
Efficient vehicular networks offloading using Hybrid
Localization Algorithm and Deep Reinforcement Learning

Yankai Peng1,5,∗, Zhiyuan Wang2,6,∗, Hailin Li3,7, Ning Dong4,8
1Glasgow College, University of Electronic Science and Technology of China, Chengdu, 611731, China
2School of Aeronautics and Astronautics, Zhejiang University, Zhejiang, 310058, China
3School of Information and Communication Engineering,
Beijing University of Posts and Telecommunications, Beijing, 100876, China
4School of Information Science and Engineering, Huaqiao University, Xiamen, 361021, China

52020190902027@std.uestc.edu.cn
63190103755@zju.edu.cn
7lihailin027@163.com
8Dongning021215@163.com

Abstract. In the context of growing urbanization and increased vehicular traffic, the demand for efficient
computation and location-based services is paramount. This paper proposes a pioneering solution to
address the challenges of precise location services in Vehicular Networks within urban settings. The system
combines a Hybrid Localization Algorithm (HLA) that integrates multiple methods for improved location
accuracy with Deep Reinforcement Learning (DRL) for intelligent and adaptive offloading decisions based
on real-time traffic conditions. Extensive simulations demonstrate the effectiveness of our approach in
reducing response times, optimizing offloading strategies, and alleviating the burden of urban peak vehicle
navigation pressure. This research paves the way for enhanced location-based services and intelligent
transportation systems in urban areas.

Keywords: Hybrid Localization Algorithm, Vehicular Networks Offloading, Deep Reinforcement
Learning

1. Introduction
The exponential growth of urbanization and the escalating vehicular traffic have resulted in a critical
demand for efficient computation and location-based services. Urban settings present distinctive
challenges for providing precise location services in Vehicular Networks. Accurate and reliable
positioning is essential for diverse applications, including navigation, emergency services, and traffic
management. This paper introduces an innovative solution designed to address these challenges and
revolutionize location services within urban environments.

In response to the complexities of urban Vehicular Networks, we introduce a novel system that
synergizes two cutting-edge technologies: the Hybrid Localization Algorithm and Deep Reinforcement
Learning. The Hybrid Localization Algorithm integrates multiple methods, harnessing the unique
advantages of each to achieve superior location accuracy compared to traditional approaches.
Concurrently, Deep Reinforcement Learning facilitates intelligent and adaptive offloading decisions

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

160

grounded on real-time traffic conditions, thereby ensuring resource efficiency and enhanced system
performance.

The remainder of the paper is organized as follows. In Section II, we introduce the related work. In
Section III, we present the whole system model. In Section IV, we introduced our proposed methods
of deep reinforcement learning. In Section V and Section VI, we evaluate the performance of our
methods and simulate the whole Vehicle networking system and then introduce our future work. Finally,
conclusion is made in Section VII.

2. Related work
With the development of wireless network technology, urban vehicle network puts forward higher
requirements for real-time accurate positioning of vehicles. In paper [1] , the mean square error
(MSE) helped with the vehicle to be positioned under different dimensions and variances To solve
the problem of communication bandwidth and limited computation resource, [2] propose a cooperative
location algorithm based on vehicle-road cooperative communication exchange. The algorithm has
low computational complexity, easy implementation, stable performance and high reliability. Article
[3] propose a distributed cooperative vehicular localization framework with truth discovery, assisting
vehicles to learn which neigh- boring nodes they should cooperate with and ignore the others.
However, the current research results do not take into account that different tasks have different
requirements for positional accuracy. For location information requiring different accu- racy, we can
use matching algorithms to make the most efficient use of computational resources. In a congested
vehicle environment, each vehicle is an individual, but can be located by means of contact with
other vehicles. A new discovery found that adjacent vehicles can cooperate to complete positioning
tasks in paper[4], which also propose a approach coined Team Channel-SLAM Evolution (TCSE)
to take advantage of the interrelationships between virtual transmitter locations. Paper[5] believed
that cooperative vehicles can adapt to the environment and orient themselves better than individual
vehicles. In order to improve the accuracy of information connection, an improved centralized and
cooperative monocular synchronous localization and mapping (CCM-SLAM) method is proposed. To
solve the problem of GNSS (Global Navigation Satellites Systems) outages, page [6] established a fusion
localization framework of GNSS/On-board sensors which achieve the accuracy below half a meter during
5s GNSS outage. Another article introduce the basic foundations of intelligent vehicles called High-
precision self-localization, in [7] the author used the Monte Carlo localization algorithm to obtain an
optimal estimate of the vehicle position.

