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Abstract. Computational power is measured in terms of the time required for resolutions. The 

faster, the better. Due to its physical implementation, the conventional computing device used 

currently in computers is reaching its limit in computational power, and an essential innovation 

is required in order to break this limit. Neuromorphic circuits, which is inspired by neurology 

and simulates human biological brain and have higher functional efficiency to consume less 

energy and perform highly complicated tasks, is introduced and developed. This paper explains 

the principles of neuromorphic computing, which is representing ions in the biological neural 

system with electron in the circuit and adopting capacitors and resistors as counterparts of 

cellular membranes of the neural cells and the ion channel respectively. This paper gives some 

examples of neuromorphic circuits developed by several different corporations and laboratories. 

Algorithms mentioned in a certain research is exemplified and explained. Comparison of the 

difference between conventional and neuromorphic circuits is given to emphasize the advantage 

of neuromorphic circuits over the conventional ones. Several possible applications in a range of 

fields are also provided to depict the future prospect of this technology, including artificial 

intelligence, statistical calculation and information analysis. The conclusion is that the 

neuromorphic computers will replace the conventional Von Neumann computers, boosting the 

further development in computing power, breaking its limit. 
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1.  Introduction 

Human brains have been researched for several centuries. Ever since the invention of the very first 

computing machines, the attempt to simulate biological brain has been continuing. Despite that, the 

principles of how biological neural system and electronical computer are distinctly different. Computers 

function precisely and fast yet brains are more specified in solving new, complex, ambiguous and 

practical problems. Engineers take inspiration from neurons, which are the basic component of 

biological brains, and apply their working principles on electronic circuits. This is known as 

neuromorphic computing.  

Different from an artificial neural network, which is achieved by pre-written programs that mimic 

human brains, neuromorphic computing requires physical simulation that is realized by constructing 

integrated circuits with artificial neurons.  

According to Moore’s law, the number of transistors on a microchip doubles every 18 months. [1] 

This has kept to be true for about half century due to that the size and price of CMOS has been decreasing 

and that the efficiency and speed has been increasing. Despite that, the production cost has also risen 
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exponentially with the number of transistors, preventing the corporations gain profit before the next 

generation of product is introduced.  

The advancement of microchip technology is driven by its widespread use in traditional computing 

applications. This is also accessible to neuromorphic systems. This phenomenon results in the 

enhancement of the size and functionalities of neuromorphic devices, however there is still a 

considerable distance to achieve a level of resemblance to biological systems. Consequently, the 

advancement of significantly large-scale neuromorphic systems is explored in this article. 

2.  Neuromorphic Computing Circuits 

2.1.  Principles of Neuromorphic Computing 

Neuromorphic computing, as its name suggests, takes its inspiration from neurons in a biological brain. 

In 1952 Hodgkin and Huxley studied about biological neurons and derived a mathematical model of its 

mechanisms which produces ‘spikes’.[2] The full biological neural system is shockingly complexed, but 

usually the mathematical models used will ignore some of its detail in order to build a physical projection 

which is a multiple-input-single-output system. Its input-output relationship can be described by several 

different mathematical functions. 

Most of the process in the brain took place in the synapse instead of the neuron cell themselves. 

Synapses are the connections between neurons, through which they transmit the informatic signals. They 

are also simplified into several mathematical formulations. The models employed in this study 

effectively reflect the phenomenon of synaptic plasticity, wherein the synaptic effectiveness is 

dynamically adjusted to enable the network to learn the statistical properties of the inputs. Additionally, 

these models also incorporate structural plasticity, which involves the reorganisation of neurons to 

facilitate the storage of more enduring memories. 

There is a large number of neurons and synapses in a mammalian brain. A human brain comprises 

85 billion neurons connected by 1015 synapses. 

In a synapse, signals are transmitted by passing ions through the membranes of neuron cells with 

some ionic channels connecting the two sides on them. In an electronic model, a capacitor is used to 

represent the membrane and a resistor connected parallel with it corresponds to the ionic channels. The 

ions are represented by the electrons.  

