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Abstract. Multimedia recommendation systems have many applications in our daily life. 

However, how accurately capture a customer's preference is an issue that is difficult to deal with. 

The proposed Invariant Risk Minimization (IRM) and Empirical Risk Minimization (ERM) are 

ways to learn a customer's preference. Still, both frameworks show some limitations: although 

ERM performs excellently in a single environment, it fails to generalize well when faced with 

multiple and new domains. On the other hand, IRM learns invariant features across 

heterogeneous environments, but it lacks theoretical guarantees and performs less effectively 

where the invariants are unclear. This paper proposes an ERM and IRM Optimized Rating 

Framework (EIOR) as our final recommender model with direct rating scores. The EIOR 

enhances the accuracy and functionality of the multimedia recommendation systems by utilizing 

self-attention mechanisms to combine IRM and ERM with adjusted attention weights. 

Specifically, IRM learns invariant parts across different environments, while ERM learns variant 

parts. With self-attention, we can adaptively allocate attention weights for the two pieces and 

seek the optimal pair of attention weights based on the loss function. We demonstrate EIOR on 

a cutting-edge recommender model UltraGCN and use the open multimedia dataset of TikTok 

to finish all the experiments. The results validate the effectiveness of EIOR by comparing purely 

operating invariant representations alone with the framework of IRM. 

Keywords: Invariant Risk Minimization (IRM), Empirical Risk Minimization (ERM), Self-

attention Mechanisms, Invariant Learning 
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1.  Introduction 

The usual assumption of traditional machine learning methods is that the data for model training and 

testing are independent and identically distributed (IID). Here, the data for training and testing can be 

said to be In-Distribution (ID). In practical applications, the data obtained after the model is deployed 

and launched is often not completely controlled. That is to say, the data received by the model may be 

Out-of-Distribution samples, which can also be called abnormal samples (outlier, weird). For 

distribution shifts involving confounders, (or) anti-causal variables, and polynomial generative models, 

the IRM can achieve the desired OOD solution, while ERM can be asymptotically biased [1]. 

The use of IRM on modern software recommendation systems can effectively solve the deviation 

caused by Non-Independent Identically Distributed data to model training. The essential idea is to divide 

the invariant representations for separate learning [2]. It is evident that we should use IRM for OOD 

samples, but for some IID samples, ERM will show higher effectiveness; how to balance the tradeoff 

between ERM and IRM is the main focus of our work. 

Based on the above illustration, the IRM presents a powerful capability in recognizing invariant 

features. However, the IRM will excessively focus on the constant part while discarding all the variant 

parts, where some may contain some helpful information. Under the context of the recommendation, an 

individual will not only pay attention to internal or invariant factors such as preference and habits but 

also can be affected by external or variant factors such as comments and product appearance. In this 

case, we still focus on promoting the accuracy of preference estimation rather than just identifying cause-

effects [3]. Moreover, only retaining invariant parts conducted by the IRM will undermine the prediction 

results given the traditional scenario of the IID. Fortunately, with the ERM's introduction, the 

recommendation model's performance may be improved; however, since the IRM is categorized as OOD 

while ERM belongs to In-Distribution Generalization. The properties of the two items determine the 

incompatibility between the two. In this case, our group's motivation is to trade off the proportion of 

IRM and ERM self-adaptively applied in the recommendation system to better promote its accuracy and 

functionality. To realize self-adaptation, our group imports the attention mechanism, which can 

automatically adjust the weights of IRM and ERM according to the quality of different individuals. We 

expect the incorporation of both IRM and ERM under the monitoring of the attention model can more 

accurately extract an individual's proper preference combined with the influence of external factors to 

recommend his desired results with exactitude and efficiency. 

The contributions of our paper are as follows. (1) We compare and analyze the strengths and 

weaknesses of ERM and IRM, respectively, applied to different environmental conditions. (2) We 

propose a new multimedia recommender system named EIOR, which considers variant parts and 

invariant parts to directly compute rating scores reflecting the user’s preference towards the item. (3) 

We experiment with the proposed balancing mechanism and display the improvements in prediction 

performance. 

2.  Preliminaries 

2.1.  Invariant Learning 

Invariant learning in environment partition is to identify the features that do not change across 

heterogeneous environments. By focusing on features with consistent predictive capability across 

domains, multimedia recommendations can be more generalizable and adaptive to variations, leading to 

higher accuracy and efficiency [4, 5].  

2.2.  ERM & IRM 

ERM is a machine learning framework that aims to minimize the risk between the model's predicted and 

actual output. Due to its vulnerability to changes in the input distribution, ERM is sensitive to noisy data 

and has difficulty handling the trade-offs between objectives. On the other hand, the machine learning 

framework of IRM is to learn features invariant to changes across heterogeneous environments, 

improving the generalization and robustness of the models even with limited training data. 
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According to our introduction, ERM under the IID assumption does not always hold in real-world 

scenarios. However, IRM learns invariant features from the heterogeneity perspective, leading to stable 

performance under distributional shifts. 