Because of the limited computing resources can no longer fully meet the needs of vehicles
communication, there is a high latency, high energy consumption and low feasibility in the process of
information transmission. With the explosive growth of global mobile traffic, traditional fixed cloud
cal- culators may not quickly give instructions to vehicle communication methods. Therefore deep
reinforcement learning algorithms combined with a variety of technologies to form a new model to solve
computation offloading problem. In article[8], a joint task offloading and task migration optimization
(JCOTM) algorithm based on deep reinforcement learning is proposed to reduce task processing delay
and optimize computing offloading. In [9] authors proposed a shared unloading strategy based on deep
reinforcement learning to reduce task unloading delay and energy consumption in complex networked
vehicle computing environment. For the problem of limited communication resources, [10] propose a
model named vehicular fog computing (VFC) based on the vehicle is designed for communication and
computing infrastructure, which help enrich the communication resources and better use of individual
vehicle’s computing offloading. [11] authors prioritize the experience to have low task service time and
high load balance, achieving high Quality of Experience (QoE). In paper[12], a hybrid task offloading
scheme (HyTOS) based on deep reinforcement learning is proposed to consider the delay constraints and
resource requirements. To improve vehicle communication method, a cooperative computation offload-
ing and resource management approach is proposed in [13], meanwhile a deep reinforcement learning
algorithm (DRL), namely Asynchronous Advantage Actor-Critic (A3C) is used to optimize the system

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

161

model. And [14], A virtual platform for vehicle trajectory prediction based on deep neural network is
developed to achieve reasonable allocation of computing resources.

To cope with tasks with different localization accuracies, we use a hybrid localization algorithm. In
order to meet the demand of computing offloading in the heavy traffic flow, we consider a decision-
making method to guide the vehicle to choose whether to communicate with the vehicle or the base
station, and select the most efficient communication link. We design to deploy the Deep Reinforcement
Learning in local data server to reasonable distribute computing and communication resources for
the whole vehicle networking system. Experiments show that our proposed algorithm can effectively
optimum the decision, achieving rational utilization of computing resources as well as Maximizing
spectrum utilization and its improvement is proved by simulation. The main contributions of our work
are as follows:

• We present a comprehensive system model that integrates localization, offloading, and vehicular
communication to optimize the performance of localization and edge computing system.

• We propose a data-driven approach using hybrid localization and DRL algorithm, which considers
both localization and offloading strategy, enabling efficient and adaptive decision-making in the face
of the dynamic vehicular environment.

• We demonstrate the effectiveness of our approach through extensive simulations, showing
significant improvements in system performance compared to existing methods.

3. System model

Figure 1: Vehiclular network framework

3.1. Vehicular network model
Vehicular edge computing network has different types of caching nodes, including vehicles, RSUs and
remote data center, shown in Fig.1. Suppose there are k vehicles and the computational power of each
vehicle can be expressed as fveh

k . There are N RSUs in total and the computation rate of each RSU
assigned to the task is fRSU

n,l . The computation rate of the system for a task assignment is the sum of
the local computation rate and the transmission rate of V to RSU. Let {C1, C2,C3, ..., CL} represent L
types of tasks and each content includes three features {sl, τl, βl}, sl and τl are the size of content and
maximum allowed access latency to obtain content, and βl is the popularity of content. The contents can
be computed in three different types of nodes: computing in the local vehicle, in other vehicles and in
RSUs.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

162

3.2. Communication and computation model
In the vehicle communication system, there are uplink and downlink communication between vehicles
and RSU. For the communication between vehicle i and vehicle m, the following equation is used to
calculate the upstream signal-to-noise ratio γi,m

γi,m =
pigi

ξi,mdκi,mσ2
i,m

(1)

where p is the transmission power between the two vehicles, g is the antenna gain at the car i, ξ is
transmission loss at a reference unit distance, d is the distance between the two vehicles, σ2

i,m is the
energy of Gaussian white noise introduced during transmission. The downlink signal-to-noise ratio γm,i,
satisfies the following equation:

