
 

 

Research on text classification based on neural networks 

Mingshi Zheng 

College of Computer and Information Sciences, Fujian Agriculture and Forestry 

University, Fuzhou, 350002, China 

Corresponding author: zlivelivelive@qq.com 

Abstract. With the rapid development of information technology, the processing of massive text 

data has become increasingly important. As a common computer information processing task, 

text classification has attracted a wide range of research interests. This paper aims to explore the 

text classification method based on neural network and analyze the key technologies. In order to 

solve the problem of text time series data classification, this paper uses the text time series data 

of occupancy detection and applies these neural network models in deep learning, including 

recurrent neural network, long short-term memory and gated recurrent unit, and trains the neural 

network through supervised learning. Inputting the room attribute data to these trained neural 

network models and judging the occupancy of the room. At the same time, observing the 
experimental results of these neural network models, including training loss, test loss and 

accuracy, to further study the performance of neural network in processing text time series data 

classification. This paper’s experiment aims to evaluate the performance of neural network in 

text classification and makes a detailed analysis through the experimental results. The goal of 

the research is to find an effective solution based on neural networks for the classification of text 

sequence data. Through the analysis of the experimental results, it can be concluded that the 

method based on neural network is feasible and effective in text sequence data classification. 

These analysis results will help to further promote the development of text classification 

technology and provide guidance and reference for practical application.  

Keywords: Text classification, Neural network, Recurrent neural network, Long short-term 

memory, Gated recurrent unit. 

1.  Introduction 

1.1.  Background and Significance 

Since the Industrial Revolution, the advancement of technological components such as transistors, 
integrated circuits, and chips has driven the development of the computer industry, bringing humanity 
into the door of the information age. As an efficient tool for processing information, computers can help 
us solve various social problems and complete various mathematical tasks through programming. 
Nowadays, human life is closely intertwined with computers, especially with the development of 
internet technology, which enables information to be efficiently transmitted through computers. The 
internet, like the printing art of the old era, has had a huge impact on human society. People can 

communicate information through social media and efficiently obtain information through search 
engines. Both the Earth's environment around humans and the human body itself contain a large amount 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

282



 

 

of changing information. Whether they are the growth status of crops, the prices of houses in different 
urban areas, or changes in weather conditions, they are valuable information resources that are crucial 
for our daily life. Data is the manifestation and carrier of information, with textual data being the most 
common and numerous forms. However, not all texts have practical value and research significance. 

Therefore, how to process and analyze massive computer text data and extract valuable information 
from it has become an important research topic. 

1.2.  Research Status 
In the days before the invention of computers, people usually used pens and paper to record and 
statistically analyze data. Traditional text classification methods often require manual annotation of data, 

which is costly, time-consuming, and of low quality, and individual factors have a significant impact on 
the results. It is often difficult to obtain satisfactory results when processing large amounts of data and 
requiring high accuracy in the processing results. Therefore, utilizing computer automation to process 
text data, perform text annotation, and model analysis has important practical significance. With the 
development of statistical learning methods and the massive accumulation of text data on the Internet 
[1], text classification problem has become a classic problem[2]. These methods usually use artificial 
feature engineering combined with shallow classification models to input the training set into feature 

engineering for processing, and then transmit results to the classifier for resolution. In the field of text 
classification, many statistical and machine learning methods have been widely applied, such as support 
vector machines, decision trees, K-nearest neighbor methods, random forests, naive Bayesian 
classification [3], etc. However, these methods still have some shortcomings, such as weak feature 
expression ability in text representation, high time consumption, difficulty in processing high-
dimensional data, and prone to errors in classification decisions. In addition, the figure 1 shows process 
of feature engineering which is also very complex and cumbersome, making it difficult to accurately 
determine which features are more important for classification results.  

 

Figure 1. Process of Feature Engineering. 

At present, text classification methods are gradually transitioning from traditional statistical and 
machine learning methods to deep learning methods based on complex neural network structures and 

are in a stage of rapid development. The use of deep learning methods for text classification has become 
a hot research pot in the current era, as it can effectively save costs and obtain information. In this field, 
computer scientists have developed neural networks, which are computational mathematical models that 
simulate biological neural networks[4]. The figure 2 presents the basic neuron model which constitutes 
the artificial neural networks. Artificial neural networks abstract the simulation of human brain neurons 
from the perspective of information and signal processing and simulate the connections between brain 
neurons by establishing multiple micro neuron models [5]. Its construction principle is to mimic the 
structure and composition of biological neural networks, established through the connections between a 

large number of neurons and neural synapses. This model can perform deep learning and analysis on 
text data, thereby achieving more accurate and efficient text classification. The use of text classification 
for data processing will have a broader application prospect. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

283



 

 

 

Figure 2. Basic Neuron Model. 

The development of artificial neural network models originated from simple neural models[6], where 
each perceptron is a simple binary linear classification model. The perceptron processes input data 
through linear transformation and has a structure similar to biological neurons, including activated and 
inactive states. Neural networks can be seen as complex network models composed of an amount of 
perceptron. By connecting multiple perceptron to form different neural network structures, Neural 
networks can flexibly handle various complex problems. In neural networks, each perceptron is a basic 

neural unit with attributes such as input, weight, and activation function. By adjusting the connection 
weight values between neurons, neural networks can learn and adapt to different input modes, thereby 
achieving tasks such as classification and recognition of input data. In summary, perceptron is the 
foundation of neural network models, while neural networks are complex models composed of an 
amount of perceptron which are represented in the figure 3. By adjusting the connection weights and 
using different activation functions, neural networks can process and learn various input data. The figure 
4 shows the basis model of feedforward neural network where the signal propagates one-way from the 
input layer to the output layer. 