Regarding [6], it evaluates popular IRM methods on deep models with synthetic datasets. The results 

show InvRat performs more effectively than others. Therefore, we adopt the InvRat method from this 

paper to build our IRM and ERM model in the methodology section. 

2.3.  Attention Mechanism 

The attention mechanism can be utilized as a resource allocation schema to concentrate on distinctive 

parts when dealing with overloaded information [7]. Most of the attention mechanisms are focused 

attention which has been applied to various fields, such as image-based analysis [8, 9], text classification 

[10, 11], video classification [12], image captioning [13], and recommendation [14, 15, 16]. 

Specifically, self-attention mechanisms adaptively learn attention weights, facilitating the model to 

learn between various input elements that would be difficult to capture with fixed attention weights. 

According to Xu. et, they. Suggest combining the self-attention model to graph neural networks for 

session-based recommendation [17]. In the following section, we propose a state-of-the-art approach 

combining UltraGCN with the self-attention model to adaptively learn the variant and invariant parts 

regarding the environment for the multimedia recommendation. 

2.4.  UltraGCN 

UltraGCN[18] is an improved Graph Convolutional Networks (GCN) algorithm. It has the following 

advantages:  

1. Adaptive neighbor sampling: UltraGCN[18] can flexibly sample neighbors based on the 

neighbor status of different nodes, reducing computational and storage costs and improving the 

scalability and efficiency of the algorithm. 

2. Scalability: UltraGCN[18] has good scalability and can easily handle large-scale, dense graph 

data with significant runtime efficiency and accuracy advantages. This paper uses UltraGCN[18] to 

implement IRM and ERM. 

3. Attention mechanism: UltraGCN[18] uses attention mechanisms to weigh different nodes and 

features, better exploring the relationships and importance between nodes and improving algorithm 

accuracy and robustness. In the paper, we apply the attention mechanism to combine IRM with ERM to 

form a better representation model. 

Based on these advantages, UltraGCN[18] has been widely applied in graph neural networks, 

achieving good performance on various tasks and datasets. 

2.5.  NDCG 

NDCG (Normalized Discounted Cumulative Gain) is a metric used to evaluate the quality of search 

engines or recommendation systems. It is widely used in the field of information retrieval. 

NDCG is based on DCG (Discounted Cumulative Gain) calculations. DCG assigns higher weights 

to results that rank higher while penalizing the appearance of irrelevant results. Specifically, for a search 

query or user, the calculation of DCG is as follows: 

𝐷𝐶𝐺@𝑘 = ∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

𝑘

𝑖=1

(1) 

Here, 𝑟𝑒𝑙𝑖 is the relevance score of the i-th search result or recommendation result, which is usually 

a non-negative value. The log2(𝑖 + 1) is a discount factor that doubles the score of higher-ranking 

results and gradually reduces the scores of later developments. 

NDCG eliminates the influence of data size and sorting position by normalizing DCG using Ideal 

DCG (IDCG). IDCG is calculated by calculating DCG values in the same ranking order when all results 

are relevant. The formula is: 
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𝐼𝐷𝐶𝐺@𝑘 = ∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

|REL|

𝑖=1

(2) 

And NDCG is calculated as follows: 

𝑁𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝐾

𝐼𝐷𝐶𝐺@𝑘
(3) 

Finally, the value of NDCG ranges between 0 and 1, with 1 indicating that all results are relevant 

and 0 indicating that no results are relevant.  

3.  Method 

3.1.  The process of the method 

Here we present a method to improve the accuracy of the representation model by combining the IRM 

and ERM. We exhibit the workflow of our process in Figure 1. We divide this method into eight essential 

parts (M1-M8). M1 is a pre-train representation model used to extract the contents from multimedia 

data, including words, sounds, and pictures. Based on IRM, we create M2 to find the variant part in the 

content representation model (M1). According to that, we construct M3 to divide the original 

environment into several subsets. Each subset forms an independent interaction environment; we can 

get one feature from every subset after experiencing a deep learning process. Then, in M4, we learn an 

invariant mask to prepare for a uniform representation model. Combining the content representation 

model (M1) and the result of the consistent cover (M4), we will obtain the invariant representation model 

(M5), which is also the result of IRM. To the data in variant part (M2), we apply them to construct the 

ERM representation model (M6) by the training method ERM. After that, we employ an attention 

mechanism to give different weights for each feature which we obtained from both the ERM 

representation model (M6) and the invariant representation model (M5). The result of that is attention 

mechanism representation (M7). After some optimization, we obtain the final model. We will illustrate 

the M2 and M5 in 3.1.1, M3 in 3.1.2, and M4 in 3.1.3, elaborate on the process of combining IRM and 

ERM in 3.2 demonstrate M7 and M8 in 3.3, and introduce the backbone in 3.4. 

