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Abstract. Deep hashing methods have gained popularity in image retrieval due to their 
advantages such as low storage requirements and high efficiency. However, existing deep 
hashing methods for large-scale image retrieval tasks suffer from issues including low 
discriminative power of binary hash codes, difficult optimization of losses, and low retrieval 
accuracy. This paper proposes a single-loss hash image retrieval method based on an improved 
visual transformer to address these issues. The proposed method utilizes a pre-trained Vision 
Transformer (ViT) on ImageNet as the backbone network, augmented with a hash coding layer 
to extract image features more comprehensively. Additionally, we design a single learning 
objective loss function that addresses the discriminative power of hash codes and quantization 
errors, thereby eliminating the complexity of adjusting various loss weights. Experimental 
evaluations on ImageNet100, NUS-WIDE, CIFAR10, and MS-COCO datasets demonstrate the 
superior performance of the proposed method compared to contemporary methods, indicating its 
adaptability to diverse data. 
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1.  Introduction 
In image retrieval tasks, the hash features extracted by deep neural networks possess advantages such 
as high storage efficiency and fast querying speed, attracting widespread attention from researchers [1-
2]. Currently, image hashing retrieval methods primarily rely on supervised deep learning techniques 
for representation learning [3]. These methods combine the strengths of deep learning and hashing 
learning, enhancing retrieval accuracy while maintaining retrieval efficiency. In recent years, significant 
progress has been made in deep hashing methods [4] compared to traditional hashing methods [5], with 
deep hashing methods allowing for grouping based on the similarity measure of hash codes. This implies 
that deep hashing methods represent a new research direction for large-scale problems [6]. 

This paper proposes a single-loss hash image retrieval method based on an improved visual 
transformer. The method leverages a pre-trained ViT [7] model to extract features from input images 
and utilizes an additional hash coding module to fine-tune the backbone network for more 
comprehensive feature extraction. Simultaneously, we design a single learning objective loss function 
that maximizes the cosine similarity between continuous codes and binary codes to maximize the inter-
class Hamming distance, while minimizing quantization errors. The experimental results on public 
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datasets demonstrate the significant advantages of the proposed method compared to other advanced 
hash image retrieval methods. 

2.  Related Work 

2.1.  Binary Optimization 
Hashing is an NP-hard binary optimization problem [8], and due to the discrete and non-differentiable 
nature of binary hash functions, the problem of gradient vanishing often arises during model training. 
Early methods attempted to alleviate the gradient vanishing problem by abandoning discrete constraints 
[9], while some methods used gradient descent for training [10] in an effort to overcome the issue. 
However, these methods required balancing hyperparameters between different learning objectives, 
increasing the complexity of model learning. To address the issue of gradient vanishing and simplify 
the model complexity, Su et al. proposed the concept of Greedy Hash [11], which involved designing a 
new encoding layer that generates binary hash codes using a sign function during forward propagation 
and utilizes a straight-through estimator [12] for gradient backpropagation during optimization. 
However, this method resulted in high losses, exacerbating the difficulty of model learning. Li et al. [13] 
designed a parameter-less encoding layer, Bi-half, maximizing bit capacity by shifting the network 
output using the median. However, these methods often required modifications to the computation graph, 
making the original graph no longer end-to-end trainable, thereby increasing the complexity of 
optimization objectives. To address these issues, we propose a single learning objective loss function to 
eliminate the problem of gradient vanishing and reduce the complexity of model learning, further 
enhancing the retrieval performance of the model. 

2.2.  Cosine Similarity 
While most current work focuses on image hashing with various constraints, this paper rephrases the 
problem of deep hashing under cosine similarity, inspired by Zhang et al. [14], who utilized cosine 
similarity to find the closest approximations between binary and ternary representations. This paper uses 
cosine similarity to interpret quantization errors. Additionally, deep hypersphere embedding learning 
methods (such as SphereFace, CosFace, and ArcFace) impose discriminative constraints on hypersphere 
manifolds and propose improving decision boundaries by utilizing cosine or angular margins. Inspired 
by the above, we utilize the concept of decision boundaries in the loss function to further improve intra-
class variance, minimizing intra-class Hamming distance while maximizing inter-class Hamming 
distance. 

3.  Model Architecture 
This paper introduces an improved visual Transformer model that can be trained end-to-end. By utilizing 
a pre-trained ViT model as a universal feature extraction module, the model removes the MLP module 
and replaces it with a hash coding module to fine-tune the main network for comprehensive feature 
extraction. 

