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Abstract. The Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) 

is a well-known research endeavor in the field of child development. In this research, some 

special education services are offered to those students who need supplementary support in some 

aspects. In this paper, our study aims to estimate the average treatment effect on students’ fifth 

grade math scores and assesses the effectiveness of these special education services based on the 

ECLS-K dataset, through both machine learning methods and traditional methods. We introduce 

Donald Rubin’s causal model and Propensity Score Analysis in the part of traditional methods, 

and Ordinary Least Squares (OLS), Targeted Maximum Likelihood Estimation (TMLE), 

Bayesian Additive Regression Trees (BART), Generalized Random Forests (GRF) and Double 

Machine Learning (DML) in the part of machine learning methods. Finally, we employ 

Propensity Score Matching, OLS and BART to estimate the ATE. All estimated ATEs are 

significantly different from zero. The estimated ATEs are found to be minus, suggesting that 

these special education services may have a negative effect on students’ fifth grade math scores. 

Obviously, this conclusion is inconsistent with the original intent of these services, which aimed 

to have a positive impact. 

Keywords: ECLS-K, Propensity Score Matching, Ordinary Least Squares, Bayesian Additive 

Regression Trees, Negative Effect. 

1.  Introduction 
The Early Childhood Longitudinal Study, Kindergarten Class of 1998-99(ECLS-K) is a nationwide 

study that tracks a representative group of children from kindergarten through their later school years. 

The ECLS-K focuses on capturing children's educational journey starting from their initial enrollment 

in kindergarten [1]. In the kindergarten phase, the predominant primary disability among students was 

identified as a speech or language impairment, accounting for 2.3 percent of the student population [2]. 

As students progressed through each grade, the prevalence of specific learning disability as the primary 

impairment within the cohort showed a progressive increase, starting from 0.5 percent in kindergarten 

and reaching 6.5 percent in fifth grade [2]. Therefore, special education services are provided to students 

necessitating supplementary assistance in academic pursuits, social-emotional growth, and other 

associated domains [3]. 
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Causal inference plays a crucial role in various domains, including healthcare, marketing, and 

political science, offering valuable insights into real-world scenarios. The estimation of causal treatment 

effects, which represents a fundamental challenge in the field of causal inference, has been a subject of 

extensive investigation in statistics for a considerable period. Traditional treatment effect estimation 

may perform excellent in some cases, but such methodologies may encounter challenges in effectively 

managing extensive and multidimensional heterogeneous datasets [4]. In recent years, significant 

advancements have emerged that involve the integration of supervised machine learning (ML) 

techniques into estimators designed for estimating causal parameters, such as the average treatment 

effect (ATE). These innovations have had a notable impact and have transformed the field within the 

past decade. A study of an evaluation of a health insurance scheme on health care utilization in Indonesia 

demonstrated that ML can make their estimation more principled [5]. This paper focuses on the special 

education services towards the disability mentioned above, using both traditional methods and ML 

methods to estimate the ATE of these services on students’ fifth grade math scores, trying to assess the 

effectiveness of these services. 

We begin with traditional methods in causal inference. In this paper, we mainly introduce Donald 

Rubin’s causal model and Propensity Score Analysis. The former is one of the most classic frameworks 

in causal inference, and the latter is a commonly used method to estimate the causal impact of a treatment 

when random assignment is not possible. The propensity score can help to balance confounders between 

treated and control subsamples. We also describe one of the most commonly used methods in Propensity 

Score Analysis, the Propensity Score Matching (PSM). We use PSM to estimate the ATE. 

Then, we turn to ML methods used for estimating the treatment effect. Because they are easier to 

implement, and in some cases [4], they could still be effective while traditional methods are not, ML 

methods are prevalent in causal inference. Here we will introduce Ordinary Least Squares (OLS), 

Targeted Maximum Likelihood Estimation (TMLE), Bayesian Additive Regression Trees (BART), 

Generalized Random Forests (GRF) and Double Machine Learning (DML). We finally choose OLS and 

BART to estimate the ATE. 

