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Abstract. This paper delves into the discussion of time-memory trade-off techniques in the field 

of cryptanalysis. The method was initially introduced by Hellman in 1980, subsequently, DP 

trade-off, rainbow trade-off, and checkpoint trade-off have been proposed to enhance the 

efficiency of cryptographic attacks. This paper elaborates on the concept of rainbow trade-off 

and their variants and presents optimizations in terms of storage and runtime speed for time-

memory trade--off methods. Ingenious storage optimization significantly reduces the storage 

overhead of pre-computed tables, and the rapid advancement of implementation platforms 

achieves speed optimization for the online phase. Through these optimization measures, time-

memory trade-off methods exhibit even more remarkable performance in practical applications. 

For researchers and practitioners in the field of cryptography, the content of this paper provides 

valuable references and insights for their work. 
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1.  Introduction 

In today's context, many systems require password authentication to access a significant portion of their 

internal content. These systems typically rely on password-hashing techniques. This technology 

involves subjecting passwords to one-way function calculations. The definition [1] is that given an input, 

computing its function value is straightforward, but computing the input from a function value is 

challenging. In such systems, the hashed values of passwords are commonly stored. When a user logs 

in, the newly inputted password undergoes a one-way function calculation, which is then compared to 

the stored hashed value within the system. 

Any cryptographic analysis problem can be understood as the process of reversing a one-way 

function, which involves finding the input to a given one-way function. Let f: X→Y be an arbitrary one-

way function. In conventional approaches, there are two methods to reverse a one-way function. Given 

target y=f(x)∈Y, we can exhaustively try all possible values of x until we find x’∈X that satisfies 

f(x’)=y, referred to as an exhaustive method. The second method involves precomputing (x, f(x)) pairs 

and storing them in a table. Given a target x, the corresponding f(x) can be directly looked up in the table, 

known as the look-up table method. Time-memory trade-off methods lie between the exhaustive method 

and the look-up table method. They offer shorter search time compared to the exhaustive method and 

occupy less storage space than the look-up table. 

In summary, this paper explores the advancements in cryptographic attacks, particularly focusing on 

time-memory trade-off methods. The research aims to comprehensively delve into the underlying 
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concepts of these methods, providing a concise overview and discussing optimization strategies. This 

study contributes to a deeper understanding of these techniques, enabling more effective solutions to 

cryptographic analysis challenges and enhancing support for system security strategies. 

2.  Time-Memory Trade-Off 

2.1.  Relevant Concepts 

2.1.1.  Reduction Function 

Assuming F is a one-way function from space N to space H, and R is a reduction function from space H 

to space N, then we have G(x)=R(F(x)), where G is a one-way function from space N to N. The role of 

a reduction function [2] in time-memory trade-off algorithms is to map a value from one space to another. 

Typically, it is implemented using the modulo operation: R(y)=y mod N. 

2.1.2.  Two Phases 

Time-memory trade-off algorithms consist of two phases [3]: the pre-computation phase (offline phase) 

and the online phase. The pre-computation phase involves generating the precomputation table by 

creating precomputation chains according to specific rules. The starting and ending points of these 

precomputation chains are saved to form the precomputation table. The online phase is the actual attack 

phase, which includes three components: generating precomputation chains, collision detection, and 

precomputation chain reconstruction. 

2.1.3.  False Alarm 

After finding a matching endpoint during the online phase, the reconstruction of the precomputed chain 

needs to start from the beginning. If the currently generated chain merges with a chain that does not 

contain the key K, there is a chance that after the chain reconstruction, the key K might not be found. 

This situation is referred to as a false alarm [4]. 

2.2.  Hellman Trade-Off 

In 1980, Hellman introduced a classic time-memory trade-off method [5] for attacking the Data 

Encryption Standard (DES) algorithm, a symmetric-key block cipher. The Hellman trade-off involves a 

pre-computation phase wherein m distinct starting points are chosen from the key space, denoted as S1, 

S2, S3, …, Sm. These starting points undergo t rounds of the DES's G function calculations, resulting in 

final values known as endpoint values: E1, E2, E3, ..., Em. The mt nodes in the computation paths form a 

Hellman matrix. The key-value pairs of the starting and ending points are preserved as entries in a 

precomputed table, referred to as the Hellman table. Figure 2-(a) depicts the structure of the Hellman 

matrix generation during the precomputation phase.  

