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Abstract. Plagiarism detection has become increasingly crucial in real-world applications, 

demanding precise identification of content similarity. This paper introduces a novel plagiarism 

detection approach. Building upon LSTM as the foundation, it employs an enhanced DE 

(Differential Evolution) algorithm and reinforces learning with the DQN algorithm for sample 

classification and training. Throughout the training process, gradual parameter adjustments are 

made with the aim of improving the model's efficiency and accuracy. 
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1.  Introduction 

With the widespread availability of extensive online information and the proliferation of powerful 

search engines, plagiarism has emerged as a substantial concern across diverse domains, particularly in 

the realm of education. Plagiarism can manifest both as a deliberate act and as an inadvertent oversight. 

The techniques employed for plagiarism detection also find applications beyond the educational 

sphere, extending into the field of information retrieval. 

Numerous strategies have been formulated to tackle the issue of plagiarism detection, with text 

distance-based methods being among them. These methods are designed to gauge the semantic 

similarity between textual components, thereby discerning potential instances of plagiarism. 

In recent years, deep learning approaches have gained popularity owing to their prowess in 

automated feature extraction. Nonetheless, methods grounded in machine learning continue to exhibit 

certain limitations. These drawbacks encompass a tendency to overlook semantic nuances and a 

limited flexibility in feature extraction, often relying on manually crafted rules. To surmount these 

challenges, meta-heuristic techniques, exemplified by Differential Evolution (DE), can be leveraged to 

enhance the learning process through optimization. 

In existing research, the solution proposed by Moravvej et al. stands out as a pioneering approach. 

They have introduced an innovative attention mechanism-based LSTM model for plagiarism detection, 

incorporating BERT word embeddings and a clustering-based DE (Differential Evolution) algorithm. 
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Their utilization of BERT word embeddings, a recently developed model applicable to multiple 

languages, represents a novel contribution to the field of plagiarism detection. Furthermore, they have 

devised a new DE algorithm to initialize weight values and have employed focal loss-based training to 

address issues related to imbalanced classification by learning from minority class instances. Their 

approach has exhibited superior performance compared to alternative methods and has been rigorously 

evaluated using three reference datasets: MSRP, SNLI, and SemEval2014. 

Moravvej et al. employed a pretraining method based on clustering and an improved differential 

evolution algorithm for their network. Additionally, they incorporated the use of Focal Loss to 

mitigate the class imbalance issue. However, the authors themselves acknowledged that Focal Loss 

has its limitations and may not represent the optimal choice. Class imbalance presents a significant 

hurdle to the accurate identification of plagiarism instances, as the number of negative samples 

significantly outweighs the positive ones [1].  

Given a dataset consisting of positive and negative pairs, where positive pairs 

represent instances of plagiarism and negative pairs represent non-plagiarism 

instances, our goal is to train a model capable of accurately classifying new 

instances of plagiarism. However, due to class imbalance, the model often leans 

towards the majority class, leading to a decrease in plagiarism detection performance. 

In this study, we introduce a novel approach centered around the Deep Q-Network (DQN) 

algorithm to address the challenge of class imbalance in plagiarism detection. Our approach harnesses 

the power of the DQN algorithm, which combines reinforcement learning with deep neural networks, 

to optimize the classification process. We provide a comprehensive methodology and workflow that 

leverage the DQN framework to enhance the performance of plagiarism detection models. 

The primary contributions of this study are as follows: 

1. Intervention with the use of the DQN algorithm in classifying samples helps to mitigate the class 

imbalance issue, reducing the disparity between positive and negative samples and resulting in a more 

balanced sample classification. 

2. Enhanced model efficiency in the plagiarism detection process leads to improved precision and 

accuracy. 

2.  Related work 

2.1.  Long Short-Term Memory 

In 2015, Google introduced a groundbreaking variant of recurrent neural network called the Long 

Short-Term Memory (LSTM) network, initially proposed by Hochreiter and Schmidhuber in 1997 [2]. 

This innovation revolutionized the capability to process longer sequences of speech and significantly 

improved the accuracy of speech recognition. 

Recurrent neural networks (RNNs) represent a category of neural networks employed for tasks 

involving sequential data, such as speech recognition and video processing [3]. They incorporate a 

feedback loop within the network, where output is fed back along with the next input. The hidden 

layers in these networks are dynamically determined to capture sequential dependencies in the data. 

The hidden layers are determined as 

 ht = H(Whhht−1 + Wxh xt + bh), 

and the output layer as 

 yt = H(Whyht−1 + by), 

When W and b are the weight matrix and bias term, and H is the recurrent hidden layer function. 

Long Short-Term Memory (LSTM) is a specialized type of recurrent neural network (RNN) 

primarily designed to address the challenges of gradient vanishing and exploding during training on 

long sequences. In essence, compared to regular RNNs, LSTM demonstrates superior performance in 

longer sequence contexts[4].The structure of an LSTM cell is illustrated in Figure 2.1. 
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Figure 2.1. LSTM Cell. 