For ML methods, we use original dataset to train models, and use the trained models to predict the 

value of outcome under another treatment condition. By doing this, we can get the outcome for each 

sample under two different treatment conditions.  Then we can compute the ATE for the population. 

However, it is not feasible to simulate a different treatment condition using traditional methods, as has 

been done with ML methods. Therefore, we employ PSM, a type of matching method, to estimate the 

ATE. We can conclude through the results that these services make negative effect to students’ fifth 

grade math scores, which is opposed to the original intention of these services. Besides, we also compare 

the methods used to estimate the ATE in this paper, BART is the best method, while PSM is the worst. 

2.  Literature Review 

Causal questions are intrinsically associated with specific interventions or treatments. Causal effects 

refer to the contrasts observed between potential outcomes under different treatment conditions, 

considering identical subjects [6]. However, it is obvious that we can’t put a subject in the treatment 

group or the control group at the same time, which means causal inference is inherently a challenge 

related to missing data, making it fundamentally intertwined with the issue of incomplete or unavailable 

information [6]. 

2.1.  Traditional Method 

2.1.1.  Donald Rubin’s Model. There are two main models in causal inference, Donald Rubin’s model 

and Causal Inference Directed Acyclic Graphs proposed by Judea Pearl.  
Donald Rubin’s causal model was initially proposed by Pall W. Holland [7]. Rubin’s causal model 

finds extensive application in various disciplines such as medicine, statistics, economics and public 

health. The approach devised by Rubin emphasizes the importance of precisely specifying potential 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/45/20241019

8



outcomes for each participant and the formulation of mathematically adequate assumptions to estimate 

the causal effect [8]. 

2.1.2.  Propensity Score Analysis. The propensity score represents the conditional probability of 

assignment to a particular treatment, given a set of observed covariates [9]. In a randomized study, the 

assignment of treatment to participants is random, ensuring that the treated and untreated groups are, on 

average, equally distributed across all pretreatment covariates, both observed and unobserved. However, 

in practical applications, it is often inevitable that individuals who receive the treatment may exhibit 

systematic differences compared to those who do not receive the treatment [10], this kind of 

circumstance is called observational study. In an observational study, there may be confounding factors 

that influence both the outcome and the treatment. This phenomenon is identified as confounding, and 

controlling for confounding is a crucial step in the modeling process. The aim of propensity score 

analysis is to derive propensity score estimates that successfully achieve covariate balance between the 

treated and control subgroups. Attaining complete consistency is challenging; hence, our objective is to 

estimate the propensity score in a manner that promotes resemblance between the distributions of 

covariates among the treated and control units within subsamples defined by similar values of the 

estimated propensity score [11]. Now, propensity score methods are frequently employed to estimate 

the causal effect of a treatment or intervention in situations where random assignment is impossible [10]. 

2.2.  Machine Learning Method 

2.2.1.  Ordinary Least Squares. Ordinary least squares (OLS), which was proposed by Adrien-Marine 

Legendre in 1806, is the commonest and the most typical method used to solve problems related with 

regression in traditional statistics. OLS can combine with some algorithms in ML, like Least Squares 

Support Vector Machines (LSSVM), which was proposed by J.A.K Suykens and J. Vandewalle in 

1999[14] combing OLS with Support Vector Machines (SVM). Sparse solution of LSSVM is a good 

algorithm when the data dimension is not pretty large and the requirement for data accuracy is not 

particularly high [14]. 

2.2.2.  Targeted Maximum Likelihood Estimation. Targeted Maximum Likelihood Estimation (TMLE) 

is a widely recognized and extensively documented approach, extensively discussed in numerous books, 

scholarly articles, and instructional materials. TMLE is a robust and efficient estimator that operates in 

two stages, incorporating double robustness principles [12], and it has shown great value of estimating 

the size of effect in physics, medical studies, economic and so on [13]. ML can be integrated into the 

TMLE procedure to facilitate the estimation of semiparametric models [12]. 