 

Figure 3. Perceptron. 

 

Figure 4. Feedforward Neural Network. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

284



 

 

In recent years, with the increasing demand for massive text data analysis and the development and 
innovation of deep learning and neural network structures, text classification technology based on neural 
networks has become a key technology. This article will introduce the application and development 
process of neural network models with different structures in text classification, and compare their 

classification performance on text datasets to understand their advantages and disadvantages in 
processing text classification tasks. The figure 5 shows the deep neural network model which has 
multiple hidden layers. 

 

Figure 5. Deep Neural Network. 

This article will introduce the application and development process of these neural network models 
with different structures in text classification and compare their classification performance on text 
datasets. By comparing the performance of these different structures of neural networks in text 
classification tasks, their performance and applicability can be evaluated. This article aims to explore 
the use of neural network models, long short-term memory[7] (LSTM), recurrent neural network[8] 

(RNN), and gated recurrent unit (GRU) to predict room occupancy and achieve more efficient room 
information resource management[9]. 

1.3.  Paper Structure Overview 
This article takes the text classification task as the background and studies the application of several 
neural network models with different structures in this task [10]. The article is divided into four chapters, 

each with specific research content. The main research content of each chapter is as follows: 
Chapter 1 Introduction: Introducing the research background and significance of the text 

classification topic, as well as the current research status of text classification. 
Chapter 2 Neural network model: This chapter provides a detailed introduction to the concept of 

neural network and several common model structures, including recurrent neural network, long short-
term memory, and gated recurrent unit. The concepts, principles, structures, and characteristics of each 
model are explained and discussed. 

Chapter 3 Experiment: The chapter describes the experimental environment and process, including 
the parameter configuration and explanation of related concepts used in the experiment, providing a 
basis for subsequent experimental results. This chapter also presents the experimental results and 
provides a detailed analysis and discussion of the experimental results. By comparing the classification 
performance of different neural network models on text datasets, some meaningful conclusions have 
been drawn. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

285



 

 

Chapter 4 Conclusion: A summary of the entire experiment was provided, summarizing the main 
findings and conclusions of the experiment, and proposing some possible improvements and future 
research directions. 

Through this article, we can learn about the application of neural networks in text classification tasks, 

and understand the characteristics and performance of different models. This has important reference 
value for further research and application of neural networks in the field of text processing. 

2.  Neural Network Model 

2.1.  Recurrent Neural Network 

2.1.1.  Recurrent Neural Network Conception. Human thinking has continuity and consistency when 
thinking. For example, when people communicate with each other, people can clearly remember what 
they said before and continue what they want to say next based on what they said before. However, it 
will become very difficult for most people to ask people to start with what they just said, push backwards, 

recall and deduce what they said before and say it. This shows that human thinking needs to rely on 
previous memory for thinking and reasoning. However, traditional neural network cannot achieve the 
continuity of memory. The traditional neural network is a feedforward network[11], each input is 
processed independently, and there is no memory or context information transfer. This leads to some 
problems in processing sequence data, such as information omission. In order to improve the traditional 
neural network, researchers have proposed recurrent neural networks. Recurrent neural network (RNN) 
introduces memory unit mechanism [12], which makes the network have memory ability and is shown 

in figure 6. The hidden state of RNN can capture the previous information and transmit it to the next 
state, so as to realize the memory and transmission of information. 

2.1.2.  Recurrent Neural Network Structure 

 

Figure 6. Structure of RNN. 

Within recurrent neural network[13], the input and previous hidden state are combined into a new tensor, 
which is then processed through an activation function to generate a new memory state and shown in 

the figure 7. The recurrent neural network generally uses tanh () as the activation function. The function 
of this activation function is to help adjust the size of the value, so that the output value is within the 
interval (-1,1), thereby regulating the output of the neural network. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

286



 

 

 

Figure 7. RNN Cell. 

 𝒉𝒕 = 𝒕𝒂𝒏𝒉(𝑾𝒉𝒙𝑿𝒕 + 𝑾𝒉𝒉𝒉𝒕−𝟏 + 𝒃𝒉) …  (1) 

 𝒀𝒕 = 𝒇(𝑾𝟎𝒉𝒕 + 𝒃𝒚) …  (2) 

The specific internal propagation process can be expressed as follows: firstly, the input and the 
previous hidden state will be combined into a new tensor [14]. Then, this tensor will pass through the 

activation function to generate a new hidden state. Next, this new hidden state will be transmitted to the 
next cell, and then combined with the new input to form a new tensor, repeating the above steps.  

Through this internal propagation process, recurrent neural network can remember information in 
sequence text data and use it for modeling. Recurrent neural network can effectively process sequence 
data through the combination of input and hidden states, as well as the role of activation functions and 
internal propagation processes, and have strong predictive abilities [15].  

In recurrent neural network, the commonly used activation function is tanh () or relu(). The activation 
function can enhance the ability of the network and make the network better deal with complex data. 

Recurrent neural network has some problems when processing sequence data. One of them is short-term 
memory flaw, also known as long-term dependence problem. When the sequence data are long enough, 
it is difficult for recurrent neural network to transfer information memory from the early state to the later 
state, leading to the easy omission of important information memory.  

Another issue is the disappearance or explosion of gradient during back propagation. Gradient 
vanishing refers to the phenomenon where the gradient value drops too small, resulting in the network 
being unable to effectively learn and train. The gradient explosion is caused by the excessive growth of 

gradient values, resulting in rapid updates of network parameters and inability to converge to appropriate 
values.  