Multimedia 

Content

Content 

Representation

Interaction

Variant Part

Invariant

Representation

Invariant 

Mask

Attention 

Mechanism

Representation

Final 
Model

Environment

ERM 

Representation

1

2

5

7 8

4

3

6

M2: Obtain variant representation

M4: Obtain invariant mask

M6: Obtain ERM representation

M8: Generate final model

M1: Obtain content representation             

M3: Environment partition                      

M5: Obtain invariant representation          

M7: Obtain attention mechanism representation

Words

Sounds

Pictures 

 

Figure 1. ERM and IRM Optimized Rating Framework (EIOR) 

3.1.1.  Invariant and variant representation. According to the IRM, we divide the content representation 

model into variant and invariant representations. First, we define some variables: an invariant mask 𝑚 ∈
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𝑅, the content representation ci, the dimension of content representation D, the invariant representation 

𝛷, the variant representation 𝛹. Also, we adopt: 

𝛷 =  {𝛷𝑖  |𝑖 ∈  𝐼} 𝑎𝑛𝑑  𝛹 =  {𝛹𝑖  |𝑖 ∈  𝐼} (4) 

To demonstrate the sets of two different representations. And we define the invariant representation 

𝛷𝑖 as: 

𝛷𝑖  =  𝑚 ⊙  𝑐𝑖 (5) 

when we delete all the data of the invariant representation, the others is the variant part which is defined 

as: 

𝛹𝑖  =  (1 −  𝑚) ⊙  𝑐𝑖 (6) 

The most important part of the invariant representation is the generation of consistent mask m and 

environment partition. The detailed procedure is in the modules M2, M3, and M4; we will discuss these 

three modules in the following sections: 3.1.2 and 3.1.3. 

3.1.2.  Environment partition. According to the IRM, to finish the environment, we create a module (M3) 

to take in the different use-item interactions and output features about these data to form a climate set 

𝐸 . Each domain  𝑒 ∈  𝐸  reflects a kind of correlation between users and items; some are spurious 

correlations [2], and some are real correlations. Here is the detailed process. We try to classify the whole 

environment: some interactions only can form one feature, so we should put them together as a small 

environment e. In order to describe that environment e, we learn a predictive model to apply the variant 

part data: 

arg 𝑚𝑖𝑛
𝑒

[ℒ( Γ(𝑢, 𝑖, Ψi|Θe), 𝑅𝑒𝑡𝑟)] (7) 

where Γ(e) is the predictive model, Θ𝑒 indicates the model parameters. We now have environment E, 

which consists of spurious correlations [2]. To improve the accuracy, we will find some interactions that 

can recognize a feature with a higher probability. To differentiate the interactions in the environment, 

we use this formula: 

e (u, i) =
arg 𝑚𝑎𝑥

e ∈ E
( Γ(e)(𝑢, 𝑖, Ψi|Θe)) (8) 

Finally, we employ a loop to run these two formulas until they converge. Then we get the result of 

the environment partition 

{𝑅(𝑒)|𝑒 ∈  𝐸} (9) 

In the next step, we will use this result to find the invariant mask. 

3.1.3.  Invariant mask. For the invariant representation part, we argue that spurious correlations are 

unstable in heterogeneous environments, such as cattle on grass and cattle on the beach, where grass and 

beach have little direct connection to the cattle themselves. 

From 3.1.2 we get the result of environment 𝑅(𝑒), which consists of variant part 𝛹. And the variable 

of 𝛹 is invariant mask m. In this part, we will pay attention to this vector: 

𝑚 =  (𝑚1, … , 𝑚𝐷) (10) 

which is used to generate invariant representation. We’d like to find a vector 𝑚 that can perform well 

in both the single-environment and cross-environment predictive models. According to IRM and 

Heterogeneous Risk Minimization (HRM) [19], we do the following work: 

We define 

𝜇 =  (𝜇1, … , 𝜇𝐷)   (11) 
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And 

𝜇𝑖 = max{0, min{1, 𝑚𝑖  +  𝜖}} , 𝑤ℎ𝑒𝑟𝑒 𝜖 ∼  𝑁 (0, 𝜎2 ) (12) 

After that, we use a predictive model in HRM [19]: 