 
（a）                                                                        (b) 

Figure 2. Schematic of the Hellman Matrix and Rainbow Matrix. 
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Within the framework of the Hellman trade-off, we assume the presence of m table entries in each 

table, with each pre-computed chain undergoing t iterations. We offer the probability of effectively 

locating the desired key within a specified table: 

Psingle≥
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Increasing the success rate of attacks using the Hellman trade-off usually entails the utilization of 

distinct G functions to produce multiple Hellman tables. Assuming the existence of l tables, the 

probability of successfully determining the target key is as follows: 
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The total storage space required for the precomputation phase of the Hellman trade-off is M=ml. In 

the online phase, disregarding the iterations for handling false positives in each table, each table requires 

t iterations. Thus, the time complexity of the online phase can be represented as T=tl. Hellman 

recommended setting m=t=l=N1/3, resulting in a balanced trade-off curve with the equation TM2=N2. 

2.3.  DP Trade-Off 

To address the issue of frequent false positives in the Hellman trade-off and reduce the number of table 

lookups during the online phase, Rivest introduced the Distinguishing Point (DP) method [6] in 1982. 

The DP trade-off involves introducing a discernible attribute into the key space with a fixed probability 

of 1/t. Typically, this attribute is easy to detect, such as setting the first logt bits of an element to 0.  

Due to the requirement of satisfying the DP attribute, there's a possibility of encountering cycles in 

the process of generating a precomputed chain from a starting point Si. Consequently, a chain length 

restriction must be imposed. Precomputed chains that exceed this restriction are discarded, and new 

chains are generated. 

Precomputation phase, the average length of DP chains is t. Consequently, the total number of nodes 

covered by the m DP chains is mt. Online phase, an average of t iterations is required to locate a DP 

point. Thus, the time complexity T=tl. Combining this with the size of the precomputed table M=ml, it 

can be deduced that the trade-off curve for the DP trade-off follows TM2=N2. 

2.4.  Rainbow Trade-Off 

The DP trade-off significantly reduces the number of table lookups during the online phase. However, 

due to its use of variable chain lengths, it has some inherent flaws when it comes to practical system 

implementations, particularly in parallel settings. To address these issues, a refinement to the Hellman 

trade-off was proposed by Philippe Oechslin in 2003, known as the rainbow trade-off [7]. The rainbow 

trade-off builds upon the foundation of the Hellman trade-off but introduces improvements. It applies 

different Gi (1≤i≤t) functions to each column of the precomputed rainbow matrix. Figure 3 demonstrates 

the distinction between the Hellman trade-off and the Rainbow trade-off G functions. Through this 

approach, the precomputed chains generated will only merge when the collisions between two chains 

occur at the same position in both chains. When the length of the precomputed chain is t, the probability 

of collision occurrence is 1/t. Figure 2-(b) illustrates the structure of the Rainbow Matrix generated 

during the precomputation phase. 

 

Figure 3. Comparison of Reduce Function. 
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In terms of a singular table, the success rate of a rainbow trade-off is: 

Psingle=1- ∏ (1-
mi

N
)

t-1

i=0

 (3) 

When t is the length of a chain, m0=m and mi+1=N(1-exp(-mi/N))(0≤i≤t-1), assuming the existence 

of l tables, the success rate of a rainbow trade-off is: 

Psuccess=1- ∏ (1-
mi

N
)
l

t-1

i=0

 (4) 

Indeed, in the precomputation phase of the rainbow trade-off, the required space is M=ml. The 

number of iterations needed during the online phase is T=t2l/2. Oechslin suggested setting m=N2/3, l=1, 

and t=N1/3. Therefore, the trade-off curve for the rainbow trade-off is TM2=N2/2. 