These issues will all affect the training and learning process of recurrent neural network because 
recurrent neural network has a long and continuous process of information transmission. Although 
recurrent neural network have issues such as short-term memory deficits and gradient 
vanishing/exploding, its performance and effectiveness in processing sequence data can be improved 
through some improved models and mechanisms [8]. 

2.2.  Long Short-Term Memory 

2.2.1.  Long Short-Term Memory Conception. In 1997, Hochreiter and Schmidhuber proposed the long 
short-term memory network [16]. Long short-term memory (LSTM) is a special type of neural networks. 

By introducing gating mechanism, long short-term memory effectively alleviates the short-term memory 
problem in traditional neural network. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

287



 

 

As for the conceptual differences between LSTM and RNN, we can better understand the differences 
between them through analogy. Assuming that RNN is like a greedy pig in the yard, it will not be picky 
or choose whether it is faced with delicacies or leftovers. The pig just wants to eat as much food as 
possible like recurrent neural network just wants to absorb as much information as possible. In contrast, 

LSTM is like an exquisite person. This person will not easily accept unhealthy and terrible food. He will 
carefully select healthy and balanced food which meet his taste and needs, and use tableware that meets 
his identity and taste because he has the right of choice and the ability of independent decision-making. 
The reason for this difference lies in the different design concepts and functional characteristics of them. 
Recurrent neural network is a simple recurrent structure, which has strong information storage ability 
and memory ability, but lacks the ability to filter and select information.  

Therefore, Recurrent neural network will store all received information and process it without 
distinction. Long short-term memory will selectively store information, because it has strong ability. It 

has a gating device, and it can choose as much as it wants. The figure 8 shows the cell of long short-
term memory. In short, LSTM is more flexible, efficient and accurate than RNN. By introducing gating 
mechanism and optimizing structure, LSTM can achieve better performance in different tasks. 

 

Figure 8. Lstm Cell. 

2.2.2.  Long Short-Term Memory Structure. Long short-term memory is a powerful neural network 
model, which introduces gating structure to control the addition or deletion of information in the cell 
state [10]. This gating structure is composed of an activation function and point multiplication operation. 
Specifically, LSTM mainly includes the following parts[7]. 

 

Figure 9. Structure of Lstm’s Cell State Channel. 

 𝑪𝒕 = 𝒇𝒕 × 𝑪𝒕−𝟏 + 𝒊𝒕 × 𝑰𝒏𝒑𝒖𝒕𝑮𝒂𝒕𝒆𝑪𝒕 …  (3) 

The first is the cell state channel, which includes two linear operations is shown in the figure 9. The 
first linear operation is used to control the proportion of the previous cell information, and the second 

linear operation is used to increase the new information brought by the input. The results of these two 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

288



 

 

linear operations will be used to update the cell state. We multiply the tensor generated by the previous 
forget gate and the tensor with main cell state transmitted by the previous cell, and then add the tensor 
generated by the input gate to obtain the new tensor. Cell state channel is responsible for transmitting 
and preserving information during the whole process. It controls the flow and preservation of 

information through the adjustment of these gates. 

 

Figure 10. Structure of Forget Gate. 

 𝒇𝒕 = 𝝈(𝑾𝒇𝒉𝒕−𝟏 + 𝑾𝒇𝑿𝒕 + 𝒃𝒇) …  (4) 

The second is the forget gate, which outputs a value between 0 and 1 based on the previous hidden 
state and the current input and is shown in the figure 10. If the output value is 0, it means to completely 
forget the historical information transmitted before; If the output value is 1, it means to completely retain 

the history information passed in before. The existence of forget gate can help neural network avoid 
redundancy and confusion of information. In long short-term memory, forget gate is an important part. 
Its role is to decide whether to retain or discard the previously learned information. When some 
information in the neural network is excited by sigmoid() activation function, its output value will be in 
the range of (0,1). Therefore, the existence of forget gate can help neural network better learn and adapt 
to different input data. By reasonably setting the activation function, the effect of neural network can be 
improved. 

 

Figure 11. Structure of Input Gate. 

 𝒊𝒕 = 𝝈(𝑾𝒊 × 𝒉𝒕−𝟏 + 𝑾𝒊𝑿𝒕 + 𝒃𝒊) …  (5) 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

289



 

 

  𝑰𝒏𝒑𝒖𝒕𝑮𝒂𝒕𝒆𝑪𝒕 = 𝒕𝒂𝒏𝒉( 𝑾𝑪 ⋅ 𝒉𝒕−𝟏 + 𝑾𝑪𝒙𝒕 + 𝒃𝑪) …  (6) 

The third part is the input gate[7], which also outputs two information based on the previous hidden 

state and the current input: one represents how much information is added, and the other represents the 
strength of the information. This information will be used to update the cell status. The input gate 
controls the input of new information and determines which information should be added to the cell 
state channel. The figure 11 shows structure of Input gate. 

 

Figure 12. Structure of Update Gate. 

 

Figure 13. Structure of Output Gate. 

The fourth part is the update gate, which outputs the next cell state based on the previous cell state, 
forget gate, input gate and new information. The Update gate is shown in the figure 12. The existence 
of this gating structure can help neural networks learn and reason more efficiently. 

 𝒐𝒕 = 𝝈(𝑾𝒐𝒉𝒕−𝟏 + 𝑾𝒐𝒙𝒕 + 𝒃𝒐).  (7) 

 𝒉𝒕 = 𝒐𝒕 ∗ 𝒕𝒂𝒏𝒉( 𝑪𝒕). ..  (8) 

The last part is the output gate, which adds an output gate based on the cell state of the update gate 
output to control how much information is output as a layer of the next state. The existence of this part 
can help the neural network to deal with different task requirements more flexibly. The figure 13 shows 
structure of Output gate. The basic structure of long short-term memory is composed of input gate, forget 

gate, output gate, update gate and cell state channel. These key components control the input, retention, 
output and transmission of information through different mechanisms, so that the long short-term 
memory network can effectively process sequential data and alleviate the long-term dependence and 
gradient problem. 