γm,i =
pmgm

ξi,mdκi,mσ2
i,m

(2)

The uplink and downlink transmissions need to satisfy Shannon’s formula. Using the following formula
to calculate the uplink transmission rate ri,m, where Bi,m is the uplink channel bandwidth between
vehicle i and vehicle m.

ri,m = Bi,m log2 (1 + γi,m) (3)

The downlink transmission rate satisfies the following equation, where Bm,i is the downlink channel
bandwidth between vehicle i and vehicle m:

rm,i = Bm,i log2 (1 + γm,i) (4)

The uplink and downlink communication indexes between vehicle and RSU have similar relationship
with each parameter, and the signal-to-noise ratio γi,n, The uplink and downlink communication indexes
between vehicle and RSU have similar relationship with each parameter, and the signal-to-noise ratio
γi,n, γn,i of the uplink and downlink channels can be calculated by the following equations:

γi,n =
pigi

ξi,ndκi,nσ
2
i,n

(5)

γn,i =
pngn

ξi,ndκi,nσ
2
i,n

(6)

where p is the transmission power between the vehicle and the RSU, g is the antenna gain at the vehicle,
ξ is the transmission loss per unit distance, d is the distance between the vehicle and the RSU, and σ2

i,n is
the energy of the Gaussian white noise introduced during transmission. The upstream and downstream
transmission rates between the vehicle and the RSU are ri,n and rn,i, which satisfies the following
equation, where Bi,n is the uplink channel bandwidth and Bn,i is the downlink channel bandwidth:

ri,n = Bi,n log2 (1 + γi,n) (7)

rn,i = Bn,i log2 (1 + γn,i) (8)

The task content to be computed in vehicle communication is divided into different types and offloaded to
vehicle local computation, other vehicle computation or RSU computation, using the following equation
to compute the delay incurred in completing the computation of task l locally in the vehicle, where fveh

k
is the computation speed of vehicle k:

dl,i,i = ηl
λi,isl,i,i

fveh
i

(9)

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

163

where ηl obeys a two-point distribution Pr (ηl = 1) = βL,Pr (ηl = 0) = 1 − βL and βL is the
probability of generation, λi,i is the proportion of task l that car i offloads to local computation, sl,i,i is
the size of task l offloaded by vehicle i. When computational task l is offloaded to other vehicles, the
delay dl,i,m satisfies the following equation:

dl,i,m = ηl

(
λi,msl,i,m

fveh
m

+
λi,msl,i,m

ri,m
+

λi,msl,i,m
rm,i

)
(10)

When computational task l is offloaded to the RSU, fRSU
n,l is the computation rate assigned to task l

by the RSU, the resulting delay satisfies the following equation:

dl,i,n = ηl

(
λi,nsl,i,n

fRSU
n,l

+
λi,nsl,i,n

ri,n
+

λi,nsl,i,n
rn,i

)
(11)

The maximum delay generated by the three computational allocation methods is taken as the total delay
generated by the computational task l in vehicular communication, which means the total delay dl
satisfies the following equation:

dl = max {dl,i,i, dl,i,m, dl,i,n} (12)

The total system delay dtotal is the sum of the total delay dl of all tasks and all vehicles of the system:

dtotal =

K∑
i=1

L∑
l=1

dl (13)

The computational resource allocation obtained by feeding the tasks to be processed into the
deep reinforcement learning algorithm to obtain the delay minimizing computational offloading
scheme with the lowest latency, and the resulting computational resource allocation needs to satisfy
max {dl,i,i, dl,i,m, dl,i,n} ⩽ τl, where τl is the maximum delay. Therefore, the proposed vehicular edge
computing problem can be represented as minimize the total delay of the system. The mathematical of
the problem can be expressed as follows:

P0 : min

K∑
i=1

L∑
l=1

dl (14)

s.t. C1 : max {dl,i,i, dl,i,m, dl,i,n} ⩽ τl

C2 : fRSU
n,l ⩽ fRSU

n

C3 : sl = λi,isl,i,i + λi,msl,i,m + λi,nsl,i,n

C4 : 0 ⩽ βL ⩽ 1

4. Algorithm design
4.1. Hybrid Localization algorithm
A novel localization algorithm that incorporates both multilateration and Extended Kalman Filter
techniques. This hybrid approach dynamically switches between the two methods based on a user-
defined threshold. When the localization accuracy falls below the threshold, the algorithm automatically
switches to the multilateration algorithm, which excels in providing accurate position estimations under
certain conditions. Conversely, when the accuracy surpasses the threshold, the algorithm switches to
the more sophisticated Extended Kalman Filter technique, which offers improved performance and
robustness in challenging localization scenarios. This adaptive approach ensures optimal localization
results in a wide range of environments and conditions, striking a balance between accuracy and
computational efficiency.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