2.2.3.  Bayesian Additive Regression Trees. Hugh A. Chipman, Edward I. George and Robert E. 

McCulloch proposed the Bayesian Additive Regression Trees, a kind of Bayesian Trees method 

combines Bayesian theory with Additive Trees model [15]. The Bayesian Additive Regression Trees 

(BART) estimator procedure combines many single and shallow regression trees to construct a 

predictive model. Regression trees, an early form of ML, serve as the foundation for BART, which 

incorporates two key components: a regularization prior and a sum-of-trees model. BART follows a 

Bayesian framework, where estimation results in a posterior distribution [15]. 

BART has strong flexibility in nonlinear and interactive aspects of fitting data, moreover, the method 

based on Bayesian probability model has more advantages than pure algorithm, and the generation 

ability is stronger after multi-tree integration [15]. 

BART also performs well in practical application. For example, the single-tree model originated 

from 1980s has expanded to integration-trees model using a large group of trees, these models perform 

well in fitting nonlinear function regression relationship, especially BART. Bonato and his colleagues 

adopted BART in their recent research about survival prediction, they used BART in hierarchical 

covariate structure [15]. 
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In causal inference, BART has shown remarkable performance. The estimation of treatment effects 

using Bayesian Additive Regression Trees (BART) demonstrates significantly improved accuracy in 

nonlinear settings compared to other widely used approaches such as linear regression and propensity 

score matching with regression adjustment. Even in situations where the response surface exhibits 

linearity and an additive treatment effect, simulations have shown that the performance of BART is 

nearly indistinguishable from that of linear regression. Thus, BART is a straightforward and promising 

method that exhibits robustness and accuracy in estimating causal effects [16]. 

2.2.4.  Generalized Random Forests. Generalized Random Forests (GRF) was proposed by Susan Athey, 

Julie Tibshirani and Stefan Wager. It was built on the notion of random forests, a ML approach 

introduced by Breiman. The GRF approach is a nonparametric statistical estimation method that enables 

the fitting of various quantities of interest by solving a collection of local moment equations. Athey and 

colleagues further utilized the GRF framework to introduce novel techniques for three statistical tasks: 

nonparametric quantile regression, estimation of conditional average partial effects, and estimation of 

heterogeneous treatment effects using instrumental variables [17]. 

2.2.5.  Double Machine Learning. The Double Machine Learning (DML) framework, initially 

introduced by Chernzhukov, leverages modern machine learning techniques to estimate parameters. 

This approach is robust to model misspecification and effectively reduces bias. Building upon this 

framework, Yonghan Jung and colleagues extended its application scope by proposing a new and 

general class of estimators called DML-ID. These estimators are designed for any identifiable causal 

functions that exhibit DML properties. The authors have concluded that DML-ID estimators possess 

key properties such as debiasedness and doubly robustness. Furthermore, simulation results provided 

empirical support for their theoretical findings [18]. 

2.3.  ECLS-K 

The Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) is a longitudinal 

investigation that focuses on the initial educational experiences of children starting from kindergarten 

and continues to track their progress through middle school. The ECLS-K represents a significant 

milestone as it is the first comprehensive nationwide study to examine early education with such 

extensive longitudinal coverage. Its primary objective is to gather reliable and comprehensive data to 

effectively describe and comprehend the development and experiences of children in elementary and 

middle school grades. Additionally, the study aims to investigate the linkages between children's early 

experiences and their subsequent development, learning, and school experiences. The data collected by 

the ECLS-K furnish valuable insights into children's status upon school entry, their transition into the 

educational system, and their academic trajectory up to the 8th grade [3]. 

The longitudinal design of the ECLS-K dataset facilitates investigations into the associations 

between various factors encompassing family, school, community, and individual domains and their 

impact on academic achievement. Therefore, there are many related research. For example, based on 

the ECLS-K, Kang Jeehye’s study provide evidence in support of the assertion that corporal punishment 

has detrimental effects on children's social development [19]. 