ℒ𝑚𝑎𝑠𝑘  = 𝐸𝑒 ∈ 𝐸ℒ𝑒  +  𝛼(‖𝑉𝑎𝑟𝑒 ∈ 𝐸  (𝛻𝛩𝑚𝑎𝑠𝑘ℒ𝑒) ⊙  𝜇‖)2  +  𝜆(‖𝑚‖)2 (13) 

The first part of this function is the typical recommendation loss, the second part is constraint across 

ℒ𝑚𝑎𝑠𝑘 environments, and the third part is a regularization formula  ℒ𝑒 is the average environment loss 

value; the formula is: 

ℒ𝑒  =  ℒ ( 𝛤𝑚𝑎𝑠𝑘  (𝑢, 𝑖, 𝜇 ⊙ 𝑐𝑖)|𝛩𝑚𝑎𝑠𝑘|𝑅𝑒𝑡𝑟 ) (14) 

Our purpose is to minimize the ℒ𝑚𝑎𝑠𝑘, so with the loop continuing, we use the formula: 

𝑚𝑖  ←  𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝑚𝑖}} (15) 

clip the mask 𝑚. when the ℒ𝑚𝑎𝑠𝑘 converges, we will get the invariant representation successfully. 

3.2.  Attention Mechanism 

A large factor affecting the prediction accuracy of our model is the ability to filter out invariant 

representations accurately. Still, the positive impact of changing words on the correct prediction of the 

model cannot be denied entirely. For example, when a user buys a dress online, there is a high probability 

and weight that the user likes the dress itself, which is the invariant representation; however, the 

corresponding changing terms, such as models, lighting, and scenes, can also have a facilitating effect 

on the user’s purchase. 

Therefore, we adopt self-attention mechanisms to adaptively learn the variant and invariant parts 

regarding the environment partition. To adaptively learn these two parts, we use the attention mechanism 

of adaptive learning to balance their weights dynamically. More effective model fusion is achieved by 

combining the attention learning process with the UltraGCN prediction process. Based on the self-

attention mechanism, it can effectively allocate weights among different environments. 

Up to now, we have obtained stable invariant and changing representations by learning, denoted by 

𝛷𝑖, 𝛹𝑖 respectively. Subsequently, we construct attention mechanisms to learn the learning weights of 

the invariant and changing representations, that is, to determine the weights of the contributions of the 

invariant and changing representations to the final prediction results. We piece together the change and 

invariant representations according to the following equation: 

c𝑗
𝑟𝑒 = 𝛼𝑗

1Ψi + 𝛼𝑗
2Φi (16) 

where 𝛼𝑗
1 and 𝛼𝑗

2 are the attention weights for variant representation and invariant representation. In 

other words, they indicate the size of impact factors in two representations’ predictions on users’ 

preferences. 

3.3.  Collaborating filtering 

Concerning the collaborative filtering term 𝑡𝑖, (u, i) can be written as a user-commodity feature sparse 

matrix, for which users 𝑢1, 𝑢2 (row vectors) and all commodities 𝑖 (column vectors) are written as: 

[
𝑅1,1 𝑅1,2  …

𝑅2,1 𝑅2,2  …
] 

The similarity of the preferences of user 1 and user 2 can be measured by the cosine similarity: 

𝑠𝑖𝑚(𝑢1, 𝑢2) =  
𝑢1 ∗ 𝑢2

||𝑢1|| × ||𝑢2||
 (17) 

The user’s preference for an item i can be calculated by using the rating formula: 
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𝑠𝑐𝑜𝑟𝑒(𝑢𝑖 , 𝑖) =  {
1, 𝐻𝑖𝑑𝑑𝑒𝑛 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

  𝑥, 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑢𝑠𝑒𝑟 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
 

Based on the descending order of ratings, we can write the collaborative filtering term based on user 

u and item i as: 

𝑠𝑖𝑚(𝑢, 𝑠) =  ∑ 𝑠𝑖𝑚(𝑢, 𝑢𝑖) ∗ 𝑠𝑐𝑜𝑟𝑒(𝑢𝑖 , 𝑖) 
𝑠𝑖 𝜖 𝑆

(18) 

3.4.  Final Prediction Model 

Final prediction model. The invariant mask becomes stable by running streams M2-M3-M4 repeatedly 

in T times until convergence. Therefore, we learn the attention weights 𝑤1 and 𝑤2 of both and the final 

prediction model based on the invariant and changing representations generated in M5 and M6, 

respectively. 

In order to find the specific 𝑤1 and 𝑤2 values, we obtain the variant mask by taking the inverse of 

the invariant show to part 3.1.3, and we use these two parts of the show to refine the change 

representation and the consistent representation, respectively: 

(1 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑚𝑎𝑠𝑘) × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

We apply an empirical risk minimization model to the change representation part to find the gap 

between the predicted and empirical environments. We expect and see the loss separately for user-

related and user-irrelevant items, where the former term in Eq.19 denotes the loss function for predicting 

user and user-related articles. The latter term means the loss function for predicting user and user-

irrelevant items and takes the square root of the two results to normalize the loss values. 

