The third hypothesis is “singly manipulable,” meaning

that only one manipulator is required to pick up and manipulate the object. Different objects or motion

steady states are employed as beginning reference points for the problem to be solved in this study based

on the three aforementioned premises. Two different route planning methods, mmdRRT* and dRRT*,

are used to solve the multi-arm motion trajectory problem.

It is necessary to introduce the mode graph M [3] in order to address the PHP (pick-and-place)

problem. The challenge of multi-robot planning and integrated task and motion planning (TAMP) can

be resolved with the aid of the mode graph put out by Rahul Shome and Kostas E. Bekris, as seen in the

figure 1. below.

The initial (q
1

init, q
2

init, pinit) and final states (q
1

goal, q
2

goal, pgoal) are equivalent to two nodes on M indicated as

v
init

M
 and v

goal

M . A pick-and-place issue solution relates to traversing the graph’s edges:

 ∏→ (v
init

M ,v
i

M...v
j

M, v
goal

M) (1)

It’s also vital to remember that because the modes do not confine all the arms to configurations, the

mapping from a sequence of modes to is not entirely established. To completely characterize the task

space route, the solution consists of a series of grounded configurations Qi and object poses pi. Let the

pair on M shown below serve as the definition of a grounded search node:

V =< Q,vM > (2)

It only takes a series of Vi to map to a task space solution:

 (Vinit, Vi...Vj, Vgoal)→∏ (3)

Figure 1. Mode graph (M) for pick-and-place issue [3].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

142

The search tree produced while using mmdRRT* to plan a route is defined as T in Rahul Shome and

Kostas E. Bekris’ approach. The composite arm configuration Q and the mode vM are tracked by the

ground search node on the search tree T. The pattern sequence along which these tree nodes are placed,

or the traversal of the tree, completely describes the posture of the object created by operations like

picking, passing, and inserting. The initial state and pattern that Vinit outlined serves as the algorithm’s

starting point for its search. The ground search node in T must be added by the algorithm as soon as it

locates the configuration in M that meets the pattern requirement. Then, a number of composite arm

configurations that show motions of the arm and item without colliding were found. Each arm’s

arrangement is determined by the tensor roadmap. Tables 2 and 3 below list the parameters that were

utilized and the algorithms created.

Table 2. Algorithmic Notations.

T The search tree built by mmdRRT*

Vinit Initial configuration Qinit and mode v
init

M

∏best Discovered solution with best cost

Vnear Node on search tree selected for expansion

Vnew New node that is a candidate for adding to T

Vlast A better heuristic node from the last expansion

To organize the above steps into a formula, all you need to use is:

Table 3. Algorithm: mmdRRT* (M, v
init

M , v
goal

M , Ĝ) [3].

1 ∏best ← ϕ; Vinit←< v
init

M .Q, v
init

M
 >

2 T.init(Vinit); Vlast←Vinit;

3 while time.elapsed() < time_limit do

4 Vlast← Expand_mmdRRT* (T, Vlast,M, Ĝ)

5 ∏← Connect_to_Target (Ĝ,T, v
goal

M)

6 if ∏ ≠ ϕ ∩ cost(∏) <cost(∏best) then

7 ∏best← Trace_Path (T, v
goal

M)

8 return ∏best

The X-arm model is used as a simulation in this work using the aforementioned approach. The six

joints of the model, which is designated as X-arm6 in Table 4, all have various operating ranges. Figures

2 and 3 illustrate the X-arm6 model’s general working range and mounting dimensions, respectively.

The plan adopted in this study, which is depicted in Figure 5, simulates the transport cargo by mounting

the vacuum head end effector on the X-arm in accordance with the first hypothesis given in the preceding

section. Table 5 displays the exact characteristics of the vacuum head’s end effector.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

143

Figure 2. Determine the working space of the robot arm. (X-Arm6).

Table 4. Parameter of different X-Arm.

 Robot Arm X-Arm5 X-Arm6 X-Arm7

Maximum

Speed

 180°/s 180°/s 180°/s

Working Range

Axis 1 ±360° ±360° ±360°

Axis 2 -118°~120° -118°~120° -118°~120°

Axis 3 -225°~11° -225°~11° ±360°

Axis 4 -97°~180° ±360° -11°~225°

Axis 5 ±360° -97°~180° ±360°

Axis 6 ±360° -97°~180°

Axis 7 ±360°

Figure 3. Robot arm installation on X-Arm6. (mm).

Figure 4. Vacuum Gripper. Figure 5. Vacuum Pump Exhaust

Suction Cup.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

144

Table 5. Parameter of vacuum gripper.

Rated supply voltage 24V DC

Maximum supply voltage 28V DC

Static current 30mA

Peak current 400mA

Vacuum degree 78%

Vacuum flow rate (L/min) >5.6L/min

Mass (g) 610g

Size (L*W*H) 122.5*91.6*75mm

Payload (kg) ≤5kg

Noise level (within 30 cm) <60dB

Communication mode Digital IO

Status light Power; Working Status

Feedback signal Air pressure (low or normal)

The route of m1 in the X-arm6 is plotted out using Matlab simulation data and mmdRRT* path

planning regulations. The end point of the running track of the m1 robotic arm is the starting point of the

m2 robotic arm since two robotic arms were chosen as the model of the multi-arm operating system in

this research. Figures 6(a), 6(b) and 6(c) illustrate the position state of m1 at the start point, pick point,

and finish point, respectively.