3.  Methods 

3.1.  Propensity Score Analysis 

3.1.1.  Propensity Score. In a randomized study, participants are randomly allocated to either the 

treatment group or the control group. This random assignment guarantees that the distribution of 

covariates is balanced between the two groups, allowing for a direct comparison of outcomes. By 

comparing the outcomes of participants in these two groups, we can estimate the treatment effect. In 

contrast, in an observational study under typical conditions, the subjects are not assigned randomly. 
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Therefore, confounding arises when there exists an association between one or more covariates and both 

the assignment of treatment and the outcome. As a result, systematic differences may arise between the 

treated individuals and the control individuals prior to the administration of the treatment. Moreover, 

such differences would bias the actual treatment effect. 

We can use the average treatment effect for the treated (ATT) to estimate the ATE in a randomized 

study, but we can’t follow this rule in an observational study. Because in a randomized trial, the potential 

outcomes (𝑌(0), 𝑌(1)) and the treatment assignment 𝑍 are assumed to be independent, thus the ATE 

is identical to the ATT. This relationship can be formally expressed and estimated based on the available 

observed data: 

 𝐴𝑇𝑇 = 𝐸(𝑌(1) − 𝑌(0)|𝑍 = 1) = 𝐴𝑇𝐸 = 𝐸(𝑌(1)) − 𝐸(𝑌(0)) (1) 

However, we don’t have such a condition in an observational study. In such circumstances, it is 

important to note that the ATE and ATT differ, thereby preventing a direct comparison of outcomes for 

estimating the treatment effect. 

To solve the problems caused by the presence of confounding, propensity score analysis was 

proposed, and it circumvents many limitations in practice while other methods fail to do. The propensity 

score (PS) was initially introduced by Rosenbaum and Rubin and refers to the conditional probability 

of treatment assignment given a set of observed baseline covariates [7]. Propensity score methods are 

grounded in the causal model conceptualized by Rubin, providing a theoretical foundation for their 

application. 

Rosenbaum and Rubin introduced the concept of strong ignorability, which is characterized by the 

fulfillment of two distinct conditions in treatment assignment. We will discuss these assumptions one 

by one. 

The first condition, which can be called as “no unmeasured confounders”, stating that the potential 

outcomes (𝑌(0), 𝑌(1))  and the treatment assignment 𝑍  are conditionally independent given the 

observed baseline variables 𝑋. Hence, it can be inferred that when this condition is satisfied, all the 

confounding variables that influence both the outcome and the treatment assignment have been 

accounted for and measured in the set of observed baseline variables 𝑋. The second condition, which 

can be called as “probabilistic assignment”, stating that there exists a positive probability for a subject 

to be assigned to either the treated group or the control group. And the description of this condition can 

be expressed as the following formula: 

 0 < 𝑃𝑟(𝑍 = 1|𝑋 = 1) < 1 [20] (2) 

In a randomized study, the situation would be simple, therefore we mainly focus on observational 

study. In situations where the treatment assignment in an observational study is presumed to exhibit 

strong ignorability, Rosenbaum and Rubin demonstrated that unbiased estimates of ATE can be acquired 

by conditioning on the estimated propensity score, denoted as 𝑒(𝑥), which represents the conditional 

probability of treatment assignment given the set of confounding variables 𝑋: 

 𝑒(𝑥) = 𝑃 𝑟(𝑍 = 1|𝑋 = 𝑥) [20] (3) 

The propensity score serves as a balancing score, ensuring that the distributions of the variables 𝑋 

are equivalent between the treated and control groups at each value of the propensity score. This implies 

that the treatment assignment Z and the observed variables 𝑋 are conditionally independent, given the 

propensity score. 

Weighting, stratification and matching are three methods employed frequently in propensity score 

analysis in order to replicate the characteristics of a randomized trial with respect to the variables 𝑋 

[20]. We can generate an output dataset comprising a sample that has undergone adjustment using these 

three methods. Within this dataset, the distributions of the variables are equivalent between the treated 

and control groups. Therefore, the observed variables in both groups exhibit random differences, similar 

to a randomized study. Subsequently, this output dataset can be utilized to estimate the treatment effect 

in an outcome analysis. 
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3.1.2.  Propensity Score Matching. The PSM estimator imputes the missing potential outcome by 

utilizing the observed outcome of the nearest observations from the alternative group and computes the 

ATE as the simple difference in means between these predicted potential outcomes [21]. 