√ℒ((u, iid, Φi)| Rreal)
2 + 𝓛((u, iid, 𝛹𝑖)| Rreal) 2 (19) 

After obtaining the two sets of environmental losses, we use the attention weights to combine the 

failure of the changing representation and the failure of the invariant representation into the failure of 

the overall feature, which is also the loss of our final prediction model. We make the initial attention 

weights equal and keep the sum of the weights always 1. Thus, we have: 

𝐿𝑜𝑠𝑠 𝑡𝑜𝑡𝑎𝑙 =  𝑤1𝑎1 + 𝑤2𝑎2 (20) 

Where 𝑤1 is the attention weight of the invariant representation loss, 𝑤2 is the attention weight of 

the variant representation loss. 

The learning is defined below: 

arg 𝑚𝑖𝑛 
𝛩 ∗

𝐿(𝑤1 ∗ 𝛤𝐼𝑅𝑀(𝑢, 𝑖, 𝛷𝑖  |𝛩 ∗)|𝑅𝑡𝑟  +  𝑤2 ∗   𝛤𝐸𝑅𝑀(𝑢, 𝑖, 𝛹𝑖|𝛩 ∗)|𝑅𝑡𝑟 ) (21) 

In conclusion, the general training process is introduced in Algorithm One: 

 

Algorithm One: the total training process. 

Data: R, R−, R𝑡𝑟 

Result: Final Predictive Model 𝛤 ∗ (𝑢, 𝑖|𝛩∗, 𝛷) 

1   while ( 𝑖 ← 1 to 𝑇 ) do 

/* M3 */ 

2     do 

3        while( 𝑒 ∈ E ) do 

4          Optimize Γ(𝑒) via Eq. (7); 

5        continue; 

6          while (𝑒 ∈ E) do 
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7            Compute R𝑒 via Eq. (8); 

8          continue; 

9      while Converged; 

/* M4 */ 

10    do 

11      Learn m via Eq. (13); 

12    while Converged; 

13      continue; 

/* M6 */ 

14    do 

15    Using m to extract variant feature 

16      ERM learning on variant feature 

17        Judge loss of IRM L1 and ERM L2 

18    while Converged; 

/* M7 */ 

19  Optimize equation (21) 

UltraGCN automatically weighs the learning ratios of ERM and IRM using a loss function to achieve 

optimal results. 

3.5.  Backbone: UltraGCN[1, 2] 

UltraGCN pushes the representations to encode the user-item graph through the graph-based loss 

function, 

ℒ =  ℒ𝑂 + 𝛾𝐶ℒ𝐶 + 𝛾𝐼ℒ𝐼 (22) 

where 𝛾𝐶  and 𝛾𝐼 are hyper-parameters to balance the importance weights of these loss terms.  

The ℒ𝑂 indicates the objective loss, and the first and second terms calculate the relevance between 

multimedia items and targets for positive and negative samples, respectively. The relevance is mapped 

to a probability value using the logistic function 𝜎. Then, the logarithm of this probability value is taken 

and negated to represent the matching loss. The objective of the first term is to maximize the relevance 

of positive samples, allowing the recommendation model to match users with target items better. On the 

other hand, the objective of the second term is to minimize the relevance of negative samples, enabling 

the recommendation model to better distinguish users from irrelevant items. The objective loss is, 

ℒ𝑂 =  − ∑ log (𝜎(𝛤(𝑢, 𝑖))) − 

(𝑢,𝑖)∈ℝ

∑ log (𝜎(−𝛤(𝑢, 𝑖)))  

(𝑢,𝑖)∈ℝ−

(23) 

ℒ𝐶  indicates the user-item constraint loss, which is used to train an adversarial model, such as the 

discriminator in a generative adversarial network, to enhance the robustness and generalization 

capability of the invariant representation learning model. In this loss, the first and second terms calculate 

the relevance between multimedia item 𝑢 and target items 𝑖 and 𝑗, respectively, based on different weight 

terms 𝛽𝑢,𝑖 and 𝛽𝑢,𝑗. The relevance values are then mapped to probability values using the logistic 

function 𝜎. Subsequently, the logarithm of these probability values is taken and multiplied by the 

corresponding weight terms. Consequently, the objective of the first term is to maximize the relevance 

of positive samples, while the aim of the second term is to minimize the relevance of negative samples. 