By using the hidden layer as a memory unit, a long short-term memory network [5] is a specific 

kind of RNN that can handle  correlations in both short- and long-term sequences. The input gate it, 

the forget gate ft, and the output gate ot make up an LSTM memory cell. The memory cell's 

current state is ht, the data xt is each gate's input, and its prior state is ht−1. 

The input gate is updated as 
it = σ(Wixt + Uiht−1 + bi),  

the forget gate as  
ft = σ(Wf xt + Uf ht−1 + bf), 

and the output gate as  
ot = σ(Wo xt + Uoht−1 + bo), 

where σ is an activation function. The state update is then calculated as  
ht = ot tanh(ct), 

with  
ct = ftct−1 + it tanh(Wjxt + Ujht−1 + bj). 

An LSTM network is extended by a bi-directional LSTM (BLSTM) to handle input from both 

directions. Since the user may create a new sentence by rearranging the words in the source sentence, 

this can be helpful in the detection of plagiarism. 

2.2.  Differential Evolution 

A population-based optimization approach known as differential evolution mas introduced by Price et 

al.[6], has demonstrated its effectiveness in solving a diverse range of optimization problems[7,8]. 

Differential evolution commences with an initial population, comprised of three fundamental 

operations: mutation, crossover, and selection, often sampled from a uniform distribution.  

In this process, the crossover operation amalgamates the vectors of the mutant and the target, with 

the binomial crossover being a commonly utilized operator.Subsequently, the selection operator is 

employed to choose the superior solution from the trial and target vectors. 

Using this algorithm, new solutions can be generated, and the performance of the algorithm can be 

gradually improved by evaluating and comparing these solutions. It has been proven to achieve 

excellent optimization results in multiple domains. As a result, it has become a popular algorithm 

choice and is widely used in engineering,   science, and other fields. 

2.3.  Deep Q-Network 

Deep Q-Network (DQN) is a reinforcement learning algorithm originally introduced by Google 

DeepMind in 2015. It represents a variation of Q-learning, a well-known reinforcement learning 
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algorithm that relies on a table to store values for state-action pairs. In contrast, DQN employs a deep 

neural network to approximate these Q-values. 

The fundamental concept behind DQN is to leverage a deep neural network for acquiring a low-

dimensional representation of the game state. This representation, in turn, is used to estimate the Q-

values. The neural network undergoes training through a modified form of stochastic gradient descent 

known as "experience replay." This technique involves randomly sampling transitions from a replay 

buffer to mitigate correlations within the training data. 

In this method, the original text and the candidate answer are expressed in vector form, and the 

relationship between them is learned by using DQN model, that is, the probability of determining 

whether an answer is plagiarism. Then, the improved differential evolution algorithm is used to screen 

and evaluate the candidate answers, and the answer with the highest probability is selected as the final 

result Li et al[9]. proposed a deep reinforcement learning framework based on DQN to generate 

dialogue responses. The framework takes advantage of the high efficiency and stability of DQN to 

learn to generate appropriate dialogue responses through reinforcement learning methods. 

Experimental results show that this framework can produce conversation responses with higher quality 

and is more effective than other deep learning methods. 

3.  DE Algorithm design 

3.1.  Principles 

The DE (Differential Evolution) algorithm follows a fundamental principle encompassing four 

essential steps: initialization, mutation, crossover, and selection. At its core, the concept revolves 

around generating new solutions through mutation and crossover operations in each iteration, while 

retaining the more adaptive solutions through selection operations. Nonetheless, a critical aspect to 

consider lies in the delicate balance between exploration and exploitation within the search process, as 

this balance significantly influences the algorithm's performance. 

3.1.1.  Initialisation 

The DE algorithm begins by generating an initial population. Each individual in the   population is an 

n-dimensional vector of real numbers, where n is the dimension of the optimisation problem. Each 

component of the individuals is generated randomly within the definition domain of the problem. One 

potential issue with random initialisation is that it may lead to a poor distribution of individuals in the 

search space, which could affect the algorithm's efficiency. 

3.1.2.  Variants 

For each target individual in the population, the DE algorithm randomly selects three mutually 

exclusive individuals from the population. The differences of these three individuals are weighted and 

summed with the target individuals to obtain a variance vector. The variation operation introduces 

diversity in the population and facilitates global search. However, the choice of mutation strategy and 

the scaling factor F significantly influence the balance between exploration and exploitation. 

The mutation operator builds a mutant vector as 

 =  + F(  − ) 

Where  ,  ,   are three (different) candidate solutions randomly chosen from the 

current population, and F is a factor scaling. 

