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Abstract. Machine translation refers to the process of using computers to translate source 

language into target language, which has undergone significant transformations since its 

inception, with the current mainstream neural machine translation achieving satisfactory 

translation performance. This paper overviews the three developmental stages of machine 

translation: rule-based machine translation, statistical machine translation, and neural machine 

translation, with a focus on neural machine translation. It introduces the key models that emerged 

in the development process of neural machine translation, namely the recurrent neural network 

encoder-decoder model, recurrent neural network search model, and Transformer, and compares 

their strengths and limitations. Other relevant technologies and models developed alongside 

neural machine translation are also discussed. Addressing the current challenges of neural 

machine translation, the paper delves into issues of overfitting, low-resource translation, 

structural optimization of Transformer models, and enhancement of neural machine translation 

interpretability. Finally, the paper explores the prospects of applying neural machine translation 

to multimodal translation. 

Keywords: Machine Translation, Neural Machine Translation, Attention Mechanism, Model 

Training, Domain Adaptability. 

1.  Introduction 

The issue of translation between different human languages has always received considerable attention. 

People from diverse regions have variations in language and writing, creating a need for translation 

when they engage in social activities. Traditionally, human translators have handled translation work, 

ensuring high accuracy but requiring substantial time and effort. However, with increased global 

communication the demand for translation has grown exponentially, leading to the exploration of tools 

to aid in the process. Machine Translation (MT) involves using computers to translate the source 

language into the target language while preserving semantic equivalence. In 1949, Weaver proposed the 

concept of MT, suggesting the use of cryptographic methods to tackle the task of translating human 

languages [1].  

Early machine translation technology was based on rule-based methods. Rule-based Machine 

Translation (RBMT) relied on dictionaries and manually created rule sets to perform translations using 

a combination of rules [2]. However, this approach had limitations in coverage and was sensitive to 

noise in the rules or templates. As a result, MT was being questioned and entered a decline.  
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In the 1980s, as paper-based texts became digitized, there was an increase in computationally 

readable language data. This led to the possibility of using mathematical models to analyse and infer 

patterns from the data. In the 1990s, Brown et al. [3] introduced word alignment- based MT method. 

Statistical Machine Translation (SMT) emerged, using statistical models to automatically learn 

translation knowledge from language data without the need for manual rule creation. SMT quickly 

became a prominent approach in MT research and application. In 2006, the release of Google Translate 

as a free service marked the practical use of MT. 

With the development of deep learning, a new approach called Neural Machine Translation (NMT) 

has emerged. Kalchbrenner and Blunsom [4] introduced an encoder-decoder model using Convolutional 

Neural Network (CNN) and Recurrent Neural Network (RNN). Their work can be considered the 

beginning of NMT. Sutskever et al. [5] introduced the sequence to sequence (seq2seq) learning approach 

with Long Short Term Memory (LSTM) structures. Bahdanau et al. [6] pioneered the use of the attention 

mechanism in MT. Vaswani et al. [7] proposed the Transformer model which has become the dominant 

framework in NMT. To this day, the Transformer remains the mainstream architecture for NMT, with 

many state-of-the-art systems being variants of the Transformer [8-9]. In addition, the exploration and 

advancements in MT are ongoing. 

MT research has identified three key user demands. Firstly, it assists in reading foreign language 

materials and enables barrier-free communication. Secondly, it enhances human translation efficiency 

and cost-effectiveness through computer-assisted translation. Lastly, MT enables the processing of 

multilingual textual data through data analysis. Manual translation alone cannot handle large-scale 

translation tasks effectively, making MT the only viable solution. Thus, research in MT holds profound 

significance. 

This paper is divided into four sections. Firstly, it reviews the history of MT, tracing the evolution of 

translation methods from early stages to the present. Then, this paper places an emphasis on explaining 

the development journey of NMT, analysing the advantages and limitations of various NMT techniques. 