After implementing the PSM, a list of matched pairs including the control group and treated group 

can be obtained, with the exact number of pairs depending on the match parameter set in advance. 

Subsequently, the ATE can be estimated based on the values in the match list. 

3.2.  OLS 

OLS is a typical approach, and the following formula is its normal expression: 

 𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (4) 

𝑌  is called dependent variable, 𝑋𝑖  is called independent variable and 𝜀  is called residual 

mathematically. However, in ML, to connect them with computer, we can call 𝑌 as output and 𝑋𝑖 as 

input. 

When we turn to causal inference, we need to change the form of this expression because of the 

existence of treated group and control group, the updated expression is: 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜃𝑍 + 𝜀[12] (5) 

where 𝑍 is called exposure variable or treatment variable, and it’s a binary variable, which means 

its value is 0 or 1. 

Therefore, if we want to estimate the treatment effect of an experiment, we just need to compute the 

𝑌 for different values of 𝑍, here we use 𝑌(0) and 𝑌(1) to denote the value of 𝑌 when 𝑍 = 0 and 

𝑍 = 1. Then the treatment effect can be expressed as 𝑌(1) − 𝑌(0), moreover, the ATE can be expressed 

as 𝐸[𝑌(1) − 𝑌(0)]. 

3.3.  BART 

BART is a much more complex model than OLS. Therefore, here we consider using BART to estimate 

the ATE. 

3.3.1.  Decision Trees 

3.3.1.1.Brief Description. It is a common situation that we want to use several variables to classify 

objects into some classes, we can use a tree-structure to solve this kind of problems this time. One of 

the most important factors in Decision Tress is nodes, a tree is just a collection of nodes, where any two 

nodes are connected with at most one line or edge. A normal kind Decision Trees is called binary trees, 

each node can have at most two children nodes. The nodes without child are known as leaf nodes or 

terminal nodes, others are called internal nodes. Each internal node has a decision rule associated with 

it. When we face a practical problem, we can follow those decision rules and we will reach a terminal 

node, then our decision problem will be solved according to the information from this terminal node. 

3.3.1.2.Mathematic Definition. Above is a kind of figurative definition, and we will give a mathematical 

definition below. 

For the starters, we will introduce parameter 𝑇 . Here 𝑇  represents a binary tree comprising a 

collection of interior node decision rules and a collection of terminal nodes. Then we will turn to another 

parameter denoted as 𝑀.There are many values inside this parameter, and we denote them as 𝜇𝑖(𝑖 =
1,2, … , 𝑏) , which means we can express 𝑀  as 𝑀 = {𝜇1, 𝜇2, … , 𝜇𝑏}[22].𝑀  denotes a collection of 

parameter values that correspond to each of the 𝑏 terminal nodes of 𝑇. 

Mathematically we can say that a 𝑔 decision tree is defined by these two sets, and 𝑔(𝑥; 𝑇, 𝑀) 

represents the function that assigns the value 𝜇𝑖 ∈ 𝑀 to 𝑥. The prediction for a specific input vector 𝑥 

is performed in the following manner: If 𝑥 is linked to terminal node 𝑖 of 𝑇 through the sequence of 
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decision rules from top to bottom, it is then assigned the corresponding 𝜇𝑖 value associated with that 

specific terminal node. 

3.3.1.3.Regression Trees. We have known that Decision Trees can be used for a classification problem, 

where Mj contains classes or label-values. Besides, we can also use this method for regression. In such 

cases, we associate a terminal node with a real number like the mean of the data points. Of course, there 

are alternatives to the mean of the data points, like the median of the data points. In addition to returning 

exact values, we can also fit a linear regression to the data points, even more complex functions. 