2.3.  Gated Recurrent Unit 

2.3.1.  Gated Recurrent Unit Conception. Gated recurrent unit is a variant of long short-term memory[9], 
which was proposed in 2014. Gated recurrent unit is very similar to long short-term memory. It discards 
the cell state of long short-term memory and uses hidden state to pass information. The figure 14 
illustrates the basis cell of gated recurrent unit. 

 

Figure 14. GRU Cell. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

290



 

 

Gated recurrent unit is a simplified version of long short-term memory and has simpler structure than 
LSTM [9]. Gated recurrent unit, like LSTM, utilizes gating mechanisms, it can effectively control the 
flow of tensor, so that the network can better capture the long-term dependencies information. Gated 
recurrent unit further optimizes the cell structure composed of four gates in LSTM into a cell structure 

composed of two gates. This improvement not only maintains the original advantages, but also reduces 
the complexity of the model and improves the training efficiency and speed. In addition to simplifying 
the structure of the model, GRU also makes fusion and other improvements to cell state of long short-
term memory. These improvements enable GRU neural network to better use context information to 
process long sequence data, thus improving the performance of the model. In a word, gated recurrent 
unit, as an improved model based on LSTM, provides strong support for the application of deep learning 
in various fields. 

 

Figure 15. GRU Gating Mechanism. 

 

Figure 16. GRU Gating Mechanism. 

Gated recurrent unit consists of update door, reset door and hidden state.The structure of gated 
recurrent unit and special gating mechanism are presented in the figure 15 and figure 16. 

2.3.2.  Gated Recurrent Unit Structure. Gated recurrent unit is a simplified version of LSTM that has 
only two gates: reset gate and update gate [9]. The function of the update gate is similar to the input gate 
in LSTM. The update gate can decide which new tensor to add and control the transmission of new 
information. The reset gate is usually used to determine the degree of discarding previous information 
and control the elimination of old information. The two parts together constitute the basic structure of 

GRU model. Although there are some structural differences between GRU and LSTM. GRU does not 
have a cell state, while LSTM has a cell state. These differences enable GRU[9] to have higher 
computational efficiency in certain scenarios.The figure 17 illustrates the basis cell of gated recurrent 
unit. 

 𝒛𝒕 = 𝝈(𝑾𝒖𝒉𝒕−𝟏 + 𝑾𝒖𝒙𝒕 + 𝒃𝒖) < 𝒖𝒑𝒅𝒂𝒕𝒆𝒈𝒂𝒕𝒆 >   (9) 

 𝒓𝒕 = 𝝈(𝑾𝒓𝒉𝒕−𝟏 + 𝑾𝒓𝒙𝒕 + 𝒃𝒓) < 𝒓𝒆𝒔𝒆𝒕𝒈𝒂𝒕𝒆 >  (10) 

 `𝒉𝒕 = 𝒕𝒂𝒏𝒉( 𝑾 ⋅ 𝒓𝒕 ∗ 𝒉𝒕−𝟏 + 𝑾 ⋅ 𝒙𝒕 + 𝒃𝒉)    (11) 

 𝒉𝒕 = (𝟏 − 𝒛𝒕) ∗ 𝒉𝒕−𝟏 + 𝒛𝒕 ∗ `𝒉𝒕  (12) 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

291



 

 

 

Figure 17. GRU Cell. 

Due to structural differences, the number of parameters for GRU and LSTM also varies. GRU has 
fewer parameters, while LSTM involves more parameters. Therefore, in scenarios where computational 
resources need to be saved, GRU may be a better choice. There are also certain differences in training 

strategies between GRU and LSTM. Usually, using back propagation algorithm and Gradient Descent 
method can simultaneously optimize the parameters of GRU and LSTM. However, due to the relatively 
simple structure of GRU, special optimization techniques can sometimes be used to improve training 
effectiveness, such as using Momentum or Adaptive Learning Rate. 

3.  Experiment 

3.1.  Experimental procedure 

3.1.1.  Content. The relevant research in this article adopts the UCI (University of California Irvine) 
machine learning repository's room occupancy detection dataset, which is a set of text time series 

datasets that will be used to study the performance of neural network models in text classification tasks. 
The purpose of the study is to explore the role and performance of RNN[8], LSTM[6], and GRU in 
classification tasks on this text dataset by training them[9]. By comparing the experimental performance 
of these models in text data classification tasks and further studying the internal parameter structure of 
the models, it is expected to systematically discover the value of neural network models in deep learning 
in text classification tasks. For the experiment, I chose the room occupancy detection dataset provided 
by the UCI (University of California Irvine) machine learning repository. This dataset collected the 

properties of Light, Temperature, Humidity, Humidity Ratio, and CO2 in the room through experimental 
equipment and instruments to detect the occupancy of the room [17]. Through these experiments, we 
hope to gain a deeper understanding of the potential application of neural network models in text data 
classification tasks and provide reference and guidance for further research. The dataset’s attributes are 
presented in figure 18. Figure 18 shows the attribute information of the dataset. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

292



 

 

 

Figure 18. DataSet’s Attribute (Occupancy Detection DataSet on UCI Machine Learning Repository). 