Next, this paper outlines the current challenges and problems that NMT is facing and discusses the 

existing solutions to them. Finally, a summarization of the main content is provided, along with a 

prospective outlook on the future of NMT.  

2.  Literature review 

Neco et al. [10] and Castano et al. [11] have previously attempted to utilize neural network technology 

in MT tasks. However, due to the limitations of computer processing power and available language 

resources at that time, these works did not receive much attention. Nevertheless, these works share 

similarities with many subsequent neural machine translation NMT methods. 

Kalchbrenner and Blunsom [4] introduced an encoder-decoder model using Convolutional Neural 

Network (CNN) and Recurrent Neural Network (RNN). Their work can be considered the beginning of 

NMT. However, this model did not demonstrate excellent translation performance. The most significant 

reason is the severe issues of gradient vanishing and gradient explosion encountered during the training 

process of the neural translation model [12-13]. 

Beyond machine translation tasks, word embeddings play a crucial role in the entire field of natural 

language processing (NLP). Word embedding refers to the process of transforming natural language 

into numerical representations embedded in a mathematical space. Mikolov et al. [14] introduced the 

Word2Vec method for training word embeddings using neural network models to obtain vector 

representations of words. 

To address the issues of gradient vanishing and gradient explosion in the model proposed by 

Kalchbrenner and Blunsom [4], Sutskever et al. [5] introduced the sequence to sequence (seq2seq) 

learning approach with LSTM structures. LSTM units are a variant of recurrent neural network (RNN) 

units, which introduced gating mechanisms to alleviate the problems of gradient vanishing and gradient 

explosion in neural networks. Unlike the neural machine translation model proposed by Kalchbrenner 

and Blunsom [4], the model proposed by Sutskever et al. [5] incorporates recurrent neural networks in 

both the encoder and decoder, hence referred to as RNNencdec.  
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The main issue with RNNencdec lies in the encoder part. During encoding, arbitrarily long source 

language sentences are mapped to a fixed-dimensional vector. This approach underutilizes the storage 

space and reduces efficiency for shorter source language sentences, while it fails to capture sufficient 

information from longer source language sentences. 

Luong et al. [15] were the first to introduce the attention mechanism in neural machine translation. 

Luong et al. proposed two models: a global approach, where all source words are attended, and a local 

approach, where only a subset of source words is considered at a time. 

Bahdanau et al. [6] introduced the RNNsearch model. By incorporating the attention mechanism in 

the decoder, the RNNsearch model dynamically calculates which information from the source language 

sentences is relevant at each decoding step, creating a real-time context vector. Compared to RNNencdec, 

which maps any source language sentence to a fixed-dimensional vector, RNNsearch offers stronger 

expressive power and resolves the issue of long-distance dependencies that existed in the past. 

In neural machine translation, algorithm optimization during training is also an important concern. 

Algorithm optimization refers to improving the training process to minimize the loss function. Diederik 

et al. [16] introduced the Adam optimization algorithm. In practical applications, the Adam method 

performs well, converges faster compared to other adaptive learning rate algorithms, and addresses 

certain issues present in other optimization techniques. 

Wu et al. [17] proposed Google s Neural Machine Translation (GNMT) system, which is built upon 

the RNNsearch model. Wu et al. compared the phrase based statistical translation model with the 

RNNsearch model of neural machine translation for six language pairs. The results showed that the 

neural machine translation model represented by RNNsearch achieved significant improvements in 

translation performance when trained on large-scale corpora. Since then, neural machine translation 

gradually replaced statistical machine translation and became the mainstream research direction in 

machine translation. However, the RNNsearch model also has limitations. LSTM operates sequentially, 

processing words in a sequence one by one, which makes the model less efficient. Additionally, due to 

the different distances that words need to propagate in a sequence, RNNsearch fails to fully exploit the 

texts information features. 

Due to the limitations of recurrent neural network models, researchers have attempted to use other 

neural network models to address machine translation tasks. Gehring et al. [18] proposed a model that 

is entirely based on CNN. Convolutional neural networks exhibit high parallelism, enabling the 

translation model to be trained in a fully parallel manner, greatly enhancing efficiency. 