The biological brain adopts digital technique for short distance signaling and analog chemical 

technique for long distance signaling. This approach differs from all-digital design of conventional 

general-purpose computers. In biology brains the logics are stochastic in order to achieve high efficiency. 

[3][5][6] 

2.2.  Examples of Neuromorphic Circuits 

The IBM TrueNorth is developed using distributed digital neural models, which are anticipated to have 

real-time cognitive applications. 

The Stanford Neurogrid employs sub-threshold analogue digital circuits that operate in real-time. 

The Heidelberg BrainScaleS system utilises wafer-scale above threshold analogue brain circuits that 

operate at a speed 10,000 times faster than real-time biological processes. Its primary objective is to 

gain insights into biological systems and facilitate long-term learning. 

The Manchester SpiNNaker machine is a computational system consisting of many cores that 

operates in real-time. It is designed to execute neural and synapse models by utilising software on 

compact embedded processors. Additionally, its purpose is to simulate biological nerve systems. The 

user's text does not contain any information to rewrite. [3] 

2.3.  Current Researches 

The Institute for Neuroinformatics (INI) is renowned for its contributions to the field of neuromorphic 

computing. Notable areas of research at INI encompass the development of neuromorphic vision sensors, 

silicon cochlea, and medium-scale neuromorphic processors, such as the Reconfigurable On-Line 
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Learning Spiking (ROLLS) and cxQuad chips. The utilisation of subthreshold analogue circuits in the 

design of these devices is employed for the purpose of implementing spiking deep neural networks in 

display applications. Additionally, the circuit board is comprised of nine cxQuad chips and one ROLLS 

chip, which are visibly presented. The hierarchical convolution network is composed of cxQuad chips, 

each containing 1024 neurons and 65536 digital synapses. The classification layer is comprised of the 

ROLLS chip, which consists of 256 neurons and 128k analogue synapses. The technology in question 

exhibits reduced latency and power consumption compared to a conventional deep network operating 

on a large-scale digital cluster machine. 

Furthermore, numerous universities are engaged in research within this field. For instance, UCSD 

has undertaken studies involving the creation of 65536-neuron two-compartment integrate-and-fire 

transreceiver modules. These modules incorporate spike-driven continuous time analogue membrane 

dynamics and are interconnected through a Hierarchical Address Event Representation (HiAER) 

communications fabric. Additionally, other universities have explored the integration of analogue 

neuromorphic circuit. 

3.  Algorithms and Applications 

In order to facilitate the operation of a neuromorphic computer, it is necessary to develop a spiking 

neural network (SNN) that may be inputted into the computer. Spiking neural networks (SNNs) have 

computational characteristics that are reminiscent of biological neural systems. The majority of 

neuromorphic computers exhibit time-dependent characteristics in their implementation of neurons and 

synapses inside Spiking Neural Networks (SNNs). For instance, the phenomenon of spiking neurons 

involves the release of charges in accordance with a specific time constant. Additionally, both neurons 

and synapses exhibit a corresponding time delay. 

The implementation of algorithms for neuromorphic systems often necessitates the establishment of 

a Spiking Neural Network (SNN) that is tailored to a certain purpose. The algorithmic methodologies 

employed in neuromorphic systems can be classified into two distinct categories: those that include 

training or learning a spiking neural network (SNN) to be integrated with a neuromorphic computer, and 

those that utilise non-machine learning techniques to manually configure SNNs for specific tasks. The 

terms "training" and "learning algorithms" in this context pertain to methods that modify the parameters 

of a Spiking Neural Network (SNN) in order to address a specific problem. 

3.1.  Machine Learning Algorithms 

The proposed approach is a variant of backpropagation that utilises spike-based computations. The 

efficacy of backpropagation and stochastic gradient methods has been demonstrated in the context of 

deep learning. However, due to the non-differentiable nature of threshold functions in spiking neurons, 

these methods cannot be directly applied to spiking neural networks (SNNs). Furthermore, the temporal 

processing aspect of Spiking Neural Networks (SNNs) presents additional challenges in terms of 

training and learning for these methodologies. Algorithms designed for deep learning applications must 

be modified to accommodate Spiking Neural Networks (SNNs), which may result in a decrease in the 

accuracy of the SNN when compared to a comparable artificial neural network. 