3.3.2.  Ensembles of Decision Trees. This ensemble strategy is followed both by Bayesian methods like 

BARTs and non-Bayesian methods like random forests. When we try to build and train a model, it’s 

important to limit its complexity. Over-complex trees will likely not be very good at predicting new data, 

it’s common to introduce devices to reduce the complexity of decision trees and get a fit that better 

adapts to the complexity of the data. One solution relies on fitting an ensemble of Decision Trees, where 

each individual tree is regularized to be shallow. Then, each individual tree only explains a small portion 

of the data. 

3.3.3.  BART Model. BART Model is designed to estimate a general model for the outcome 𝑌, given by 

𝑌 = 𝑓(𝑧, 𝑥) + 𝜀, where 𝑧 represents the treatment assignment,𝑥 represents the observed confounding 

covariates, and 𝜀~𝑁(0, 𝜎2)[22]. BART consists of two components: a regularization prior and a sum-

of-trees model. We will discuss them below. 

3.3.3.1.Sum-of-Trees model. For causal inference, we need to modify the Decision Trees model 

mentioned above slightly, adding a parameter denoted as z, which is as same as z in f(z, x).To model 

or approximate f(z, x) = E(Y|x), the mean of Y given by x, we consider about building a sum of b 

regression trees. Then we can express the structure of BART as: 

 𝑓(𝑧, 𝑥) = 𝑔(𝑧, 𝑥; 𝑇1, 𝑀1) + ⋯ + 𝑔(𝑧, 𝑥; 𝑇𝑏 , 𝑀𝑏)  =  ∑ 𝑔(𝑧, 𝑥; 𝑇𝑖 , 𝑀𝑖)𝑏
𝑖=1 [16] (6) 

Therefore, our BART model can be formulated as follows:  

 𝑌 = ∑ 𝑔(𝑧, 𝑥; 𝑇𝑖 , 𝑀𝑖)𝑏
𝑖=1 + 𝜀 (7) 

In contrast to the model with a single tree, the terminal node parameter𝜇𝑖 , as determined by 

𝑔(𝑧, 𝑥; 𝑇𝑗 , 𝑀𝑗) represents only a portion of the conditional mean of 𝑌 given 𝑥 when 𝑏 >  1. These 

terminal parameters in the BART model can capture interaction effects when their assignment is 

dependent on multiple components of 𝑥, for example, there are more than one variable. Given that the 

structure of BART allows for trees of different sizes, the Sum-of-Trees model has the ability to 

incorporate direct effects as well as interaction effects of various orders. When each assignment of the 

terminal nodes depends solely on a single component of 𝑥, the Sum-of-Trees model simplifies to a basic 

additive function. Except this special case, the Sum-of-Trees model offers greater flexibility compared 

to conventional additive models that employ low-dimensional smoothers as components. 

3.3.3.2.A Regularization Prior. Given the inherent challenges of identification and the flexible nature of 

the Sum-of-Trees model, the prior distribution plays a crucial role in the estimation process. It serves 

two important purposes: it helps to regularize the overall fit of the model, preventing overfitting, and it 

constrains the influence of each terminal node assignment (Ti, Mi) . We can greatly simplify the 

complexation of prior specification by letting the Ti be independent and identically distributed (i.i.d), 

the μi,j(node j of tree i) be i.i.d given the set of T, and σ be independent of all T and μ. 

For the tree prior, the probability of a node being nonterminal is defined as 𝛼(1 + 𝑑)−𝛽, where 𝑑 

represents the depth of the node, 𝛼 ∈ (0,1), 𝛽 ∈ [0, +∞]. With this prior, we can control the depth of 

each node and their difference by tuning parameters 𝛼, 𝛽. However, this doesn’t mean we can tune 
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parameters randomly, we also need to correspond to the goal of BART that each 𝑇𝑖 is a “weak learner”. 

In the original paper of BART, these two parameters are selected as default, their values are 𝛼 =
0.95, 𝛽 = 2[23]. 