Vaswani et al. [7] proposed the Transformer model which solely relies on attention mechanisms and 

eliminates the need for RNN and CNN. Vaswani et al. introduced variations of the attention mechanism, 

namely multi-head attention and self-attention, in the Transformer model. The advantage of the 

Transformer model lies in its use of simple matrix operations, which allows for high parallelization and 

overcomes the efficiency issues of RNNsearch. Additionally, through the multi-head attention 

mechanism, the Transformer model can better capture text information features. 

Integrating human prior knowledge with data-driven neural network methods is also an important 

research direction. The introduction of prior knowledge may help increase the interpretability of neural 

machine translation models and provide valuable information during translation. Gu et al. [19] proposed 

the Sequence to Doubly-Recurrent Neural Networks (Seq2DRNN) model, which incorporates syntactic 

tree structures in the decoder and introduces attention mechanisms specific to syntactic information. 

Wang and Xiong [20] proposed a simple method to incorporate predefined bilingual pairs into NMT, 

which does not require modifications to the decoding search algorithm or complex modifications to the 

model. 

Current neural machine translation models perform well on sentence-to-sentence translation tasks, 

but they still have limitations in handling document-level translation tasks. Miao et al. [21] suggested 

that document-level translation should be based on clauses rather than sentences. They supplemented 

neural machine translation models with clause knowledge by manually annotating clause alignments. 

They also introduced a multi-way coordination self-attention mechanism (MC-SefAtt) to enhance the 

encoder’s representation of the semantics of clause in the source language. 
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During training, neural machine translation models rely on large-scale parallel corpus data. In 

situations where parallel corpus data is limited, the translation quality of neural machine translation 

models can significantly decrease, sometimes even falling below that of statistical machine translation 

models. Therefore low-resource translation problems especially for language pairs with scarce or no 

parallel data, are important research areas. Zhu et al. [22] addressed this issue by using contextual 

information from monolingual data to learn the probability distribution of low-frequency words. Zhu et 

al. [22] then recalculated the word embeddings of low-frequency words based on this distribution and 

retrained the Transformer model, effectively alleviating the problem of inaccurate representation of low-

frequency words.  

3.  Discussion 

Although NMT has greatly improved translation quality compared to rule-based and statistical machine 

translation approaches, it still faces several challenges. Firstly, during training, NMT models encounter 

overfitting and the issue of co-adaptation of neural units. Secondly, NMT relies on data-driven methods, 

so it performs poorly in low-resource domains where data is scarce. Additionally, NMT models have 

complex mechanisms and structures, making it important to optimize the model architecture and 

incorporate prior knowledge. Lastly, enhancing the interpretability of NMT and enabling external 

intervention are essential concerns. These challenges significantly impact the overall effectiveness of 

NMT. The following sections will provide further discussion on these four aspects. 

Firstly, NMT models have complex structures and strong representation capabilities. However, since 

training samples are limited, the models tend to excessively adjust their parameters to fit the specific 

training data, resulting in poor generalization performance on much larger test sets. This phenomenon 

is known as overfitting. To address this, Szegedy et al. [23] proposed a type of regularization technique 

named Label Smoothing, which has also been applied in Transformer models [7]. Ideally, each neuron 

in an NMT model should contribute independently to the final translation prediction. However, with 

increasing neuron numbers and network complexity, the contribution of one neuron to the output 

becomes correlated with other neurons, leading to the phenomenon of co-adaptation. This phenomenon 

allows the neural network model to better capture patterns in the training data but also exacerbates 

overfitting. Dropout, introduced by Hinton et al. [24], is a commonly used method to mitigate overfitting. 