164

4.1.1. Multilateration algorithm The distance between the anchor i and tag t can be expressed as:

d2i = (xi − xt)
2 + (yi − yt)

2 + (zi − zt)
2 (15)

Organizing this nonlinear equation, we can obtain a linear equation of the following form:

AX = B (16)

A =

x1 − xt y1 − yt z1 − zt
x2 − xt y2 − yt z2 − zt

...
...

...
xn − xt yn − yt zn − zt

 (17)

x =

 xt
yt
zt

 (18)

Solving the above equation by the least squares method:

X =
(
ATA

)−1
AT b (19)

4.1.2. EKF algorithm The Extended Kalman Filter (EKF) has emerged as an effective choice for
localization, particularly when dealing with nonlinear motion models and sensor measurements. The
EKF is an extension of the Kalman Filter, which is applicable only to linear systems. Its key idea is to
linearize the nonlinear system at each time step using Taylor series expansion. By doing so, the nonlinear
system can be transformed into a linear system, allowing the use of the standard Kalman Filter for state
estimation. This makes the EKF well-suited for estimating the state of a vehicle in real-time, taking into
account nonlinearities in the motion model and sensor measurements, and providing accurate localization
even in challenging environments where GPS signals may be unreliable.

The state equation of the EKF can be expressed as

xk = f(xk−1, uk) + wk (20)

where xk is the state vector at time step k, f() is a nonlinear function representing the system’s state
transition, uk is the control input vector at time step k, wk is the process noise, representing the
uncertainty in the system model. The observation equation can be expressed as

zk = h(xk) + vk (21)

where zk is the measurement vector at time step, h() is a nonlinear function representing the observation
equation, vk is the measurement noise, representing the uncertainty in the measurement process.

The EKF algorithm proceeds through two main steps: the prediction step (time update) and the update
step (measurement update).

At each time step k, the EKF predicts the next state estimate and error covariance based on the state
transition model:

x̂k|k−1 = f(x̂k−1, uk) (22)

The linearization process involves calculating the Jacobian matrix Fk of the function f() with respect
to the state vector x evaluated at the predicted state x̂k|k−1. This matrix is used to update the error
covariance Pk|k−1 as follows:

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (23)

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

165

where Pk−1|k−1 is the error covariance matrix at the previous time step k − 1, Qk is the process noise
covariance matrix.

After obtaining a new measurement zk at time step k, the EKF uses the observation model to compute
the predicted measurement ẑk|k−1 = h(x̂k|k−1). The Jacobian matrix Hk of the function h() is evaluated
at x̂k|k−1 and used to calculate the Kalman gain Kk and update the state estimate:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (24)

hatxk = x̂k|k−1 +Kk(zk − ẑk|k−1) (25)

Finally, the error covariance matrix is updated using the Kalman gain and the observation model:

Pk = (I −KkHk)Pk|k−1 (26)

where Rk is the measurement noise covariance matrix.

4.2. Deep reinforcement learning algorithm
4.2.1. Algorithm Overview Deep Reinforcement learning is widely used in computation resource
offloading, especially in multi-edge computing. We proposed a Random-generated Deep Reinforcement
Learning(RG-DRL) to provide proportions of three offloading decisions: V2V computing, local
computing in RSUs, and offloading to the Cloud. It consists of online and offline stages.