Regarding the prior on 𝜇,we begin by adjusting and scaling the values of 𝑌 in such a way that we 

assign a high prior probability to 𝐸(𝑌|𝑥) falling within the range of (-0.5, 0.5). Subsequently, we 

assume a normal distribution for 𝜇 with a mean of 0 and variance of 𝜎𝜇
2. For a given 𝑇𝑖  and a 𝑥, 

𝐸(𝑌|𝑥) is the sum of 𝑏 independent 𝜇′𝑠. The standard deviation of the sum is √𝑏𝜎𝜇. We select the 

value of 𝜎𝜇 such that zero falls within k standard deviations, ensuring that 0.5 also lies within this range, 

which means 𝑘√𝑏𝜎𝜇 = 0.5[23]. In practical problem, if we get such a 𝑘 (we denote its value as 𝑘0 for 

the description below), we can set 𝑘0 as the default choice and in practical applications, it is a common 

practice to transform the response variable by rescaling its observed values to fall within the range of -

0.5 to 0.5. Furthermore, it should be noted that as the number of trees (b) increases, the prior distribution 

leads to a greater shrinkage of 𝜇𝑖,𝑗 towards zero [16].  

For the prior on 𝜎, we have mentioned above that 𝜀~𝑁(0, 𝜎2), then we can choose its conjugate 

prior, Inverse Gama distribution, which means 𝜎~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(
𝑣

2
,

𝑣𝜆

2
). Normally,𝑣 ranges from 3 to 

10.Given 𝑣, we then need to choose 𝜆 to achieve the following formula, 𝑃(𝜎2 < �̂�2) = 𝑞.[23] Simple 

data-driven options of �̂� used in practice are the estimate obtained from a linear regression or the sample 

standard deviation of 𝑌, and normally used values of 𝑞 are 0.75,0.90,0.99[23]. 

3.3.4.  Estimating Causal Effects. BART can be employed for the estimation of average causal effects. 

We mainly focus on the conditional average treatment effect (CATE) and the conditional average 

treatment effect for the treated (CATT). Their representations are listed below: 

 𝐶𝐴𝑇𝐸 =
1

𝑛
∑ 𝐸(𝑌𝑖(1)|𝑋𝑖) −𝑛

𝑖=1 𝐸(𝑌𝑖(0)|𝑋𝑖) =
1

𝑛
∑ 𝑓(1, 𝑥𝑖) −𝑛

𝑖=1 𝑓(0, 𝑥𝑖) (8) 

 𝐶𝐴𝑇𝑇 =
1

𝑘
∑ 𝐸(𝑌𝑖(1)|𝑋𝑖) −𝑛

𝑖:𝑍𝑖=1 𝐸(𝑌𝑖(0)|𝑋𝑖) =
1

𝑘
∑ 𝑓(1, 𝑥𝑖) −𝑛

𝑖:𝑍𝑖=1 𝑓(0, 𝑥𝑖)[16] (9) 

We have known that the treatment effect at 𝑋 = 𝑥  is 𝑓(1, 𝑥) − 𝑓(0, 𝑥), here we define a new 

function as 𝑐(𝑥, 𝑓) to make only 𝑥 and 𝑓 contribute to the representation of the treatment effect. The 

joint posterior distribution of 𝐶(𝑓) = (𝑐(𝑥1, 𝑓), 𝑐(𝑥2, 𝑓), … , 𝑐(𝑥𝐾 , 𝑓))[16]. The posterior is obtained 

through Markov chain Monte Carlo (MCMC). In each iteration of the BART Markov chain, a new 

sample of 𝑓 is generated from the posterior distribution, so we denote the 𝑙th draw of 𝑓 as 𝑓𝑙, and its 

joint posterior distribution of 𝐶(𝑓) denoted as 𝐶𝑙 = 𝐶(𝑓𝑙). 

Now we can turn to estimate the CATE and CATT. Consider a set of 𝐾 observations, denoted as 

{𝑥𝑖}1
𝐾, representing the empirical distribution of 𝑥 from which we aim to estimate the average treatment 

effect (ATE). If we want to estimate for the CATE, we just need to calculate the mean of the vector 𝐶𝑙 

at each 𝑙 , 𝐶�̅� =
1

𝐾
∑ 𝑐(𝑥𝑖 , 𝑓𝑙𝐾

𝑖 )[16]. For the CATT, our attention would be solely directed towards 

{𝑖: 𝑧𝑖 = 1}. 