In terms of data preprocessing, I used Pycharm as the development environment and adopted Python 
version 3.7. To facilitate the installation and management of dependent toolkits, I used Conda and Pip 
as installation tools. In the data processing process, I used Numpy, a powerful library that can efficiently 
handle dimensional arrays and matrices. In order to solve the data analysis task, I chose Pandas, which 

is a tool based on Numpy and created to solve the data analysis task. I can use Numpy to store data more 
conveniently for subsequent data processing and analysis. In addition, in order to make the experimental 
dataset more intuitive and easy to understand, I also used Matplotlib for data visualization, in order to 
better display the experimental results. Through the application of these tools and technologies, data 
preprocessing and analysis can be carried out more efficiently and accurately, laying a solid foundation 
for subsequent experimental work. The figure 19 shows visualization of training set data and figure 20 
shows visualization of test set data which are generated in the experiment through using the Matplotlib 
as the tool for data visualization. 

 

Figure 19. Visualization of training set data (0 for not occupied, 1 for occupied status) [Matplotlib]. 

By observing the line graphs of various values in the training set, it can be found that when the room 
is occupied, there will be significant fluctuations in temperature, humidity, light intensity, CO2 
concentration, and humidity compared to these values. This indicates that the state of the room has a 
significant impact on these values, which further illustrates the correlation between the occupancy status 
of the room and these values.  

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

293



 

 

In addition, it can be observed from the line graph of light intensity that there is an abnormally high 
light intensity at a certain time point. This may be due to errors in the data collection process of the 
photosensitive device, resulting in the presence of these noise points. It should be noted that these noise 
points may cause some interference to subsequent data analysis and model training, so it is necessary to 

pay attention to the handling of outliers when conducting data processing and model training. By 
observing the numerical line graph of the training set, it is possible to better understand the relationship 
between room occupancy status and various numerical values, and to conduct more accurate and 
effective data processing and analysis based on these characteristics in subsequent research to improve 
the performance and prediction accuracy of the model. 

 

Figure 20. Visualization of test set data (0 for not occupied, 1 for occupied status) [Matplotlib]. 

According to the data from the test set, it is also shown that the temperature, humidity, light intensity, 
CO2 concentration, and humidity ratio values of the room will be significantly affected by the usage of 

the room, resulting in significant changes. This further validates the previously observed results of the 
training set. In different datasets, there is a correlation between room occupancy and values such as 
temperature, humidity, light intensity, CO2 concentration, and humidity ratio. This discovery is crucial 
for us to understand the relationship between room occupancy status and various numerical values, and 
these changes need to be considered in subsequent data processing and analysis. Only by fully 
understanding these influencing factors can we conduct more accurate data analysis and model training 
to improve the accuracy and performance of predictions. 

3.1.2.  Environment. Using my personal computer, the central processing unit(CPU) is Inter(R)Core(TM) 
I5-6300HQCPU@2.30GHz.The graphics processing unit(GPU) is NVDIA GeForce GTX960M. The 
computer’s ram size is 8G. In the experiment, I chose Pycharm as the integrated development 
environment and used Python 3.7 as the version of python. In order to build a neural network model, I 
used Pytorch, an open-source neural network library. Compared to Tensorflow, Pytorch adopts a 

dynamic graph structure, which means that Pytorch can create and generate networks at startup without 
the need to compile and run them first. This makes Pytorch more flexible and convenient in data 
parameter migration and debugging. To ensure the accuracy of the data, I preprocessed it. Considering 
the significant differences in the numerical distribution of various features, I used the StandardScaler 
class from the Sklearn library for standardization processing. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

294



 

 

3.1.3.  Configuration. In order to accurately predict the occupancy of a room, I designed an input layer 
with five input neurons, corresponding to five attributes: temperature, humidity, light, CO2 and humidity 
ratio. The values of these attributes will be used as inputs to the model to learn and predict the occupancy 
status of the room. In order to improve the expression ability and learning ability of the model, I 

constructed two hidden layers. Each layer contains 64 neurons. Through the connection and activation 
function of these neurons, the model can extract more abstract and useful features from the input data. 
Finally, I set up an output layer, which contains two neurons. These two neurons represent 0 and 1 of 
occupancy respectively, where 0 means the room is unoccupied and 1 means the room is occupied. 
Through the training model, I expect the trained neural network model can accurately predict the 
occupancy information state of the room. The basis structure of neural network model in the experiment 
is shown in the figure 21. Through the above analysis and design, I hope to get an efficient and accurate 
neural network model through training, which can be used to reliably predict the information of room 

occupancy. 

 

Figure 21. Experimental Structure of Basic Neural Network Model. 

3.1.4.  Concept. Optimizer: In the training process of neural network, optimizer is an important object, 

which updates the parameters of the model by calculating the gradient. In this experiment, I used an 
optimizer algorithm called Adaptive Moment Estimation Optimizer (Adam) and set the learning rate 
was 0.02. Adam algorithm is a random objective function optimization algorithm, which combines the 
idea of momentum and adaptive learning rate. Its design goal is to restrain the training loss of neural 
network without easily falling into the local optimal problem, and has high computational efficiency. 
By adaptively adjusting the learning rate, Adam can better adapt to the characteristics of different 
parameters, so as to improve the effect of training. The Adam optimizer shows good performance in the 
training process of neural network. It can not only restrain the training loss, but also maintain high 

computational efficiency. In practical applications, Adam optimizer is widely used and has achieved 
many good results. In the experiment, CrossEntropyLoss() was used as the loss function. Batch 
Normalization was also adopted, which normalizes each layer during the forward propagation of each 
batch of data. The concept of Normalization is shown in the figure 22.  

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

295



 

 

 

Figure 22. Normalization Concept. 