Algorithm 1 Localization algorithm
Input: The total tasks generate at each time slot
Output: Original tasks with location information

1: Initialize: Generate L tasks with different priority
2: for i = 1, 2, ..., L do
3: if Priority > Upper − threshold then
4: Implement EKF algorithm and predict the position
5: end if
6: if Lower − threshold < Priority < Upper − threshold then
7: Implement multilateration algorithm and predict the position
8: end if
9: if 0 < Priority < Lower − threshold then

10: Remain the same
11: end if
12: end for

In online stage, a two-dimension state matrix S of a timeframe is obtained from dataset. Required
delay of each type of task τ1, τ2, ..., τL are claimed in the matrix. It is then expanded into a state vector
st as the input of policy network(PN). PN predict a best action vector x̂t of the timeframe. Then x̂t is
quantized into R nearby action vectors for Q-calculator to compute. The vector with highest Q-value Q∗

t

is select and is regarded as x∗
t . The corresponding vector pair {st,x∗

t } is combined and stored in replay
memory as input and target output of PN.

When a dozen of timeframes pass, online stage pauses, then offline stage starts. A batch of combined
vectors are extracted from replay memory to update PN coefficients. The loss function is mean square
error(MSE).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

166

4.2.2. Policy Network In our RG-DRL, the predicted action vector x̂t is obtained by policy π(θi),
which is a deep neural network. It consists of one input layer, two linear hidden layers and an output
layer that are fully connected. The input layer corresponds with the state vector st, and the output layer
corresponds with the predicted vector x̂t. Hidden layers are in size of 1024× 1, with ReLU as activation
function. The output layer, instead, is activated by Sigmoid in order to be normalized.

4.2.3. Random Generator and Replay Memory Conventional DRL Algorithms are compensate for
binary-choice policies. In offloading, however, without a foreseen action space, continuous policies are
difficult to be constructed. To create an action space for Q-value calculating, we applied a random action
generator(RAG) in the algorithm.

When an action vector x̂t is given by the policy network, it is copied into the RAG as the first element
xt,1 of action space. Then RAG randomly generates a series of new vectors xt,i near the former vector.
Each proportion in action vector is changed within a maximum range w. As shown in Fig.2, vectors on
the top on the RAG is similar to xt,1, whereas those at the bottom are different. After the action space is
filled up, the vectors are send to Q-value calculator. Q-value is defined as

Q = Q0 − Pdelay − Pmiss − Poverflow (27)

It consists of one initializing value Q0 and three penalties: delay penalty Pdelay reflecting delay
caused by the action vector, miss penalty Pmiss for missing the required delay, and overflow penalty
Poverflow for allocating too much resources.Penalties are calculated by

Pdelay =
K∑
i=1

L∑
l=1

λddi,l

Pmiss =

K∑
i=1

L∑
l=1

λmReLU (di,l − τl)

Poverflow =
L∑

k=1

λoReLU (x2k + x2k+1)

(28)

Each penalty has a weight λd, λm, λo to note its importance. Thus the best nearby action in RAG is

x∗
t = argmax Q∗(st,xi) (29)

The vector x∗
t indicates that a better proportion exists, hence it’s regarded as the target proportion in

the timeframe for PN to train and update coefficients θi.

4.2.4. Adaptive Settings In the first third of timeframes, learning rate α = 0.01 as default, randomize
range w = 0.1, both can be set manually. Then at each third of timeframes, learning rate and randomize
range are both divided by 2. In addition, RAG size Rt is adaptive basing on historical {R1, R2, ..., Rt−1}
to avoid unnecessary choices. Consequently, nearby actions in RAG differs from the predicted one
become less and PN is trained more finely as training going on.

4.2.5. Evaluation Note that new occasions may always appear in new time frames, bringing unforeseen
proportions to PN-DRL, along with possibility that exists in the real best action because of random
processes may be missed, which means conventional evaluations such as MSE no longer fit our
algorithm.

Hence, we use Q-ratio instead of loss to evaluate our RG-DRL

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

167

Q-ratio =
|Q̂t −Q∗

t |
|Q∗

t |
× 100% (30)

In which Q̂t refers the Q-value corresponds with x̂t.