Several techniques that are commonly employed in deep learning training involve the utilisation of 

a surrogate gradient and the implementation of a smoothed activation function for the purpose of 

computing error gradients and changing weights across successive layers. There are instances where the 

computation of the spike error gradient exhibits similarities to the classification performance achieved 

by state-of-the-art methods on the handwritten dataset provided by the Modified National Institute of 

Standards and Technology (MNIST). Efforts have been made to use the intrinsic temporal dimension in 

Spiking Neural Networks (SNNs) by applying training procedures that have been traditionally utilised 

for recurrent neural networks, albeit with some approximations. Techniques such as backpropagation 

via time and real-time current learning have been used to neuromorphic datasets, specifically the Spiking 

Heidelberg Digits (SHD) and the Spiking Speech Command (SSC) dataset, as evidenced by previous 

studies. 
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The process of creating a representation of a pre-trained deep neural network. Given the operational 

training mechanism of deep neural networks (DNNs), certain endeavours to suggest a neuromorphic 

resolution for a specific problem often commence by training a DNN and subsequently converting the 

network into a spiking neural network (SNN) for the purpose of inference. Several of these approaches 

have demonstrated state-of-the-art performance while potentially reducing energy consumption. This is 

achieved by employing aggregate computations over both multiply and aggregate computations in deep 

neural networks (DNNs) on commonly used datasets, including MNIST, Canadian Institute for 

Advanced Research (CIFAR)-10, and ImageNet. Many original conversion strategies employed weight 

normalisation or activation normalisation, or opted for average pooling instead of max pooling. 

Additional techniques have been employed to train deep neural networks (DNNs) in a constrained 

manner, aiming to gradually approximate the activation function of a spiking neuron through repeated 

processes. Stockl et al. (year) have proposed a novel mapping technique wherein Spiking Neural 

Networks (SNNs) utilise the Few Spikes neuron model (FS-neuron). This model enables the 

representation of complex activation functions with a maximum of two spikes. These models exhibit 

similarities to deep neural networks used for image classification tasks, but with a reduced number of 

time-steps per inference compared to previously demonstrated approaches. Certain applications 

demonstrated using neuromorphic hardware have implemented mapping techniques that were 

previously stated. Efficient performance of tasks such as keyword search, medical picture analysis, and 

object detection has been demonstrated on established platforms such as Loihi by Intel and TrueNorth 

by IBM. 

It is worth mentioning that the process of training a conventional deep neural network (DNN) and 

subsequently transferring it to neuromorphic hardware leads to a decrease in accuracy. This reduction 

in accuracy may be attributed not only to the transition from DNNs to spiking neural networks (SNNs), 

but also to the inherent characteristics of the neuromorphic hardware. The utilisation of neuromorphic 

hardware systems using developing hardware devices like memristors can frequently result in reduced 

precision of the synaptic weight values they are capable of achieving, as well as potential cycle-to-cycle 

device volatility. When developing a mapping technique, it is imperative to take into account the 

potential impact of certain properties on the inference performance of a mapped network. Moreover, 

algorithms that employ deep learning techniques for training spiking neural networks (SNNs) sometimes 

fail to fully exploit the intrinsic computing capabilities of SNNs. Consequently, adopting such 

approaches restricts the potential of SNNs to the achievements already demonstrated by conventional 

artificial neural networks. To illustrate, the majority of gradient-descent style algorithms, including 

mapping methodologies, do not prioritise the temporal dimension of spiking neural network (SNN) 

processing. 