It randomly deactivates a portion of neurons during training to prevent overfitting caused by co-

adaptation. However, in the Transformer model, the effectiveness of Dropout is not very pronounced, 

and overfitting issues still persist in deep models. Fan et al. [25] proposed the method named Layer 

Dropout as an alternative. Unlike conventional Dropout, Layer Dropout randomly drops self-attention 

sub-layers or feed-forward neural network sub-layers during training to reduce co-adaptation between 

different sub-layers. This approach aims to alleviate overfitting in the Transformer model. 

Secondly, NMT models require a significant amount of parallel bilingual data for training. However, 

many language pairs lack sufficient parallel data, leading to the challenge of low-resource translation. 

Researchers have proposed various approaches to tackle this issue and improve the translation quality 

of NMT models under low-resource conditions. One approach is the utilization of semi-supervised 

methods. Sennrich et al. [26] introduced the back-translation method, which involves training a target-

to-source translation model using a small-scale parallel corpus. The target language monolingual data is 

then translated into the source language to create a large-scale pseudo-parallel corpus. The final NMT 

model for source-to-target translation is trained using a combination of the small-scale parallel corpus 

and the generated pseudo-parallel corpus. In addition, unsupervised approaches have been explored. 

Lample et al. [27] proposed an unsupervised NMT model based on autoencoders, where sentences are 

mapped to a latent semantic space and reconstructed using a decoder. Artetxe et al. [28] introduced a 

shared encoder unsupervised NMT model based on cross-lingual word embeddings. Ruiter et al. [29] 

employed self-supervised learning using non-parallel sentences with similar content as an auxiliary task. 

Transfer learning techniques have also been investigated. Zoph et al. [30] proposed a transfer learning 

approach for low-resource NMT, where an NMT model is initially trained on a high-resource language 

pair and then fine-tuned on the low-resource language pair. Gu et al. [31] explored the use of shared 
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encoder representations in multilingual NMT models to leverage information from high-resource 

language pairs. When parallel data is scarce between the source and target languages but abundant 

between each language and a third language, pivot-based methods can be employed. Cheng [32] 

suggested training separate translation models for the source-to-pivot and pivot-to-target directions. 

Leng et al. [33] applied pivot-based low-resource translation methods to unsupervised NMT models. 

Thirdly, the Transformer has become the most popular neural machine translation model. However. 

the structure of the Transformer itself presents several issues. On one hand, the attention mechanism in 

the Transformer disregards the positional relationships between input units, making it difficult for the 

Transformer to differentiate between local dependencies and long-range dependencies. Shaw et al. [34] 

attempted to address this by introducing relative positional information to emphasize local dependencies. 

Gulati et al. [35] replaced the self-attention mechanism in the Transformer with lightweight 

convolutional or dynamic convolutional networks in both the encoder and decoder while retaining the 

encoder-decoder attention mechanism, thereby enhancing the model’s ability to model local information 

to some extent. On the other hand, the attention mechanism increases the computational complexity, 

resulting in slow translation speeds when dealing with longer text sequences. One approach to tackle 

this issue is to limit the scope of the self-attention mechanism. Qiu et al. [36] proposed the method of 

chunk-level attention, which divides the sequence into fixed-sized segments, and the attention model 

operates only within the corresponding segment. Another approach involves allowing the model to learn 

the scope of the attention mechanism instead of predefining it. Kitaev et al. [37] introduced the Reformer 

model, which reduces the computational range of the attention mechanism by incorporating the locality-

sensitive hashing attention. In addition to modifications to the Transformer model, incorporating prior 

knowledge such as syntactic knowledge is also a research direction worth exploring. Translation 

examples have shown that current neural machine translation models often suffer from issues like over-

translation or incoherent translation due to their insufficient learning capacity on syntactic knowledge 

and semantic structures [38]. However, prior knowledge such as syntactic knowledge and bilingual 

dictionaries are typically indiscrete forms, making it crucial to investigate how to integrate such discrete 

knowledge into continuous representations of neural machine translation models. On one hand, one can 

consider incorporating syntactic knowledge from the source language. Eriguchi et al. [39] used syntactic 