The overall process of the model is as follows: first, the input image 𝐗 = {𝐱!}!"#$ ℝ$×& (where d is 
the dimension of the retrieved image and N is the number of training samples) is fed into the backbone 
network to obtain continuous code 𝐕 = {𝐯!}!"#$ ∈ ℝ$×' (where K is the number of binary encoding 
bits). Subsequently, the zero-mean continuous code is obtained through batch normalization in the hash 
coding layer, and the scaled cosine similarity between the continuous code and its binary orthogonal 
target 𝐨( ∈ [𝐨#, ⋯ , 𝐨)]* = 𝐎 ∈ {−1,+1})×' is computed, where C is the number of classes. Finally, 
the scaled cosine similarity serves as the model output and is fed into the cross-entropy loss for forward 
propagation and backward derivation. 
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4.  Loss Function Design 

4.1.  Expressing Hamming Distance as Cosine Similarity 
Calculating the Hamming distance between binary codes 𝐛( and 𝐛+ is accomplished using the logical 
XOR operation. If b is represented by {−1,+1}', the Hamming distance can also be mathematically 
computed as follows: 

 𝐷5𝐛( , 𝐛+6 =
',𝐛!

"𝐛#
.

 (1) 

The dot product 𝐛(*𝐛+can be reinterpreted from a geometric perspective as: 

 𝐛(*𝐛+ =∥ 𝐛( ∥∥ 𝐛+ ∥ cos 𝜃(+ (2) 

where ∥⋅∥ denotes the Euclidean norm, 𝜃(+  represents the angle between 𝐛(  and 𝐛+ . As both ∥
𝐛( ∥and ∥ 𝐛+ ∥	are constants, equation (1) can be represented as: 

 𝐷5𝐛( , 𝐛+6 =
',/0123!#

.
= '

.
51 − cos 𝜃(+6  (3) 

Due to '
.
 being a constant, we observe that the current retrieval will be based solely on the angle 

between the two hash codes, indicating that similar hash codes will have similar directions, resulting in 
smaller angles and consequently smaller Hamming distances. 

Typically, the conversion of continuous codes v into binary codes b leads to information loss, also 
known as quantization error. Consequently, most existing hashing methods include quantization error 
minimization in their learning objectives, such as L1 norm, L2 norm, and p norms (e.g., p = 3 in Greedy 
Hash), generally expressed as: 

𝑚𝑖𝑛𝐿 + 𝜆𝑄		 

where L represents supervised learning objectives such as Cross Entropy and Q denotes the quantization 
error between v and b. However, controlling the scale λ is difficult, with low λ potentially being 
ineffective and high λ leading to underfitting. To overcome this cumbersome practice, this study first 
offers a geometric explanation of quantization error: 

 𝑚𝑖𝑛 ∥ 𝐯 − 𝐛 ∥.       b ∈ {−1,1}
' (4) 

where v is in continuous space and 𝐛 = sgn	(𝐯) is in binary space. Expanding equation (4) yields: 

 ∥ 𝐯 − 𝐛 ∥.=∥ 𝐯 ∥. +∥ 𝐛 ∥.− 2 ∥ 𝐯 ∥∥ 𝐛 ∥ cos 𝜃45 (5) 

From equation (5), it can be seen that retrieval is based solely on the similarity of the two hash code 
directions. Therefore, we can ignore the magnitude of v, normalize it to have the same norm as b, i.e., 
∥v∥=√K, and interpret the quantization error solely as the angle θ_vb between v and b. 

 ∥ 𝐯 − 𝐛 ∥.= 2𝐾 − 2𝐾 cos 𝜃45 = 2𝐾(1 − cos 𝜃45) (6) 

As 2𝐾 is a constant, we can conclude that maximizing the cosine similarity between v and b will 
lead to lower quantization error, thereby achieving better approximations in the hash codes. 

4.2.  Discriminative Hash Codes with Orthogonal Targets 
Using the random hyperplane technique, under a hash function family F, the probability that two samples 
𝐱( and 𝐱+have the same hash code can be described as Pr6∈ℱ 	[ℎ(𝐱() = ℎ(𝐱+)] = 1 − 3!#

9
, where h(.) is 

a hash function and 𝜃(+ is the angle between 𝐱( and 𝐱+. Therefore, based on the same principle, it can 
be deduced that if two continuous codes 𝐯( and 𝐯+ from the hidden layer H have high cosine similarity, 
then the hash codes b_i and b_j should also have a high probability of having high cosine similarity. 
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Additionally, cosine similarity can be further optimized for retrieval performance by representing it as 
the quantization error between continuous codes and hash codes. 