3.1.3.  Crossover 

The variance vector is crossed with the target individual to produce a test individual. The crossover 

operation is performed by randomly selecting some components of the parent individual and replacing 

them with the corresponding components of the variance vector. The crossover probability determines 

the degree of similarity between the test individual and the target individual. Although crossover helps 
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to maintain diversity, an inappropriate crossover probability may lead to either premature convergence 

or slow convergence. 

3.1.4.  Selection 

Compare the fitness of the test individual with that of the target individual. If the test individual has a 

higher fitness, it is replaced by the target individual. Otherwise, the target individual remains 

unchanged. The selection operation ensures that the best individuals of the population are retained. 

However, a too-greedy selection process  can lead to premature convergence, reducing the algorithm's 

ability to escape local optima. The selection operator then chooses the better solution from the trial and 

target vectors. 

3.2.  Algorithm Analysis 

3.2.1.  Advantages 

(1) Strong global search capability for complex non-linear, non-convex and multi- modal problems, 

which makes DE a versatile optimization technique [10]. 

(2) Faster convergence and better search efficiency compared to other evolutionary    algorithms 

due to its inherent simplicity and effective search mechanism [11]. 

(3) Fewer parameters, relatively easy to tune the parameters, and easy to implement, which 

contributes to its popularity in various applications. 

3.2.2.  Disadvantages 

(1) For some problems, the DE algorithm may fall into a local optimum solution, and it is difficult to 

reach a global optimum solution. This limitation is a common issue in many optimization algorithms, 

and finding a balance between exploration and exploitation remains a challenge. 

(2) In high-dimensional problems, the convergence speed of the algorithm may be slow, and the 

search efficiency may be reduced. Scaling the algorithm to high-dimensional search spaces requires 

more sophisticated strategies to maintain good performance. 

(3) For discrete optimisation problems and combinatorial optimisation problems, the  DE algorithm 

needs to be coded and decoded accordingly to suit the characteristics  of the problem, which can 

increase the complexity of the algorithm [12]. 

3.2.3.  Improvements and Applications 

In order to overcome the limitations of the DE algorithm, researchers have proposed many 

improvement strategies, such as adaptive parameter control [13] hybrid strategies [14], parallel 

computing and so on. These improvement methods have improved the performance of the DE 

algorithm to a large extent. Nevertheless, there is still room for innovation in designing new strategies 

and techniques to address specific challenges in various application domains. 

DE algorithms are widely used in function optimisation, constraint optimisation, neural network 

training, image processing, data mining and other fields [15]. The versatility of the DE algorithm and 

the continuous development of improvement strategies make it a promising tool for solving complex 

optimization problems in diverse areas. 

3.2.4.  Summary 

The Differential Evolutionary Algorithm, as an excellent global optimisation algorithm, has achieved 

good performance in many practical problems. However, there are still some limitations of the DE 

algorithm for some specific problems. In order to further   improve the performance of the algorithm, 

researchers should continue to focus on   the improvement and application of the DE algorithm, 

considering the balance between exploration and exploitation, scalability to high-dimensional 

problems, and adaptation to various types of optimization problems. 
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4.  Approach 

4.1.  Pre-Processing 

The significance of pre-processing in Natural Language Processing (NLP) systems, highlighting its 

critical role in identifying key characters, words, and sentences that ultimately influence the model's 

final outcomes. However, it's worth noting that employing incorrect pre-processing techniques can 

actually lead to a degradation in model performance. 

In our experiment, several common pre-processing techniques were applied, including stop word 

elimination and stemming. Stop words are essentially words that do not contribute significant meaning 

to the text, such as articles, prepositions, pronouns, and so on. These words tend to occupy space 

without enhancing the effectiveness of text mining applications. Consequently, the experimenters 

removed these stop words to enhance text efficiency and reduce the overall number of terms in line 

with Porter[16]. 

4.2.  Bert 

There are different techniques for word embedding, like Skip-gram [17]and GloVe [18]. Skip-gram is 

one technique and GloVe is another technique that uses matrix factorization. Both of these have been 

suggested to produce meaningful word representations for neural network models. 

In this experiment, they used something called a pre-trained language model (PLM)    called BERT. 

BERT is a bi-directional language model that's trained on large datasets like Wikipedia. It's designed 

to generate contextual representations of words, and it's  typically fine-tuned for specific classification 

tasks. 

4.3.  DQN-based Approach 

The DQN algorithm synergizes reinforcement learning with deep neural networks to enhance the 

decision-making process. We have chosen to embrace the DQN framework as a means to tackle the 

class imbalance issue within the context of plagiarism detection. Here's how we employ it: 

4.3.1.  Definition of the State space 

Firstly, we define an appropriate state space to represent the input information in the plagiarism 

detection task. The state space may include features extracted from the source and suspicious 

sentences, such as BERT embeddings or sentence representation vectors. Additionally, other relevant 

information such as sentence length and syntax structure can also be considered. 