Dropout: Dropout is an algorithm used to overcome the overfitting phenomenon of neural network. 
Its core idea is to train the network by shielding some neurons, and constantly change the shielded 
neurons during the training process. Specifically, dropout will shield some neurons before training, 

which can reduce the complexity of the network and avoid the problem of over fitting. Then, after 
updating the weight and other parameters through the back-propagation algorithm, dropout will restore 
the previously shielded neurons. Then, dropout will continue the next round of training and select a part 
of neurons at random again for shielding. By repeatedly shielding and restoring neurons, dropout can 
increase the robustness and generalization ability of the network. By using dropout, the trained network 
model can better adapt to the complex data and has better generalization ability. This is because dropout 
forces the network to learn more robust feature representation by randomly shielding neurons, rather 
than relying too much on some specific neurons. The figure 23 shows the concept of dropout. 

 

Figure 23. Dropout Concept. 

Iteration: Iteration refers to the process of training a small dataset in batches. Typically, an epoch 

consists of multiple iterations. 
Gradient: Gradient is a vector that points to the direction where the function's value rises the fastest. 

In back propagation algorithms, it often refers to the partial derivative of the error on the weight. 
Gradient descent: Gradient descent is an optimization algorithm that updates parameters by 

calculating the gradient of the loss function under the current parameters. Its core idea is to achieve the 
optimal solution by continuously adjusting parameters to gradually reduce the loss function. Regardless 
of the type of machine learning and deep learning problem, gradient descent algorithm can be used to 

solve any objective function that needs to be optimized. 
Stochastic gradient descent: Compared to other optimization algorithms, the stochastic gradient 

descent algorithm has many advantages. Firstly, it only uses the average of the gradients of a few non 
repeating sample points to update the model at a time, instead of using the average of the gradients of 
all sample points as traditional batch gradient descent algorithms do. This means that the stochastic 
gradient descent algorithm can greatly reduce computational complexity and thus improve efficiency. 
The stochastic gradient descent algorithm has the characteristic of fast convergence speed, so it is widely 
used in practical applications. The figure 24 shows differences between Batch Gradient Descent and 

SGD also illustrates differences of Batch Gradient Descent and Mini-batch Gradient Descent. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

296



 

 

 

Figure 24. Differences Between Batch Gradient Descent and SGD. 

Vanishing gradient problem: Vanishing gradient problem refers to the process of back propagation. 
Due to the chain derivative rule, if the value of this part is less than 1 when taking the partial derivative 

of the excitation function, the gradient update value will significantly decrease due to the increase in 
layers during the iteration process, and the weight update will be slow, resulting in the disappearance of 
the gradient. 

Exploring gradient problem: Exploring gradient problem refers to the process of back propagation. 
Due to the chain derivative rule, when taking the partial derivative of the excitation function, if the value 
of this part is greater than 1, during the iteration process, as the number of layers increases, the gradient 
update value will significantly increase, and the weight update will be extremely fast, resulting in a 

gradient explosion. 
Overfitting: Overfitting is a common problem in machine learning, referring to the phenomenon 

where a model performs well on the training set but poorly on the test set or new data. There are two 
main reasons for overfitting: firstly, the model is too complex, fitting the noise and outliers in the training 
set, resulting in the inability to generalize on new data; Secondly, the training set has a small sample 
size and cannot fully cover the entire data distribution. Overfitting can have a negative impact on the 
predictive and generalization abilities of the model. The concept of Overfitting is shown in the figure 
25.  

 

Figure 25. Concept of Overfitting. 
 

Figure 26. Concept of Underfitting. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

297



 

 

Underfitting: Underfitting is an important concept in machine learning, which refers to the 
phenomenon where the model cannot fully fit the training data, resulting in a significant gap between 
the predicted results and the actual situation. The main reason for underfitting can be attributed to 
insufficient model complexity or insufficient training data. If the model is too simple to capture complex 

relationships in the data, it is prone to underfitting. In addition, if the training data volume is too small 
or the data quality is poor, it can also lead to the model not being able to learn the features of the data 
well. Underfitting has a significant impact on machine learning tasks. The figure 26 shows concept of 
Underfitting. 

3.2.  Recurrent Neural Network Result 

 

 

Figure 27. RNN Model Train Loss [Matplotlib]. 

 

Figure 28. RNN Model Test Loss [Matplotlib]. 

The x-axis of both graphs represents the number of iterators that have been fed to the recurrent neural 
network. On the y-axis, the figure 27 represents the training loss of recurrent neural network, and the 
figure 28 represents the test loss of recurrent neural network. It can be clearly seen from the figure that 
the training loss of recurrent neural network fluctuates greatly when the number of iterators increases 
from 0 to 40. When the number of iterators reaches about 37, it rises sharply, and then drops sharply. It 
may be that such a situation occurs when encountering noise point data. With the increase of training 
time, the training loss fluctuates again when the number of iterators reaches about nearly 60 and then it 

remains relatively stable when the number of iterators is between 70 and 85. When the number of 
iterators reaches around 90 and 105, the training loss of recurrent neural network fluctuates again. It is 
obvious from the figure that the test loss of recurrent neural network fluctuates greatly with the increase 
of the number of iterators. Generally speaking, the test loss of RNN decreases with the increase of the 
number of iterators, but according to the whole test loss chart, the test loss of RNN has remained above 
0.2 for most of the test time, and has a large fluctuation, which may be related to the data noise points, 
but it may also be that the RNN fitting degree is not good, or it may be related to the fact that the structure 

of the model itself can only remember the nearly information state. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

298



 

 

 

Figure 29. RNN Model Test Accuracy [Matplotlib]. 

The index value of the y-axis represents accuracy in the figure 29, which represents the classification 

accuracy obtained by using the test set in the recurrent neural network trained by the training set. The 
x-axis represents the number of iterators that have been fed to recurrent neural network. 