Considering these two cases, we propose to maximize the cosine similarity between the continuous 
code 𝐯! and its corresponding binary orthogonal target, 𝐨:$ ∈ [𝐨#, ⋯ , 𝐨)]* = 𝐎 ∈ {−1,+1})×'. This 
can be achieved by maximizing the posterior probability of the true class through the cross-entropy loss, 
as shown in equation (7): 

 𝐿 = − #
$
∑ .$
!"# log	

;<=(𝐨%$
" 𝐯$)

∑ .&
!'( ;<=	(𝐨!

"𝐯$)
 (7) 

where 𝐯!	 represents the deep-layer continuous encoding of the nth sample of 𝐨:$ , and  𝐨( ∈ 𝐎 
represent the true class of the binary orthogonal target and the true value y_n, respectively. For simplicity, 
by omitting the bias term in equation (7), under the deep hypersphere embedding framework, the 
transformation 𝐨(*𝐯! =∥ 𝐨( ∥∥ 𝐯! ∥ cos	 𝜃!(  is obtained, where 𝜃!(  is the angle between the 
continuous code v_n and the binary orthogonal target 𝐨(. Next, 𝐯! is L2 normalized to have ∥ 𝐯! ∥=
1, ∥ 𝐨( ∥ = √𝐾, since it is in binary form. Consequently, the loss function can be rewritten as: 

 𝐿 = − #
$
∑ .$
!"# log	

;<=(√'012	 3%$)
;<=	(√'012	 3%$)F∑ .&

!'(,!*%$ ;<=	(√'012	 3$!)
 (8) 

Thus, the method proposed in this study does not introduce quantization error minimization in the 
learning objective but unifies the learning objective and quantization error minimization under a cosine 
similarity minimization objective. Moreover, as the binary orthogonal target achieves the maximum 
inter-class Hamming distance and our loss function also aims to minimize intra-class error by utilizing 
the cosine similarity, further minimizing the within-class variance. The method proposed in this study 
can perform end-to-end training, learning highly discriminative hash codes without the need for complex 
training objectives and computational graph modifications. 

5.  Experiments 

5.1.  Dataset Settings 
To evaluate the retrieval performance of our method, we used four widely applicable datasets for image 
retrieval. The CIFAR10 dataset consists of 60,000 images across 10 categories. The ImageNet dataset 
is a subset of the Large-Scale Visual Recognition Challenge (ILSVRC 2015). We utilized the standard 
retrieval protocol [15] on the ImageNet dataset and evaluated images from 100 of the most common 
categories, with query, training, and retrieval sets containing 5,000, 10,000, and 128,495 images, 
respectively. NUS WIDE is a multi-label image dataset, from which we selected images from 21 of the 
most common categories for evaluation, with the query, training, and retrieval sets containing 2,040, 
10,000, and 149,685 images, respectively. The MS-COCO dataset consists of 80 categories, with the 
query, training, and retrieval sets containing 5,000, 10,000, and 117,218 images, respectively. 

5.2.  Network and Training Settings 
The model batch size was set to 32, with 50 epochs using the Adam optimizer and a learning rate of 
0.001. We applied the cosine annealing algorithm for learning rate optimization. The experiments 
utilized a pre-trained Visual Transformer (ViT) model, with the main network weights pre-trained on 
ImageNet. The hash codes generated by the hashing algorithm had lengths of 16, 32, and 64 bits. Testing 
was performed every 10 epochs, with the best results reported. The Mean Average Precision (MAP) 
across all categories was employed as the evaluation metric. 

5.3.  Comparative Experiments 
To validate the effectiveness of the proposed method, we compared it with various hashing learning 
methods, including shallow model-based hashing methods and deep learning-based hashing methods. 
The shallow methods were ITQ-CCA, BRE, KSH, and SDH. The deep methods included CNNH, 
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DNNH, DHN, HashNet, DCH, GreedyHash, CSQ, DPN, and OrthoCos. According to Table 1, our 
method exhibited superior MAP performance results for 16, 32, and 64-bit hash codes across the four 
mainstream datasets. This indicates that our method demonstrates better performance and effectiveness 
in image retrieval tasks. 