4.  Result 

For the starters, we need to describe the dataset and its variables briefly. The dataset we use to estimate 

the ATE has 7362 samples. The outcome variable Y of this dataset means fifth grade math score, and 

the exposure variable Z of this dataset represents special education services. As for the covariates X, it 

includes 34 variables in all, and it is divided into five groups [10]. 

In practice, we just need to replace Z with 1-Z, and substitute this new group of independent variables 

into the model trained by the original data. Then we can get a new group of values for Y. By doing this, 

with the original data, we could obtain the outcomes of one sample in two different situations, the subject 

is treated or not. With these results, we can compute the treatment effect for each sample as𝑌𝑖(1) −
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𝑌𝑖(0),where 𝑖 denotes the 𝑖th sample. Furthermore, we could also compute the ATE for this population 

as 𝐸[𝑌(1) − 𝑌(0)]. 
Here we choose PSM and ML methods, OLS and the BART model to estimate the ATE. The 

estimated results and their standard error are listed below. 

In fact, prior to analyzing the estimated values of ATE and their standard deviation, it is crucial to 

assess the necessity of the special education services, regardless of whether the ATE is negative or 

positive. Hence, besides the ATEs and their standard deviation, we also provide p-value of t-test for 

PSM and confidence intervals for OLS and BART. For BART, the estimated ATE is based on Bayesian 

approach, rather than the Hypothesis Testing Method of the Frequency School. For OLS, although 

conducting a significance test is reasonable, a confidence interval can provide an estimate of the true 

value range, which is more intuitive. Therefore, we utilize the confidence interval for these two models 

to appraise the necessity of the special education services by examining whether zero lies within the 

confidence interval.  

Table 1. Results of these three methods, including the significances of these methods, the estimated 

ATEs, the standard errors of estimated ATEs and the confidence intervals of estimated ATEs. Blank 

cells in the table indicate the absence of corresponding values for the respective method. 

Method Sig ATE Std CI 

PSM 6.66× 10−4 -4.501 27.149  

OLS  -6.251 15.989 (-6.616, -5.885) 

BART  -5.055 15.268 (-5.404, -4.706) 

5.  Conclusion 

This research aimed to identify the effectiveness of the special education services by estimating the ATE. 

Based on the ECLS-K dataset, we use both traditional method (PSM) and ML methods (OLS and BART) 

to estimate the ATE of the special education services.  

In the Results section, we have analyzed detailed methods used for each outcome to assess the 

necessity of the special education services. Consequently, we now direct our attention to the reported 

results. Based on the results obtained through PSM, we can infer that the ATE is significantly different 

from zero at a 95% confidence level. Regarding OLS and BART, both the confidence intervals exclude 

zero at a 95% confidence level, indicating that the estimated ATEs are significantly different from zero. 

Subsequently, we can proceed with the analysis of the estimated values. Through the ATE results 

listed above, we can conclude that these special education services have negative effect on students’ 

fifth grade math score. Therefore, if a school is going to take such services for its students, their fifth 

grade math score will decrease. Obviously, this kind of phenomenon is opposite to the original intension 

of these special education services. 

Besides, through the values of standard error form these three methods, we can see that the standard 

error of OLS and BART are only half of PSM’s, which means the estimates ATE of OLS and BART 

have much higher accuracy than PSM’s. Then we can conclude that ML methods are better than 

traditional method in this paper, which is correspond to what we expected. Moreover, we can conclude 

that BART is better than OLS after comparing their standard error, this is also reasonable. 

However, there are still limitations in our study. In fact, we actually have no idea about the real 

situation under another treatment condition, although we have simulated this through some models. 

Therefore, the bias is existed and we can only obtain an estimate for the ATE. The exact error or 

deviation is invisible. In the future, if we can develop models to simulate the situation mentioned above 

more than digital form, but a simulated reality, maybe this bias could be reduced to a negligible value. 
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