3.2.  Reservoir computing 

Reservoir computing, alternatively referred to as liquid state machines, represents another frequently 

employed approach in several domains. The approach introduces a sparse recurrent spiking neural 

network (SNN) that is denoted as a function referred to as "liquid" or "reservoir". Typically, this fluid 

is characterised in an arbitrary manner, although it must possess two essential attributes: input 

separability, which necessitates distinct inputs yielding distinct outputs, and fading memory, which 

mandates that signals within the reservoir do not perpetually propagate but rather diminish over time. In 

addition to the non-drained liquid component, a reservoir computing methodology encompasses a 

readout mechanism, typically a linear regression model, which is trained to discern and interpret the 

output generated by the reservoir. One notable benefit of this approach is its inherent capability to 

operate without requiring any training of the Spiking Neural Network (SNN) component. Reservoir 

computing in spiking neural networks (SNNs) employs sparse and recurrent connections, incorporating 

synaptic delays, within networks of spiking neurons. This approach facilitates the transformation of 

inputs into a higher dimensional environment that is characterised by both temporal and spatial 

dimensions. Certain instances of spike-based reservoir computing have demonstrated their efficacy in 

the processing of time-varying data. Different iterations of this computational framework have 
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progressed from basic reservoir networks utilised for bio-signal processing and prosthetic control 

purposes to incorporating hierarchical layers of liquid state machines, which are a specific type of 

reservoir network. These layers are interconnected and trained specifically for video and audio signal 

processing applications. 

3.3.  Evolutionary approaches 

These methodologies have also been employed for the training or design of SNNs. In the context of this 

specific technique, a population is generated by creating a random assortment of potential solutions. 

Every individual inside the population undergoes an assessment process where they are issued a 

numerical value referred to as a score. This score is subsequently utilised in the selection and 

reproduction stages to generate a new population. In the present context, evolutionary methodologies 

can be employed to determine the optimal parameters of the Spiking Neural Network (SNN), including 

neuron thresholds and synaptic delays, as well as the network's structure, encompassing the number of 

neurons and their interconnections via synapses. These methods are considered advantageous as they do 

not necessitate the presence of differentiability in the activation functions, nor do they depend on any 

specific network configuration. The network's structure and parameters can also undergo evolution as a 

result of these mechanisms. One drawback of evolutionary approaches is their more slower convergence 

compared to alternative methods. These methodologies have predominantly been employed in control-

oriented contexts, such as video game development and the implementation of autonomous robot 

navigation systems. 

3.4.  Plasticity 

Researchers have revealed that the modification of synaptic length, which is influenced by the activity 

of the interconnected neurons, has been proposed as a potential mechanism for learning in various 

activities. Spike-timing-dependent plasticity (STDP) is a widely studied synaptic plasticity mechanism 

in the field of neuromorphic literature. It functions by modifying the synaptic weights based on the 

relative timing of spikes between pre- and post-synaptic neurons. Various mathematical formulations 

pertaining to this topic are exemplified using the MNIST, CIFAR-10, and ImageNet datasets. Shresta et 

al. introduced a modified version of the exponential spike-timing-dependent plasticity (STDP) rule that 

is compatible with hardware. However, it should be noted that the classification performance on the 

MNIST dataset was not as high as the top-performing results achieved by spiking neural networks 

(SNNs). The resemblance between STDP-style rules and some machine learning methodologies, such 

as clustering and Bayesian inference, has been demonstrated in previous studies. STDP has been 

demonstrated as a spike sorting mechanism within the brain, functioning as a clustering mechanism. 

The integration of spiking reservoirs and spike-timing-dependent plasticity (STDP) has been employed 

inside a neural network framework known as NeuCube. This technique has been successfully utilised 

for the analysis of electroencephalograms and functional magnetic resonance imaging signals. 

Specifically, applications such as sleep state detection and prosthetic controllers have benefited from 

the implementation of NeuCube. 

Recurrent spiking neural networks (SNNs) that incorporate delays and synaptic plasticity represent 

a broader category of models suitable for simulating dynamical systems. One example is the utilisation 

of polychronization networks in various spatio-temporal classification problems. Winner-take-all 

models have been demonstrated to enhance the classification capacity of recurrent spiking neural 

networks (SNNs). In order to accommodate the temporal component of Spiking Neural Networks 

(SNNs), some learning algorithms have been developed with the objective of producing singular or 

multiple spikes at specific time intervals. These methods have found utility in various classification 

tasks. The majority of these algorithms also depend on the spike representation employed to encode the 

input signals, which include spike rates, latency, and neuron population. 