In the context of cryptographic analysis, the time-memory-data trade-off is a variation of the classic 

time-memory trade-off problem [8]. This problem involves taking D inputs and successfully attacking 

at least one of them. Specifically, when D=1, this problem simplifies to the conventional time-memory 

trade-off problem. 

When studying this problem, the original rainbow trade-off's trade-off curve is TM2D=N2. Compared 

to the Hellman method's trade-off curve TM2D2=N2, the original rainbow trade-off curve is less efficient. 

As a result, several variants of the rainbow trade-off have been proposed to improve the time complexity 

in the online phase and enhance its overall performance in practical applications. Figure 4 illustrates the 

structures of precomputed chains for various variants of rainbow trade-offs. 

2.4.1.  Thin-Rainbow Trade-Off 

The concept of a "thin-rainbow trade-off " involves reducing the number of distinct Gi functions to s 

and cycling through these s Gi functions in a periodic manner [9]. The trade-off curve generated by this 

approach is TM2D2=N2, like that of the Hellman trade-off.  

 

Figure 4. The precomputed chain structures of rainbow trade-off variants. 

2.4.2.  Fuzzy-Rainbow Trade-Off 

The counterpart to the thin-rainbow trade-off is the "thick-rainbow trade-off". In this method, the 

number of distinct Gi functions is also reduced to s. However, the key difference is that instead of 

repeating a single Gi function with t times before switching to the next one, the thick-rainbow trade-off 

applies a different Gi function after each t repetition of a single Gi function [9]. The resulting trade-off 

curve, in this case, is TM2D=N2, which achieves efficiency like the original rainbow trade-off in 

handling time-memory-data trade-offs. The concept of "fuzzy rainbow trade-off" enhances rainbow-
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based attacks by combining the DP trade-off with the thick-rainbow scheme. Incorporating DP point 

improvements led to a trade-off curve of 2TM2D2=N2+ND2M, where T≥D2.  

2.5.  Perfect Table Trade-Off 

The DP trade-off indeed significantly reduces the number of table lookups required during the online 

phase compared to the Hellman trade-off. Furthermore, it offers the convenience of easily checking for 

chain merges. After calculating DP points, if a merge is detected within the current computation chain, 

the approach involves retaining the longer chain from multiple merged chains until m precomputed 

chains are generated. This process constructs a perfect DP table without any merges. The Hellman trade-

off can also generate unmerged perfect Hellman tables. However, unlike the DP trade-off, creating a 

perfect Hellman precomputation table requires extensive checks, making its cost prohibitively high and 

impractical. 

Similarly, when applying rainbow trade-off, effective merge detection can be achieved as well. This 

trade-off enables the creation of a perfect rainbow table without merges. However, an important 

distinction to note is that perfect tables created through the DP trade-off contain unique nodes, while in 

rainbow tables, merges between different columns can be retained. As a result, perfect rainbow tables 

may contain duplicate nodes in certain cases where merges are allowed across different columns. 

Perfect tables offer superior search space coverage due to minimal collisions, leading to higher 

success rates in password attacks compared to non-perfect tables under the same storage constraints. 

However, generating perfect tables for efficiency demands substantial precomputation time, often 

overlooked in analyses. In resource-limited scenarios, precomputation costs become pivotal. Extending 

precomputation duration significantly, even for substantial gains, is impractical. 

3.  Storage Optimization 

In the given trade-off curves, the symbol "M" refers to the total number of starting and ending points 

key-value pairs stored in the pre-computed table. However, in practical applications, understanding the 

actual physical size of the precomputed table is of paramount importance. Traditional time-memory 

trade-off methods typically store the starting and ending point key-value pairs in 2logN bits. This can 

be regarded as an upper limit on the storage for storing the starting and endpoint values. Below, I will 

outline several techniques to assist us in more efficiently utilizing storage space. 