Figure 2: The framework of deep reinforcement learning algorithm

Algorithm 2 DRL algorithm
Input: the state matrix S at each time-frame t, randomize coefficient ω for random generator, the size

of random action space R, total training epochs E, training interval ∆.
Output: Offloading proportion vector x∗

t with corresponding state vector s
1: Initialize: empty replay memory, empty random generator, randomize the parameters θi in the policy

network πθ.
2: for i = 1, 2, ..., E do
3: Predict the action vector x̂t
4: Copy x̂t to the random generator
5: Generate (K − 1) action vector {x2, x3, ... xK} within ω in each step
6: Compute Q corresponding each x in random generator
7: Select the optimal action x∗

t by x∗
t = argmax(Q)

8: Storage st and x∗
t in replay memory

9: if i mod ∆ = 0 then
10: Randomly sample a batch of data set from replay memory
11: Train the the policy network πθ with the batch, update θi with Adam optimizer
12: end if
13: end for

5. Numerical results
We validate our hybrid localization algorithm using a real dataset, the algorithm is implemented using
Matlab. We randomly generate a series of tasks and assign a value between zero and one. When this
value is greater than 0.3, it means that this task needs to get the real-time position. When the value is
between 0.3 and 0.6, it represents that the location of this task is realized by the multipoint localization
algorithm, and when the value is greater than 0.6, it represents that the location of this task is realized
by the EKF algorithm. A value less than 0.3 means that the task does not need location information. We
then send the results to the DRL algorithm for task offloading. Fig.3-4 shows the location maps of the
vehicles corresponding to the required location information after randomly generating 10 and 20 tasks,
respectively.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

168

Figure 3: The position of vehicles when 10 tasks were randomly generated

Figure 4: The position of vehicles when 20 tasks were randomly generated

For the result of tasks offloading, The Q-ratio of 100,000 and 1,000,000 timeframes are shown in
Fig.6 and Fig.7. Its MSE loss in 1,000,000 timeframes is shown in Fig.5.

Figure 5: MSE loss

Figure 6: The Q-ratio of 100,000 timeframes

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

169

Figure 7: The Q-ratio of 1,000,000 timeframes

It is clear that outliers always appear due to RAG, most possibly because the maximum Q-value
among RAG vectors happened to be close at 0. Additionally, MSE loss oscillates even at the end of
training, demonstrating our former analysis. However, after 1,000,000 timeframes,despite outliers, most
of the Q-ratio given by the trained PN are less than 0.2 in testing results, as shown in Table 1

Table 1: Distribution of output.

Q-ratio Proportion

0 ≤ Q-ratio ≤ 0.2 95.62%
other 4.38%

6. Future work
In the future, we hope to find or collect more accurate and comprehensive data to further validate our
methods. In addition, for the localization algorithm, we hope to design a fusion localization algorithm
that combines both GPS and UWB technologies.

For our DRL algorithm, one apparent problem is that the Q-ratio in RG-DRL does not converge very
fast and robust due to the instability caused by RAG as a sacrifice for continuous proportion prediction.
A practical solution might be some improvement in RAG generating mechanisms. storing some of the
nearby actions generated by RAG in replay memory. Another access to better results can be a change
in algorithm architecture, by replacing RAG and Q-value calculator with another DNN with random
generator, thus an actor-critic-like DRL will be constructed. This actor-critic RG-DRL shall be more
robust to outliers, as well as setting more appropriate weights to Q-value calculation.

7. Conclusion
This research proposes an innovative solution to address the challenges of precise location services
in Vehicular Networks within urban settings. The system combines a Hybrid Localization Algorithm
that integrates multiple methods for improved location accuracy with Deep Reinforcement Learning for
intelligent and adaptive offloading decisions based on real-time traffic conditions. Extensive simulations
demonstrate the effectiveness of our approach in reducing response times, optimizing offloading
strategies, and alleviating the burden of urban peak vehicle navigation pressure. This research paves the
way for enhanced location-based services and intelligent transportation systems in urban areas, providing
a foundation for future advancements in smart mobility and urban management.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

170

Acknowledgement
This paperhas two co-authors and their equivalent contribution to this paper are: Yankai Peng(design and
realization of hybrid locolization) and Zhiyuan Wang(design and realization of RG-DRL).

We would like to express our sincere gratitude to all those who have supported and assisted us
throughout this project. First and foremost, we would like to extend my heartfelt appreciation to our
supervisor, Professor Danijela Cabric. Throughout the course of this project, your unwavering guidance
and invaluable advice have been instrumental in helping us overcome challenges and achieve significant
progress. Your expertise and patient mentorship have had a profound impact on us, and we are grateful
for the lifelong benefits. We would also like to thank our teaching assistants for the help they have
provided us with, giving us a lot of academic advice and allowing us to develop a careful and rigorous
approach to our research! Lastly, I extend my appreciation to the institution that provided resources and
support for this project.