According to the figure 29, with the increasing of the number of iterators, the prediction accuracy of 
recurrent neural network on the test set has changed very unstable. At some moments in the experiment, 
the accuracy of RNN even dropped below 0.90. During the test, when the number of iterators was close 
to 24, 50 and 83, the accuracy of recurrent neural network dropped greatly, from 20 to 24, and the 
accuracy dropped from nearly 95% to less than 80%, and then suddenly bounced back to the previous 

level. At the two points of 50 and 83, there was another sharp fluctuation and decline, and the overall 
trend was very unstable. According to the results of several experiments, the unstable reason may be 
that recurrent neural network has a special transfer structure, which can save the previous state and 
transfer state information to the subsequent state. 

Recurrent neural network can only remember the state that is close to the current time, but it can not 
maintain the state information that is long before because recurrent neural network has the problem of 
short-term memory in design. Therefore, when the value of inputting data change greatly, the prediction 

accuracy of recurrent neural network is prone to be unstable. This is because recurrent neural network 
cannot effectively remember the state information of a long time ago, resulting in the limited processing 
ability of test set data with large fluctuations. 

3.3.  Long Short-Term Memory Result 

 

Figure 30. LSTM Model Train Loss 

[Matplotlib]. 

 

Figure 31. LSTM Model Test Loss 

[Matplotlib]. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

299



 

 

The x-axis of both graphs represents the number of iterators that have been fed to the neural network. 
On the y-axis, the figure 30 represents the training loss of long short-term memory, and the figure 31 
represents the test loss of long short-term memory. The training loss of long short-term memory 
generally changes smoothly in most cases, but there are still significant changes when it encounters 

certain data, possibly due to data noise points, resulting in large changes. The training loss of long short-
term memory does not exceed 0.1 in most cases. It can be seen that the model has been processed by 
gradient descent, and the error has been greatly reduced, indicating that the fitting degree of long short-
term memory is good. It can be seen from the figure that with the growth of the test time, except for the 
initial period of time, the test loss of the long short-term memory generally remained between 0.1 and 
0.2 during the whole test process, without much fluctuation, and the overall situation was relatively 
stable. The long short-term memory’s test loss has been shown to kept low level though the number of 
iterators is increasing. This result shows that long short-term memory can effectively reduce the loss 

while learning and adapting to test set data, and it can maintain good performance when faced with 
larger scale test data. This further demonstrates the superiority of long short-term memory when 
processing text-based time series data, as it can learn and capture long-term related information while 
maintaining a low loss during testing. Therefore, the gentle and consistently low level of variation in 
test loss on the long short-term memory further demonstrate its superior performance and stability in 
handling long text time-series data and related text classification tasks. 

 

Figure 32. LSTM Model Test Set Accuracy [Matplotlib]. 

The index value of the y-axis represents accuracy, which represents the classification accuracy 
obtained by using the test set in the long short-term memory network trained by the training set. The x-
axis represents the number of iterators that have been fed to the neural network. According to the figure 
32, with the increasing of the number of iterators, the prediction accuracy of long short-term memory 
on the test set is generally stabled comparing recurrent neural network. It can be seen from the figure 
that the accuracy of LSTM remained almost stable above 0.95 for most of the entire experimental 
process. Long short-term memory is a variant of recurrent neural network, which contains three gate 
structures: forget gate, input gate and output gate. Through the control of these gates, long short-term 

memory can realize the long-term memory of valuable information, thus making up for the defect that 
recurrent neural network can only carry out short-term memory. Long short-term memory can learn and 
capture the long-term valuable information in time series data, so it has good performance in processing 
the classification task of time series text data. According to the results of many experiments, long short-
term memory network can maintain a high level of prediction accuracy in the classification task of time 
series text data. Compared with the previous recurrent neural network, long short-term memory 
performs better in the stability of prediction and can better cope with the fluctuation of test data. In 

general, long short-term memory performs well in processing long time series text data, and has strong 
performance and stability. It is especially suitable for the classification task of time series text data. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

300



 

 

3.4.  Gated Recurrent Unit Result 

 

Figure 33. GRU Model Train Loss [Matplotlib]. 

 

Figure 34. GRU Model Test Loss [Matplotlib]. 

The x-axis of both graphs represents the number of iterators fed to the gated recurrent unit. On the y-
axis, the figure 33 represents the training loss of gated recurrent unit, and the figure 34 represents the 
test loss of gated recurrent unit. From the graph, it can be clearly seen that during the entire training 
period, gated recurrent unit's training loss fluctuates significantly compared to previous LSTM, and is 
very unstable. Even in the later stages of training, the loss value at a certain moment exceeds 0.3. 
Training loss of GRU is difficult to control below 0.1, while the training loss of previous LSTM was 
between 0 and 0.1 for most of the experiment, indicating that the training loss value of GRU is 

significantly higher than that of LSTM. During the entire testing period, compared to LSTM, GRU 
experienced significant fluctuations in testing losses and was unstable. The testing loss of GRU is not 
easily controlled below 0.2, sometimes exceeding 0.2 or even reaching 0.4 in the later stages of testing, 
which was not seen in previous LSTM testing losses. The previous LSTM testing loss was between 0.1 
and 0.2 for most of the experimental time. 

 

Figure 35. GRU Model Test Set Accuracy [Matplotlib]. 