(a) (b) (c)

Figure 6. Using Link Function to Build X-Arm6 m1. (a) Initial position; (b) Pick-up cargo

location; (c)Moving to m2 location. The handoff increases each arm’s range of motion.

4. Result

A benefits and drawbacks of using dRRT* or mmdRRT* in the simulated path planning of multiple

robotic arms are discussed in this section, along with the suggested approaches. The three position forms

of the X-arm6 model m1 were drawn using Matlab and provided the data for this study. The accuracy of

the results is shown to be dependent on the following three factors when multi-arm systems are simulated

in various situations [12].

The first is whether there are static or moving barriers in the surroundings. Since there is no barrier

in the setting chosen for this study, it can already be said that it is a static environment. The route

prepared using the mmdRRT* approach is much shorter and smoother under these circumstances than

the route planned using the dRRT* method. dRRT* needs a larger buffer time to simulate the path

depending on how long it takes to process the path. Therefore, it can be said that under static conditions,

the mmdRRT* approach is preferable to the dRRT* method.

Second, in the working environment of a linear arrangement of just two robot arms, the path planning

speed of the dRRT* approach is faster than mmdRRT*. There is only one point of contact between m1

and m2 as a result of their shared workspace, and since this point serves as the start of the cargo transit

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

145

chain, there is no need to define it. The best path planning technique in terms of real-time performance

is still dRRT*.

Third, depending on the specific application scenario and requirements, the choice of which method

to use depends on the trade-off between dynamism, shortest path assurance, and real-time performance.

Figure 6. Use dRRT* sampling to plan the path, randomly sample the dynamic obstacles

for path planning, and select the optimal solution by optimizing the path (left). The result

of running the code is shown on the right.

As can be seen from the results in the figure, it is necessary to carry out a large number of operations

for the path planning of the sampling method of dRRT* and mmdRRT*, and finally obtain the optimal

solution by optimizing the path. In the real logistics storage management system, the path planning of

the robot arm is often based on the barrier-free shortest path.

Based on the path planning of X-arm6, there are still many other experimental methods for motion

planning of multiple robotic arms besides the basic motion planning algorithms (dRRT* and mmdRRT*).

For example, environmental simulators. Using a simulation environment can greatly simplify the

experiment process and provide repeatability. Open source simulators such as Gazebo, V-REP, or Unity

can be used to build virtual environments with multiple robotic arms.

Another example is the experimental parameter setting. By establishing the experiment’s parameters,

such as the robot arm’s beginning posture, the target’s posture, the location and nature of the barrier,

etc. To mimic various scenarios and settings, the parameters can be changed in accordance with the

needs of the situation.

5. Conclusion

The comparison and discussion of dRRT* and mmdRRT* in path planning of multi-arm systems are

presented based on prior work and the modeling analysis of X-arm6. Attempt to resolve the selection

and placement issues using manipulators with a high degree of freedom. According to the findings,

various path planning techniques should be chosen based on the environment, path planning

requirements, response time, and dynamic and static requirements. For a certain working environment

model, theoretical demonstration shows that dRRT* path planning time cost is superior to mmdRRT*,

but accuracy is lower than mmdRRT*. The comparison established in this work can be investigated

further, including the choice of end-effector and the implementation of a multi-arm production line’s

semi-automation.

References

[1] Khan A, Rehman Sair A, Ekram A, Malik S, Raheel Afzal M, Bin Junaid A and Eizad A 2015

An automated object retrieval system for warehouse C. ICCAS pp.95-100

[2] Zai Ur Rahman M, Kumar Kanchi M, A Aleem Pasha M and Kumar Yadla B 2021 Design and

development of autonomous warehouse management robot with intelligent software

framework C. ICMNWC pp. 1-7

[3] Rahul S, Kostas B 2019 Anytime multi-arm task and motion planning for pick-and-place of

individual objects via handoffs C.MRS pp. 37-43

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

146

[4] Abdelaal M 2019 A study of robot control programing for an industrial robotic arm C.

ACCS&ICNPE&PEIT pp. 23-28

[5] Wang Y, Liang Y, Chen D, Liu Y and Wang M 2020 A goods sorting robot system for e-

commerce logistics warehouse based on robotic arm technology C. RCAR pp. 310-314

[6] Reddy M and S.R. N 2014 Integration of robotic arm with vision system C. CICRC pp. 1-5

[7] Pei-Chi H and Aloysius K. M 2018 A case study of cyber-physical system design: autonomous

pick-and-place robot C. RTCSA pp. 22-31

[8] Jaeyeon L, Sangseung K, Kyekyung K, Jaehong K and Joong B K 2013 A development of easily

trainable vision system for the multi-purpose dual arm robots C. URAI pp. 609-614

[9] Jyothsnaa S, Gandhe A, Deshpande A and Bodas S 2010 Automated inventory management and

security surveillance system using image processing techniques C. IEEE pp. 2318-2321

[10] Gokul H, Kanna S.V., Akshay K H. and Vignesh R 2020 Design of imitative control modalities

for a 3 degree of freedom robotic arm C. ICCCSP pp. 1-6

[11] Khairidine B, Jean-Francois B, Francois G and Marc G 2018 Dual arm robot manipulator for

grasping boxes of different dimensions in a logistics warehouse C. ICIT pp. 147-152

[12] Nazib S and Abu S S 2021 Implementation of Pick & Place Robotic Arm for Warehouse Products

Management C. ICSIMA pp. 156-161

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230732

147