tree structures in the encoder and employed a tree-structured recurrent neural network to encode the 

source language sentences. Chen et al. [40] integrated source language syntactic rules into both the 

encoder and decoder. This approach allows the attention mechanism to focus more on phrase level 

information, avoiding excessive attention on individual words and the problem of repetitive translations, 

ensuring translation coherence. On the other hand, one can consider incorporating syntactic knowledge 

from the target language. Aharoni and Goldberg [41] transformed the target language sentences into 

linear sequences based on syntactic trees. These sequences included words and syntactic structure tags 

of the target language sentences and were used to directly train a sequence-to-sequence model based on 

attention mechanism. Wu et al. [42] introduced an additional decoder in the decoder side to parse the 

generated translated sentence into a sequence of dependency structure information. The sequence 

representation of the generated translation on the dependency structure can serve as an additional input 

to guide the generation of subsequent translations. 

Fourthly, a notable concern in neural machine translation is the limited interpretability of the 

translation models. The high-dimensional real-valued vectors and numerous non-linear functions within 

the hidden layers of machine translation models make it challenging to comprehend the information 

contained within them. To achieve reliable and controllable machine translation systems, enhancing the 

interpretability of these models is crucial. Currently, there is significant research focusing on interpreting 

deep neural network models in machine translation. One approach involves investigating the influence 

of the internal structure of the models on their outputs. Voita et al. [43] analysed the roles of different 

attention heads in Transformer models and studied three attention functions: positional capturing 

semantic capturing, and low-frequency word capturing. Another approach is to design auxiliary tasks to 

examine whether the models can capture specific information. Dalvi et al. [44] proposed the linguistic 

correlation analysis task to interpret the linguistic information represented by specific dimensions in the 
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intermediate states of neural networks. They also introduced the cross-model correlation analysis task 

to identify the primary functioning units in machine translation models. In the context of Transformer 

models, Raganato and Tiedemann [45] discovered that the self-attention mechanism allows for the 

calculation of correlation coefficients between words in a sentence. These coefficients can be used to 

organize the sentence into a tree structure. In tasks with abundant training data, the extracted tree 

structure closely resembles the standard dependency tree. 

4.  Conclusion 

In the course of human civilization, translation between different languages has always been an 

important requirement. With advancements in technology, machine translation has demonstrated 

remarkable effectiveness in certain translation tasks and has emerged as a significant research direction. 

This paper provides an overview of the development of machine translation since 1949 and focuses on 

introducing NMT, which has become the mainstream approach since the 2010s. Subsequently, by 

reviewing the work of previous researchers, this paper attempts to analyse and compare the strengths 

and limitations of various NMT methods. Finally, the challenges faced by NMT and potential solutions 

are discussed. NMT builds upon the data-driven approach of statistical machine translation while 

introducing distributed representations for modeling textual sequences, offering a fresh perspective on 

translation. NMT has significantly improved translation quality and continues to be an active area of 

research and development in the field of machine translation. Moreover, the potential of NMT is still 

being explored, and it can be anticipated that research on NMT will continue in the coming years. 

However, NMT still faces several challenges and difficulties. These challenges can be categorized 

into four main aspects. Firstly, NMT models often suffer from overfitting during training. Secondly, 

low-resource translation remains a significant challenge. Thirdly, there is a need for structural 

optimization of the dominant Transformer models used in NMT. Fourthly, enhancing the interpretability 

of NMT systems is another important area of focus. Many limitations observed in NMT, such as 

discourse translation and issues of under translation or over translation, are related to these four aspects. 

In future research, apart from addressing the theoretical challenges mentioned above, considerations 

from an application perspective can also be vital. In practical applications, translation tasks involve not 

only textual data but also speech recognition or video information. This type of problem is known as 

multimodal translation. Exploring the integration of NMT techniques with technologies like speech 

recognition and image understanding is an essential research direction. It is believed that with further 

research and technological advancements machine translation will continue to provide greater assistance 

to human production and daily life. 
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