Non-machine learning algorithms refer to a class of algorithms that do not rely on the principles and 

techniques of machine learning. These algorithms are designed to solve computational problems by 

following a A prevalent category of algorithms that have been adapted for neuromorphic 
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implementations is derived from graph theory. Neuromorphic computers operate on a directed graph 

structure. Consequently, if a compatible graph is available, it may be seamlessly integrated into the 

neuromorphic system, allowing for the identification of its inherent features using spike raster analysis. 

Neuromorphic computing was utilised in conjunction with graph theory to analyse the propagation of 

the COVID-19 epidemic. [4][5][6] 

4.  Comparison 

In contrast to traditional von Neumann computers, which consist of distinct central processing units 

(CPUs) and memory units where both data and instructions are stored, neuromorphic computers employ 

neurons and synapses to govern both processing and memory functions. with the context of 

neuromorphic computers, programme definition is contingent upon the configuration of the neural 

network and its associated parameters, whereas with von Neumann computers, programmes are 

comprised of explicit instructions. Furthermore, in von Neumann computers, information is encoded 

through the use of numerical values that are represented by binary numbers. On the other hand, 

neuromorphic computers take input in the form of spikes, wherein the timing, size, and shape of these 

spikes are employed to encode numerical information.  

Compared to conventional computing, it exhibits higher energy efficiency. The conversion between 

binary data and spikes is a subject of ongoing research, as the precise methodology for achieving this 

transformation remains an active topic of investigation. 

In addition, there are other notable distinctions. 

The operation of neuromorphic computers is characterised by a high degree of parallelism, wherein 

all neurons and synapses can simultaneously perform their respective functions. However, as 

comparison to von Neumann computers operating in parallel, the computations performed by neurons 

and synapses are very straightforward. 

The concept of collocated processing and memory is observed in neuromorphic hardware, where the 

distinction between neurons as processing units and synapses as memory units is not always clear-cut. 

In the majority of cases, both neurons and synapses exhibit characteristics of both processing and 

memory functions. This approach aids in mitigating the von Neumann bottleneck, a phenomenon that 

arises from the inherent separation between the processor and memory components, resulting in a 

limitation on the maximum achievable throughput. Furthermore, this particular collocation serves the 

purpose of mitigating data accesses from primary memory, as this action often consumes a substantial 

amount of energy in comparison to computational energy in traditional computing systems. 

The concept of inherent scalability pertains to the ability to expand the capacity of neuromorphic 

chips by incorporating a greater number of neurons and synapses than currently feasible. Multiple 

physical neuromorphic devices have the potential to be integrated and function as a unified hardware 

system, hence enabling the formation of expanded networks. This achievement has been successfully 

demonstrated on multiple occasions, exemplified by the SpiNNaker and Loihi systems. 

Event-driven computation is a computational paradigm wherein the processing of information by 

neurons and synapses occurs exclusively when there are spikes, resulting in temporally sparse activity. 

This approach enables great efficiency in computational operations. 

Stochasticity refers to the presence of inherent unpredictability in neuromorphic computers, where 

the firing of neurons introduces a certain level of noise. This does not present in conventional computers. 

[4] 

5.  Conclusion 

It is very probably that neuromorphic computers would replace the traditional computers after its 

technology is advanced enough that its cost will be reduced and mass production of neuromorphic chips 

is possible, boosting functionality of all types of electronic devices and leading science technology into 

a next new era. 

In the future the computer systems may adopt the stochastic logic inspired by biological brains. For 

example, the robot sensor systems, where absolute accuracy is not achievable, and energy efficiency is 
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necessary. The neural and synapses within brains of humans of different ages can be studied to find out 

the optimum state of the biological neural system, and inspire neuromorphic hardware of higher level. 
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