3.1.  Consecutive Starting Points 

The first approach involves storage optimization by selecting starting points that occupy fewer storage 

bits. Conclusions can be drawn from the definition of random functions, indicating that as long as the 

choice of starting points is unrelated to the one-way function or G function being targeted by the current 

system, the selection of starting points can be made in any manner without affecting the success rate of 

the attack on the system. One typical method for choosing starting points is to opt for consecutive 

starting points. This approach enables the utilization of logm space to store m consecutive starting points 

[10]. 

3.2.  DP Definition 

In schemes applying the DP trade-off, any information that can be reconstructed from the DP attribute 

can be discarded when storing endpoint values. For instance, if the first d bits are defined as 0 for DP 

points, then eliminating these d bits when storing endpoint values would have no impact on the overall 

computational efficiency. Furthermore, the cost of recovering this information is negligible. 

3.3.  Index Table 

The index table method can be regarded as a specific case of the data structure known as a hash table. 

In recent years, research on the index table method and its relationship with time-memory trade-off 

methods has gained prominence. Figure 5 depicts a basic schematic of an index table structure. 
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It dissects the endpoint into an index part and a data part. The data part is stored in the pre-computed 

table alongside the starting point, while the index part is retained within the index table. By utilizing an 

index, the corresponding table entry in the pre-computed table can be located. The advantage of using 

the index table method lies in its fast retrieval speed, yet a drawback is that the additional index tables 

can consume extra storage space. In practice, the index table can store the number of entries 

corresponding to each index entry, rather than the complete physical address. Moreover, as long as the 

appropriate ratio is chosen between the index part and the data part of the table entries in the 

precomputed table, the additional space consumed by the index table can be negligible [11]. 

 

Figure 5. Index table technique. 

3.4.  Ending Point Truncation 

The three methods mentioned above, while reducing storage space, retain all the information of the pre-

computed table entries. In contrast, the Endpoint Truncation method is different. It involves truncating 

the endpoint while storing the key-value pairs of the starting and endpoint. This approach can lead to 

certain false alarms, serving as a trade-off between storage space and online phase complexity [11]. In 

the pre-computation phase, when truncating the endpoints in the table entries, it is essential to retain 

enough bits (slightly exceeding logm) to uniquely identify each pre-computed chain. During the online 

phase, when conducting table lookups, the subject of the search will be truncated to the same length 

before being compared with the entries in the precomputation table. Although truncating the endpoints 

could potentially trigger false alarms even for two distinct non-merged precomputed chains, it's 

unnecessary to devise new procedures explicitly to counter this false alarm. This is because false alarms 

can still occur even in the absence of endpoint truncation. Nevertheless, excessively aggressive endpoint 

truncation positions can lead to a higher frequency of false alarms, underscoring the need to carefully 

manage the length of the truncated endpoints. 

4.  Implementation Platforms 

In recent years, with the rise of fields like artificial intelligence and deep learning, compute-intensive 

tasks have become the mainstream of computation. Traditional computing technologies represented by 

CPUs face numerous challenges when dealing with compute-intensive tasks, such as inadequate 

bandwidth, low energy efficiency, and high computational latency. When both the pre-computation and 

attack phases are CPU-driven, the problem size that time-memory trade-off methods can handle 

becomes limited. In this scenario, the processing bottleneck is no longer the size of memory but rather 

the unacceptable time taken by the precomputation phase [12]. Subsequently, we will introduce 

hardware platforms that utilize brute-force attacks. 
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4.1.  FPGA 

The most distinctive feature of Field-Programmable Gate Arrays (FPGAs) lies in their configurational 

flexibility. FPGAs are chips that can be reconfigured, constituting a hardware-reconfigurable 

architecture. Through programming, their application scenarios can be altered at will, greatly reducing 

the development time and costs of cryptographic attack accelerators. In 2006, the COPACOBANA 

machine, composed of 120 Xilinx Spartan-3 1000 FPGAs, was manufactured. Its cost was only $10,000, 

and on average, it took less than 6.4 days to crack a DES key. Later, COPACOBANA was employed 

for the A5/1 algorithm in GSM voice encryption. Leveraging a thin-rainbow trade-off + DP trade-off 

time-memory-data trade-off scheme, a success rate of 96% was achieved with knowledge of only 4 

frames of the key stream [13]. 