The index value of the y-axis represents accuracy, which represents the classification accuracy 
obtained by using the test set in the gated recurrent unit trained by the training set. The x-axis represents 
the number of iterators that have been fed to the neural network. According to the figure 35, with the 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

301



 

 

increasing of the number of iterators, gated recurrent unit's prediction accuracy on the test set becomes 
less stable. From the figure, it can be seen that although GRU maintained good accuracy according to 
the experiment, it was still very unstable. In the later stage of the experiment, the accuracy of GRU 
showed a significant decrease and then rebounded in the range of the number of iterators from 0 to 20 

and 80 to 100, and even dropped to a level below 0.86 in the range of 0 to 20. 
Although GRU, as a simplified version of LSTM, is efficient and time-saving in training neural 

networks, there are significant differences in prediction accuracy among neural networks trained 
multiple times. In contrast, LSTM performs better and more stably on time-series text data classification 
tasks. Through its internal gate structure, LSTM can effectively capture long-term information and keep 
long-term memory, resulting in better generalization performance when processing time series data. In 
summary, although GRU has efficient training performance, its overall generalization performance is 
not as stable and excellent as LSTM in time series text data classification tasks. Therefore, when 

selecting a neural network model suitable for processing time series data, LSTM is still a more reliable 
and effective choice. 

4.  Conclusion 
This paper discusses the extensive application of neural networks in the field of data analysis and 

processing in deep learning, with a particular focus on text classification. When addressing the task of 
time series structured text data classification, this paper establishes three neural network models: 
recurrent neural network, long short-term memory and gated recurrent unit, and utilizes Pytorch deep 
learning library for experimentation. Though recurrent neural network has generally good performance 
in processing task of time series structured text data classification, experimental results show the trained 
recurrent neural network cannot maintain stability and high classification accuracy when processing 
some text data with long-term dependency information because of its short-term memory defects. The 
problem of short-term memory exists in the recurrent neural network, which means that the recurrent 

neural network can only remember the memory information of the previous period of time. When 
encountering long-time series of text data, the recurrent neural network cannot handle the problem of 
text data with long-term memory dependent information. 

Long short-term memory performs best in the task of long time series structured text data 
classification, and has superior performance and stability. Because of its special structure, long short-
term memory can selectively remember information, retain valuable information, transfer it to the next 
moment, and forget some meaningless information, which makes long short-term memory have more 

advantages than recurrent neural network in processing long-term serial text data. According to the 
experimental results, although gated recurrent unit can save a certain amount of training time compared 
with long short-term memory, its stability is slightly inferior to long short-term memory, and its effect 
is between long short-term memory and recurrent neural network. It is obvious that the network model 
trained based on long short-term memory has the best classification accuracy among the three neural 
network models. However, in practical problems, datasets are usually diverse and affected by external 
factors, and there are a large number of noise points. Therefore, it is crucial to further study and explore 
how to select appropriate methods to improve the generalization ability and maintain high classification 

accuracy of the model when dealing with the task of text data classification. Therefore, when facing 
other problems and solving these practical problems, experts and scholars still need to spend time 
together to explore and study in depth, in order to deal with diverse datasets and complex external factors. 

References 

[1] Liu Hongpei Research on Chinese News Text Classification Based on Deep Learning [D]. 
Southwestern University of Finance and Economics, 2019. 

[2] Guo Hao Research and Implementation of a Text Emotion Analysis System Based on Neural 
Network Models [D]. Beijing University of Posts and Telecommunications, 2018. 

[3] Wan Qingling Text Analysis of Outbound Travel Commentary Based on Text-CNN and LSTM 
[D]. Zhongnan University of Economics and Law, 2020. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

302



 

 

[4] Wang Zhihui, Wang Xiaodong Research on Text Classification Methods Based on Neural 
Networks [J] Computer Engineering, 2020,46 (03): 11-17. 

[5] Cui Wei Analysis of the Factors Influencing Chinese Film Box Office and Production Level [D]. 
Jilin University of Finance and Economics, 2020. 

[6] Liu Ye Research on Hotel Intelligent Recommendation System Based on LSTM Model Analysis 
[D]. Shanghai Normal University, 2018. 

[7] Wu Juanjuan, Ren Shuai, Zhang Weigang, Wu Jing, Li Xiangyun A Daily Sales Forecast Method 
Based on LSTM Model [J] Computer Technology and Development, 2020,30 (02): 133-137. 

[8] Ding Peng Research on text classification and annotation of adverse drug reactions based on RNN 
[D]. Yunnan University, 2020. 

[9] Liu Yang Research on Time Series Prediction Based on GRU Neural Network [D]. Chengdu 
University of Technology, 2018. 

[10] Wang He Research on Financial Time Series Prediction Based on Text Analysis and LSTM [D]. 
Wuhan University of Technology, 2020. 

[11] Zhou Zhihua. Machine Learning [M]. Tsinghua University Press, 2016. 
[12] Wang Jingwen Empirical Analysis of Stock Prices Based on Recurrent Neural Networks [D]. 

Yunnan University, 2020. 
[13] Liu Yijiao Research on Stock Index Prediction Based on Trend Factor Preprocessing and 

Recurrent Neural Network [D]. Shandong University of Finance and Economics, 2019. 

[14] Zhang Yachao Research and Implementation of Text Classification Algorithms for Aerospace 
Intelligence [D]. Xidian University, 2019. 

[15] Chen Enhuan Multi scale Recurrent Neural Networks for Sequential Data Modeling [D]. South 
China University of Technology, 2020. 

[16] Hochreiter, S.,&Schmidhuber, J. (1997) Long short term memory Neural calculation, 9 (8), 1735-
1780. 

[17] Accurate occupancy detection of an office room from light, temperature, humidity, and CO2 

measurements using statistical learning models Luis M. Candanedo, V Ã © Ronique Feldheim 
Energy and Buildings Volume 112, 15 January 2016, Pages 28-39. 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/41/20230768

303