Table 1. Comparison of MAP for Different Bit Hamming Rankings in Image Retrieval 
Method MSCOCO ImageNet100 CIFAR10 NUS WIDE 

16  32 64 16  32  64  16  32  64  16  32  64  
ITQ-CCA 0.56 0.56 0.50 0.26 0.43 0.57 - - - 0.43 0.43 0.43 
BRE  0.59 0.62 0.63 0.06 0.25 0.35 - - - 0.48 0.52 0.54 
KSH 0.52 0.53 0.53 0.16 0.29 0.39 - - - 0.39 0.40 0.39 
SDH 0.55 0.56 0.58 0.29 0.45 0.58 - - - 0.57 0.59 0.61 
CNNH 0.55 0.56 0.58 0.31 0.47 0.59  - - 0.65 0.65 0.64 
DNNH 0.64 0.65 0.64 0.35 0.52 0.61 - - - 0.70 0.73 0.75 
DHN 0.71 0.73 0.74 0.36 0.52 0.62 - - - 0.71 0.75 0.77 
DCH 0.75 0.80 0.82 0.65 0.73 0.75 - 0.66 0.67 0.77 0.79 0.81 
HashNet 0.74 0.77 0.78 0.62 0.70 0.73 0.64 0.67 0.68 0.66 0.69 0.71 
GreedyHash 0.67 0.72 0.74 0.62 0.66 0.68 0.78 0.81 0.81 0.77 0.79 0.81 
CSQ 0.79 0.83 0.86 0.85 0.86 0.87 0.84 0.83 0.85 0.81 0.82 0.83 
DPN 0.71 0.80 0.85 0.61 0.69 0.73 0.77 0.80 0.81 0.84 0.85 0.82 
OrthoCos 0.70 0.78 0.79 0.61 0.67 0.71 0.85 0.87 0.89 0.80 0.83 0.85 
Ours 0.80 0.84 0.88 0.90 0.91 0.92 0.95 0.96 0.97 0.78 0.84 0.85 

5.4.  Ablation Experiments 
o verify the effectiveness of the feature extraction module and the loss module in our approach, we 
replaced the feature extraction module with AlexNet, ResNet50, and VGG modules in the model. We 
conducted experiments on the ImageNet100 dataset (using 64-bit encoding) and the CIFAR10 dataset 
(using 64-bit encoding), using MAP as the performance metric, as shown in Table 2. To evaluate the 
efficacy of the loss function, while keeping other model modules unchanged, we replaced the loss 
function module with Softmax and CrossEntropy modules, respectively, instead of the loss function 
module designed in this study. We conducted experiments and compared the results on the ImageNet100 
dataset (using 64-bit encoding) and the CIFAR10 dataset (using 64-bit encoding) using MAP as the 
performance metric, as shown in Table 2. 

Table 2. Comparison of MAP with Replaced Feature Extraction Module 

Dataset Feature Extraction 
Module MAP Loss Function MAP 

 
 

ImageNet100 

AlexNet 0.61 Softmax Loss 0.87 

ResNet50 0.88 Cross Entropy 
Loss 0.89 

VGG 0.85 Ours 0.92 
Ours 0.92 / / 

 
 

CIFAR10 

AlexNet 0.78 Softmax Loss 0.95 

ResNet50 0.90 Cross Entropy 
Loss 0.93 

VGG 0.84 Ours 0.97 
Ours 0.97 / / 

5.5.  Visualization 
To visually demonstrate the effectiveness of our model, we utilized the confusion matrix method to 
visualize the experimental results of the model on the CIFAR-10 dataset (with encodings of 16, 32, and 
64 bits). In the confusion matrix, shades of blue represent the accuracy of identification, with the color 
depth directly proportional to the model's recognition accuracy. The horizontal direction represents the 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/43/20230850

304



 

 

predicted labels of the samples, while the vertical direction represents the true labels of the samples. The 
results are depicted in Figure 3, and a comprehensive analysis of the model's output prediction accuracy 
indicates a satisfactory performance. 

 
Figure 1. Confusion matrix for results on CIFAR-10 

6.  Conclusion and Future Work 
We proposed a unified training objective for deep hashing under a single classification target. It was 
demonstrated that this could be achieved by maximizing the cosine similarity between continuous codes 
and binary orthogonal targets under cross-entropy loss. To this end, we first redefined the deep hashing 
problem through the lens of cosine similarity and then demonstrated that end-to-end training of deep 
hashing is feasible without any additional complex constraints if we perform L2 normalization on the 
continuous codes. As part of future work, we are exploring how to use hash codes through unsupervised 
learning to improve retrieval performance by learning better feature representations. 
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