4.2.  GPU 

Since the emergence of General-purpose computing on graphics processing units (GPGPU) , GPUs have 

been applied to various domains beyond image processing. In the context of the DES encryption 

algorithm, within the pre-computation phase of the rainbow trade-off, the calculation of rainbow chains 

is distributed to each GPU thread. This significantly enhances the efficiency of rainbow chain generation. 

However, the high performance of GPUs comes at the cost of high energy consumption. Numerous 

studies indicate that the energy consumption of GPU-based password recovery accelerators is twice as 

much as that of FPGA-based accelerators [14]. The primary reason for this discrepancy is that GPUs 

were not designed with the specific application of password recovery in mind. 

4.3.  CPU-GPU Heterogeneous Platform 

Within the GPU, there exists a multitude of processing cores capable of simultaneously executing 

thousands of computational tasks. The CPU-GPU architecture is particularly well-suited for processing 

scenarios demanding high performance, making it an apt platform for password recovery. On a 

heterogeneous architecture powered by an Intel Xeon 8176M CPU and two NVIDIA Tesla V100 GPUs, 

a series of comparative experiments were conducted using different cryptographic hash functions to 

draw conclusions. When compared with state-of-the-art third-party tools like Cryptohaze and 

RainbowCrack, the application of index table techniques resulted in a reduction of approximately 57.1% 

in memory space usage. The acceleration ratios for the precomputation phase were 2.03 times and 131.3 

times, respectively. Meanwhile, the acceleration ratios for the online phase were 1.97 times and 1.44 

times, respectively [15]. 

4.4.  CPU-FPGA Heterogeneous Platform 

CPU-FPGA heterogeneous devices are also noteworthy heterogeneous platforms in the industry. They 

integrate CPUs and FPGAs on the same chip and connect them through high-speed communication 

interfaces. The FPGA is responsible for accelerating data processing, while the CPU handles other minor 

computational tasks such as data interaction. There are currently several relatively mature products, such 

as the Xilinx Zynq-7000 SoC and Intel Stratix 10 SoC. When compared with CPU+GPU heterogeneous 

devices, CPU-FPGA heterogeneous devices demonstrate remarkable energy efficiency [16]. A 

SHA256Crypt password recovery accelerator based on a CPU-FPGA device, specifically the Xilinx 

Zynq-7000 XC7Z030-3 SoC, improves energy efficiency by 2.54 times compared to Hashcat running 

on the NVIDIA GTX1080Ti GPU platform. In comparison to accelerators purely based on FPGA 

implementation, the energy efficiency is enhanced by 1.64 times, while the resource efficiency is 

improved by 1.69 times [17]. 

5.  Conclusion 

This paper provides a concise overview of various methods within the domain of time-memory trade-

off techniques. It comprehensively outlines the Hellman trade-off, the DP trade-off, and the rainbow 

trade-off, elucidating the implementation principles, pros and cons, and security implications of time-
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memory trade-off techniques. The performance optimization of these techniques is discussed from the 

perspectives of storage space and implementation platforms. 

In practical applications, time-memory trade-off techniques are not limited to the adoption of a single 

method; rather, they often involve the combination of two or even three different methods. This principle 

extends to both storage optimization and speed enhancement. Furthermore, the combinations are not 

confined solely to the methods introduced within this paper. Concerning implementation platforms, 

heterogeneous setups like CPU-GPU and CPU-FPGA configurations are currently prominent. The 

integration with GPUs generally provides heightened performance, while partnering with FPGAs offers 

a favorable balance between cost and performance. It's essential to note that the choice between these 

methods is context-dependent, relying on considerations such as success rates and budget constraints. 

For anyone interested in password attacks and time-memory trade-off methods, the content of this 

paper can serve as a comprehensive reference. Additionally, it offers valuable insights for those involved 

in the implementation of time-memory trade-off systems. 
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