References
[1] F. Wang, G. Yin, L. Xu, W. Zhuang, Y. Liu and J. Liang, "Distance-Based Cooperative Localization of Connected Vehicles

Via Convex Relaxation Under Extreme Environments," 2021 5th CAA International Conference on Vehicular Control
and Intelligence (CVCI), Tianjin, China, 2021, pp. 1-5, doi: 10.1109/CVCI54083.2021.9661208.

[2] J. Li and N. Ma, "Design of Vehicle Cooperative localization System Based on Cooperative Communication Switching
Strategy," 2021 17th International Conference on Computational Intelligence and Security (CIS), Chengdu, China, 2021,
pp. 237-241, doi: 10.1109/CIS54983.2021.00057.

[3] F. Wen and T. Svensson, "Collaborative Localization with Truth Discovery for Heterogeneous and Dynamic Vehicular
Networks," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-5,
doi: 10.1109/VTC2020-Spring48590.2020.9128766.

[4] X. Chu et al., "Joint Vehicular Localization and Reflective Mapping Based on Team Channel-SLAM," in IEEE Transactions
on Wireless Communications, vol. 21, no. 10, pp. 7957-7974, Oct. 2022, doi: 10.1109/TWC.2022.3163071.

[5] S. Wen, J. Chen, F. R. Yu, F. Sun, Z. Wang and S. Fan, "Edge Computing-Based Collaborative Vehicles 3D Mapping
in Real Time," in IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 12470-12481, Nov. 2020, doi:
10.1109/TVT.2020.3019061.

[6] L. Gao, L. Xiong, X. Xia, Y. Lu, Z. Yu and A. Khajepour, "Improved Vehicle Localization Using On-Board Sensors
and Vehicle Lateral Velocity," in IEEE Sensors Journal, vol. 22, no. 7, pp. 6818-6831, 1 April1, 2022, doi:
10.1109/JSEN.2022.3150073.

[7] Z. Wang, J. Fang, X. Dai, H. Zhang and L. Vlacic, "Intelligent Vehicle Self-Localization Based on Double-Layer Features
and Multilayer LIDAR," in IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 616-625, Dec. 2020, doi:
10.1109/TIV.2020.3003699.

[8] Z. Wu and D. Yan, "Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge
computing network," in China Communications, vol. 18, no. 11, pp. 26-41, Nov. 2021, doi: 10.23919/JCC.2021.11.003.

[9] X. Peng et al., "Deep Reinforcement Learning for Shared Offloading Strategy in Vehicle Edge Computing," in IEEE
Systems Journal, vol. 17, no. 2, pp. 2089-2100, June 2023, doi: 10.1109/JSYST.2022.3190926.

[10] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin and S. Chen, "Vehicular Fog Computing: A Viewpoint of Vehicles as the
Infrastructures," in IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860-3873, June 2016, doi:
10.1109/TVT.2016.2532863.

[11] J. Park and K. Chung, "Collaborative Computation Offloading Scheme Based on Deep Reinforcement Learning,"
2023 International Conference on Information Networking (ICOIN), Bangkok, Thailand, 2023, pp. 110-115, doi:
10.1109/ICOIN56518.2023.10048957.

[12] C. Wu, Z. Huang and Y. Zou, "Delay Constrained Hybrid Task Offloading of Internet of Vehicle: A Deep Reinforcement
Learning Method," in IEEE Access, vol. 10, pp. 102778-102788, 2022, doi: 10.1109/ACCESS.2022.3206359.

[13] L. Lu, X. Li, J. Sun and Z. Yang, "Cooperative Computation Offloading and Resource Management for Vehicle
Platoon: A Deep Reinforcement Learning Approach," 2022 IEEE 24th Int Conf on High Performance Computing &
Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability
in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Hainan, China, 2022, pp.
1641-1648, doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00249.

[14] G. Ma, X. Wang, M. Hu, W. Ouyang, X. Chen and Y. Li, "DRL-Based Computation Offloading With Queue Stability for
Vehicular-Cloud-Assisted Mobile Edge Computing Systems," in IEEE Transactions on Intelligent Vehicles, vol. 8, no.
4, pp. 2797-2809, April 2023, doi: 10.1109/TIV.2022.3225147.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/44/20230578

171