The user-item constraint loss is, 

ℒ𝐶 = − ∑ β𝑢,𝑖log (𝜎(𝛤(𝑢, 𝑖))) − 

(𝑢,𝑖)∈ℝ

∑ β𝑢,𝑖log (𝜎(−𝛤(𝑢, 𝑖))) ,

(𝑢,𝑖)∈ℝ−

(24) 
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where the fixed weight coefficients 𝛽𝑢, 𝑖 and 𝛽𝑢, 𝑗 are derived from the user-item interactive graph 𝑅 by: 

β𝑢,𝑖 =  
1

𝑑𝑢
√

𝑑𝑢 + 1

𝑑𝑖 + 1
 , (25) 

Where 𝑑𝑢 and 𝑑𝑖 denote the degrees of the corresponding nodes. Another constraint relies on an item-

item correlation graph 𝐺 = 𝑅𝑡𝑟, where 𝑅 indicates the user-item interactive graph. Thus, ℒ𝐼 indicates 

the item-item constraint loss, a regularization term used to encourage the relevance between a 

multimedia item 𝑢 and its associated items 𝑗 in the same temporal sequence 𝑖 within the recommendation 

model. The inner summation term measures the relevance between the multimedia item and its 

associated items using the logistic function transformation and taking the logarithm. The outer 

summation term aggregates the relevance values of associated items within the same temporal sequence. 

By minimizing LI, the recommendation model can learn the relevance between the multimedia object 

and its associated items in the same temporal sequence, thereby better considering the temporal 

dependencies, The item-item constraint loss is, 

ℒ𝐼 =  − ∑ ∑ 𝜔𝑖,𝑗 log (𝜎(𝛤(𝑢, 𝑗))) ,

𝑗∈𝑆(𝑖)

 

(𝑢,𝑖)∈ℝ

(26) 

where 𝑆(𝑖) indicates the adjacent item set of the item 𝑖. The weight coefficient 𝜔𝑖,𝑗 is computed by: 

𝜔𝑖,𝑗 =  
𝐺𝑖,𝑗

𝑔𝑖 − 𝐺𝑖,𝑖
√

𝑔𝑖

𝑔𝑗
 , 𝑔𝑖 = ∑ 𝐺𝑖,𝑘

𝑘

 , (27) 

where 𝑔𝑖 and 𝑔𝑗 denote the degrees of item 𝑖 and item 𝑗 in 𝐺. 

We learn the predictive model by: 

arg 𝑚𝑖𝑛
𝑒

[ℒ( Γ(𝑢, 𝑖, c𝑗
𝑟𝑒), 𝑅𝑡𝑟)] (28) 

Here, 𝑅𝑡𝑟 represents the user’s true preference for an item (expressed through ratings), and its loss 

function can be defined as 

𝐿𝑜𝑠𝑠 = |𝑅𝑡𝑟 − (𝜆𝑅𝐸𝑅𝑀 + (1 − 𝜆)𝑅𝐼𝑅𝑀)| (29) 

where λ and (1 - λ) can be interpreted as the percentage representation of ERM learning weights and 

IRM learning weights, calculated as follows: 

𝜆 =  
𝛼𝑗

1

𝛼𝑗
1 + 𝛼𝑗

2  ×  100% (30) 

UltraGCN automatically weighs the learning ratios of ERM and IRM using a loss function to achieve 

optimal results. 

4.  Experiment 

4.1.  Experiment Settings 

4.1.1.  Dataset. TikTok platform tracks the viewing data of micro-videos, providing certified written, 

audiovisual, and auditory representations. To represent the textual content, the initial sentence-based 

textual representations, encoded as one-hot word vectors, are transformed by summing the word 

embeddings. 
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4.1.2.  Evaluation protocols. Building upon prior studies [20, 21], our approach involves assessing the 

user-item interactions through trained models and subsequently satisfactorily ranking them. Specifically, 

for each user, we prioritize the top-𝐾 items and determine the Precision@K (P@K), Recall@K (R@K), 

and Normalized Discounted Cumulative Gain (N@K) based on the observed interactions within the 

testing dataset. To evaluate the efficacy of the trained model, we calculate the average scores across all 

users. 

4.1.3.  Baseline. To assess the effectiveness of our model, we adopt the comparative approach outlined 

in the InvRL article and compare it against state-of-the-art multimedia recommendation methods. 

Specifically, we consider baselines from three categories as follows: 

1. Multimedia CF (M-CF) Category: We include VBPR [22], DUIF [23], and CB2CF [24], which 

incorporate multimedia content into the original collaborative filtering method (CF). 

2. Generic Neural CF (G-NCF) Category: We consider NGCF [25], DisenGCN [26], and 

MacridVAE [27] as representatives of this category. 

3. Multimedia-oriented NCF (M-NCF) Models: Our selection includes MMGCN [28], HUIGN 

[20], and GRCN [20], which are explicitly designed for multimedia-oriented recommendation tasks. 