4.3.2.  Design of the Action Space 

To address the class imbalance problem, it is necessary to design an action space that allows the model 

to dynamically adjust the classification decision threshold. This threshold determines the boundary for 

classifying plagiarism and non-plagiarism, thereby influencing the accuracy and recall of the 

classification results. By adjusting the decision threshold in the action space, a trade-off between 

precision and recall can be achieved to tackle the class imbalance problem. 

4.3.3.  Definition of the Reward Signal 

In DQN, a reward signal needs to be defined to guide the learning process. In the case of class 

imbalance, the reward signal should take into account both the accuracy of classification and the 

degree of class imbalance. One possible design for the reward signal is to encourage the model to 

successfully detect minority class instances (i.e., plagiarism instances) by assigning a higher reward 

value, while    assigning a lower reward value or penalty when the model misclassifies minority class 

instances as majority class instances (i.e., non-plagiarism instances). 
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4.3.4.  Design of the Q-Network Architecture 

Within the DQN framework, the Q-network accepts the current state as input and produces Q-values 

corresponding to each potential action. In our context, the action pertains to the adjustment of the 

classification decision threshold. Through the training of the Q-network, the model acquires the ability 

to learn the optimal policy for selecting the most appropriate action based on the current state. In our 

implementation, we employ a Convolutional Neural Network (CNN) as the architectural foundation 

for the Q-network [19]. 

4.3.5.  Training and Optimization 

During the training process, the model engages with the environment to accumulate experiences. In 

this interaction, the environment provides both the current state and a reward signal. These gathered 

experiences are subsequently employed to compute target values for the Q-values. The loss is 

determined by evaluating the disparity between these target values and the Q-values generated by the 

network. The weights of the neural network are then adjusted using the back propagation algorithm to 

minimize the loss function. 

To initiate the process, the parameters of the Q-network require an initial setup. In our approach, 

we initialize these parameters with randomly assigned weights and biases. The current state is then fed 

into the Q-network to obtain the corresponding Q-values. The classification decision threshold is 

determined via ε-greedy selection. The chosen action is executed, and we observe both the 

classification result and the reward signal. Subsequently, the parameters of the Q-network are updated 

based on this feedback, aiming to optimize the policy. The current state and action are transitioned to 

the next state and action for the subsequent iteration. 

To further enhance results, it is essential to continuously update the parameters of the Q-network. 

In each training step, we store the current state, action, reward, and next state in an experience replay 

buffer. Random batches of experience samples are then selected from this buffer to update the 

parameters of the Q-network. This approach fosters sample independence and diminishes training 

correlation. Adjustments to the algorithm's parameters are made based on the outcomes of training and 

feedback information. 

5.  Discussion 

5.1.  Evaluation and Performance Analysis 

The trained DQN model is evaluated on a benchmark dataset, and its performance in addressing the 

class imbalance problem in plagiarism detection is assessed using the F1 score evaluation metric. The 

results are compared with existing methods, including the model proposed in the original paper, to 

demonstrate the effectiveness of the DQN-based approach. 

5.2.  Policy Improvement 

After a certain number of training iterations, the model gradually learns the optimal policy. In the case 

of class imbalance, the model balances precision and recall by   adjusting the classification decision 

threshold in the action space. As the training progresses, the model adjusts the decision threshold to 

adapt to the characteristics of imbalanced data[20]. In each training step, the model inputs thecurrent 

state into the Q-network and selects the action (i.e., classification decision threshold) with the highest 

Q-value. The quality of the decision is evaluated based on the reward obtained from the selected action. 

By continuously interacting with the environment, collecting experiences, and adjusting the 

parameters of the Q-network, the model gradually improves its policy and becomes better equipped to 

address plagiarism detection issues on imbalanced datasets. 

6.  Conclusion 

In this study, we propose a DQN-based approach that presents a promising solution to the class 

imbalance issue in plagiarism detection. Building upon a novel plagiarism detection model that 
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incorporates BERT word embeddings, an attention mechanism-based LSTM approach, and an 

enhanced DE (Differential Evolution) algorithm for network pre-training, our method offers a fresh 

and effective strategy for addressing class imbalance, particularly in binary imbalanced problems, 

within the context of plagiarism detection. 

By harnessing the DQN algorithm, which amalgamates reinforcement learning and deep neural 

networks, our model can dynamically adapt its classification decision threshold. This adaptive 

mechanism significantly enhances the detection performance of plagiarism instances, particularly on 

datasets characterized by class imbalance. 

Our research has yielded positive results in improving the accuracy of plagiarism detection. 

However, on the other hand, superior algorithms may exhibit better performance in sample 

classification problems. Certainly, this warrants further exploration in our future research endeavors.  
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