The performance evaluations of the baselines above are sourced from previous works [20, 21], 

following the established conventions. 

4.1.4.  Parameter settings. Adam's algorithm can better adapt to the case of sparse gradients by using 

second-order moment estimates of the slopes (mean of squared angles). This makes it perform better for 

light data processing in huge matrix tasks. Therefore, we empirically used Adam [29] as an optimizer. 

This section describes the experimental settings used to evaluate our proposed approach. The details are 

as follows: 

1. Batch Size: We set the batch size to 512, determining the number of samples processed in each 

training iteration. 

2. Embedding Dimension: The dimension of the embeddings was fixed at 64, ensuring consistent 

representation across the model. 

3. Hyperparameter Tuning: We performed individual tuning of the learning threshold and 

regularization factor for specific embeddings and other parameters. This process involved adjusting the 

values to optimize the model’s performance. 

4. Regularization Factors: To control overfitting, we utilized regularization factors with weights 

of 10-4 for specific ID parameters. We experimented with values of 1, 0.1, 0.01, 0.001, and 0 for other 

parameters. 

5. Learning Rate: We set the learning rate to 10-3 for all parameters to regulate the speed of 

model convergence during training. 

6. Environment Number (ε): The environment number |ε| was varied in the range of {1, 5, 10, 20, 

30}, allowing us to explore different environmental contexts for enhanced performance. 

7. Parameters 𝛼 and 𝜆: The parameters 𝛼 and 𝜆 in equation 10 were chosen from the set {1, 0.5, 

0.1}, respectively. These values were selected to optimize the trade-off between accuracy and 

regularization. 

8. Learning Rate of Mask Generation: The learning rate of the mask generation module (m) was 

searched within {0.01, 0.001, 0.0001} to achieve optimal mask generation. 

9. Parameters 𝛾𝐶 and 𝛾𝐼: The parameters 𝛾𝐶 and 𝛾𝐼 were adjusted in the set {2, 1, 0.1, 0.01, 0} 

to examine their impact on the model’s performance. 

10. Iteration Parameter 𝑇: The iteration parameter 𝑇 was initially set to 5, determining the number 

of iterations for the proposed approach. 

11. Training Epochs: The environment segmentation model was trained for 20 epochs, the mask 

generation model for 40 epochs, and the final prediction model for 500 epochs, ensuring convergence 

and capturing essential patterns in the data. 
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12. Model Selection: The selection of models was based on validation scores, allowing us to 

identify the most effective models. The corresponding test scores were reported for further analysis. 

By adopting these experimental settings, we aimed to thoroughly investigate the performance of our 

proposed approach and ensure reliable and meaningful results. 

5.  Result and Discussion 

We present the overall performance comparison of different methods in Table 1. The following 

observations can be made: 

Neural collaborative filtering (NCF) approaches generally outperform collaborative filtering (CF) 

because NCF explicitly considers the interactions between embedding dimensions. This enables a more 

comprehensive representation of pairwise correlations, enhancing fine-grained information modeling. 

CNNs are applied to the matrix generated by the outer products, allowing for extracting higher-order 

correlations and complex patterns within the embedding space. [30] 

Moreover, the relatively poorer performance of DUIF highlights the impact of collaborative support. 

Additionally, M-NCF approaches consistently outperform G-NCF approaches, demonstrating that it is 

essential in application scenarios such as multimedia recommender systems to correctly analyze multiple 

data forms and establish interactions between different modalities idiosyncratically. [31, 32] 

Notably, by adding a graph regularization term to the standard CNN structure and applying a graph 

convolution operation to aggregate the information of neighboring nodes, GRCN achieves the best 

performance among the NCF-based methods, which emphasizes the need for leveraging user behaviors 

and item contents in an effective multimedia recommendation model. [33] 

Our backbone model, UltraGCN, is a generic graph-based CF method. Despite its simple 

incorporation of multimedia content, UltraGCN significantly outperforms other multimedia 

recommendation baselines. This impressive performance indicates that UltraGCN can effectively 

capture collaborative information through constraint losses. The InvRL model uses the same prediction 

function and training target as UltraGCN, with the only difference being content representation through 

the learned invariant mask (as described in Section 3.1.3). These significant improvements can be 

attributed to the constraints imposed by MASK. And the result is, InvRL consistently achieves the best 

performance across the TikTok datasets, surpassing UltraGCN by 8.71% on Tiktok, respectively [2]. 

However, the invariant representation obtained from singularity learning through mask masking is 

limited because it completely abstracts the subject's interaction with the environment, and our model 

suggests that there is also some connection between the changing and invariant representations. 

Compared with InvRL, using the attention mechanism to connect the learning of changing 

representations with the knowledge of invariant representations in the InvRL model brings more features 

and means more learnable space. As shown in Table 1, the model using the attention mechanism has 

slightly improved performance over learning invariant representations using InvRL alone in the Jitterbug 

dataset, which supports that changing graphics is not useless. This confirms that changing pictures is 

not meaningless but can uncover information that is useful to us.  

Table 1. Evaluation of Performance 

Category Methods 
Tiktok 

P@10 R@10 N@10 

M-CF 

VBPR 

DUIF  

CB2CF 

0.0118 

0.0087 

0.0109 

0.0628 

0.0483 

0.0642 

0.0574 

0.0434 

0.0613 

G-NCF 

NGCF 

DisenGCN 

MacridVAE 

0.0135 

0.0145 

0.0152 

0.078 

0.076 

0.0813 

0.0661 

0.0639 

0.0686 

M-NCF 

MMGCN 

HUIGN [38] 

GRCN [39] 

0.0144 

0.0164 

0.0195 

0.0808 

0.0884 

0.1048 

0.0674 

0.0769 

0.0938 
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Backbone UltraGCN 0.0182 0.0982 0.0876 

InvRL 0.0196 0.1079 0.0951 

EIOR 0.0197 0.1094 0.0991 

%Impv. over InvRL 0.51% 1.39% 4.21% 

The evaluation of performance is presented in the above table. Bold scores indicate the best 

performance achieved, while underlined scores represent the second-best performance. The 

abbreviations M-CF, G-NCF, and M-NCF correspond to multimedia CF, generic NCF, and multimedia 

NCF, respectively. 

Through multiple iterations of learning attention mechanism coefficients, it is evident that despite 

our previous argument that we cannot wholly disregard the feature learning of varying representations, 

the attention coefficients corresponding to variable expressions are often significantly smaller than those 

of invariant representations. In other words, their impact is limited. 

Furthermore, evidence suggests that a large portion of the data within a set of features represents 

variations, with only the core regions of the parts being invariant representations. This poses a challenge, 

as simply distinguishing between varying and invariant representations is insufficient. Taking the 

example of an image depicting a camel in the desert and a cow in a meadow, the main subjects of the 

image are the camel and the cow, which occupy only a tiny portion of the picture. However, regarding 

varying representations, the desert, meadow, and sky hold a significant advantage in terms of feature 

quantity. This may result in poor performance of our model in learning features related to varying 

representations in complex background images. 

Therefore, addressing the insufficiency of differentiating between varying and invariant 

representations becomes necessary when partitioning varying manifestations. 

Besides, to enhance our model's generalization capability, we consider further utilizing multi-head 

attention [34] to partition the varying representations' environmental aspects. As mentioned, the 

drawings contain features that contribute significantly to the prediction model and "irrelevant" features. 

Therefore, we propose assigning higher attention weights to the essential parts of the varying 

representations while assigning lower weights to the less significant ones. Our future work will focus 

on dynamic learning of the different models. 

To achieve this, we will leverage the multi-head attention mechanism, which has been proven 

effective in capturing diverse patterns and dependencies within the input data. By incorporating multiple 

attention heads, each attending to a different aspect of the varying representations, we can better capture 

the complex relationships and variations in the environment. 

Furthermore, we will explore techniques to dynamically adapt the attention weights based on the 

significance of the varying representations. This can be achieved through adaptive mechanisms such as 

reinforcement learning or adaptive gating tools, which can iteratively adjust the attention weights during 

the training process. 

By incorporating these enhancements, we expect to improve the model's ability to distinguish 

between essential and irrelevant features within the varying representations. This, in turn, will lead to 

enhanced generalization performance and accuracy in handling complex visual data. 

In our future work, we will conduct extensive experiments to evaluate the effectiveness of the 

proposed approach. We will compare the performance of our model with and without the multi-head 

attention mechanism on various datasets and complex background images. Additionally, we will 

investigate the impact of different strategies for dynamically learning the attention weights for the 

varying representations. 

Table 1. (continued). 
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6.  Conclusion 

This paper introduces the EIOR for multimedia recommendation with explicit rating scores. The model 

incorporates the learning of the variant part across the environment based on ERM. According to the 

experiment results, applying self-attention mechanisms with adjusted attention weights for both IRM 

and ERM illustrates higher rating scores contrasting with the implementation of the IRM framework 

alone, which indicates that the variant part is not useless under the scenario of the multimedia 

recommendation. Moreover, the better performance of the EIOR compared with other models shows 

that the combination and balance between the variant part and the invariant part is more capable of 

predicting a customer’s preference. In the future, we will put more effort into adopting the multi-head 

mechanism to improve the model's competence further. 
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