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Abstract. In this article, I propose four model classifications to summarize the characteristics 

and analyze the advantages and disadvantages of text generation models that have emerged in 

recent years, so as to give researchers an overall overview. The models based on the decoder 

only use the decoder for text extraction, and its output only depends on the previous output. The 

models based on the encoder-decoder, on the other hand, refer to both the encoder's output and 

the previous prediction. I've deliberately categorized prefix models and ensemble models to 

highlight their differences. I also present the current state of the text generation field and compare 

the advantages and disadvantages of several of these models. Finally, I summarize the difficulties 

encountered in the field of text generation and provide a research direction for the field. In the 

module Challenges, I focused on the problem of scarcity regarding datasets. The current 

solutions are given, as well as the efforts made by relevant workers on domain-specific datasets. 
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1.  Introduction 

Text generation is currently a very important but challenging task in the field of natural language 

processing, which aims to generate readable natural language text for more representative applications, 

such as dialogue systems, text summarization, and machine translation. 

At present, with the continuous development and popularity of neural network technology and 

Transformer, text generation techniques have been developed rapidly as never before in recent years 

and gradually applied to a number of fields. Currently, rule-based, statistical-based and deep learning- 

based text generation models have emerged, and have shown their unique performance and advantages 

in different application scenarios. There are many text generation models being produced, but there has 

not been a more comprehensive classification for overview. This thesis hopes to classify and summarize 

the models proposed in recent years, and analyze the advantages and disadvantages of each type. In this 

paper, I focus on four different model architectures to introduce text generation models, namely, decoder 

models, encoder-decoder models, prefix models and ensemble models. 

The decoder-based models such as GPT2[1], CTRL, etc. are all based on the input text going through 

the encoder for feature extraction, and then the decoder passes the extracted features and generates the 

corresponding output text. The encoder-decoder based models have better context understanding ability, 

such as T5[2], BART [3], whose decoders use the encoder output information to generate char- acters, 

which is the most common type of models. Both of these models require relatively large data sets, but 

both have excellent performance. In particular, the T5 model can implement many natural language 
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processing tasks by fine-tuning techniques. Prefix models can better capture the complexity and long-

term dependency of contextual information. This model mainly introduces mask matrix to perform 

random masking of some tokens. It can effectively improve the accuracy of the model for the following, 

and this method is also useful in encoder-decoder models. Ensemble models, on the other hand, use 

multiple model voting mechanisms to improve performance, but the algorithms are more complex. 

2.  Models 

2.1.  Based on the decoder 

Decoder-only text generation models, also called autoregressive language models, are mostly structured 

as a one-way recurrent neural network (RNN) or Transformer decoder network, where each time step 

uses the words or characters already generated before to generate the next words or characters. The 

model will define a probability distribution that, given the previously generated words, predicts the 

probability distribution of the next words so that one of the words is selected as the predicted output to 

be used as input for the next time step. The decoder-based model is usually trained using maximum 

likelihood estimation. In the training phase, for each time step, the model compares the true next word 

with the predicted next word and updates the model parameters based on the error of the comparison 

result. 

The GPT2 [1] model, unlike previous single-task datasets, uses a large corpus of text to learn the 

patterns of linguistic structure. Unsupervised learning was then performed with two unlabeled corpora, 

and then fine-tuned using an annotated task, using a decoder to predict the next character of the sequence. 

DialoGPT[4] adopts the same Transformer architecture as GPT-2 and pre-trains on large- scale dialog 

data, which allows DialoGPT to better learn the features and structure of dialog texts. A dynamic 

positional encoding method is used to better handle variable-length input sequences in dialog texts. A 

conditional layer normalization technique is used in the decoder part to introduce contextual information 

and generate more fluent text. PLANET[5] uses an autoregressive decoder first performs dynamic 

content planning by generating a latent representation (SNj) as a semantic guide, and then generates 

sentence words.CTRL1 controls text generation by including text labels as part of the input, and prefixes 

the specific content of each sequence with a description of the input type. Control instructions are added 

to the training data using a multilayer Transformer structure with a shallow joint training approach. 

The decoder-based model can handle variable-length sequence inputs and does not require alignment 

operations on the target sequence; however, it is prone to bias and noise accumulation due to the inability 

to use the information above. 

2.2.  Based on the encoder and decoder 

Encoder and decoder-based models are the most widely used text generation models. Encoder networks 

encode the input text data into a fixed-length vector, while decoder networks can use this encoded vector 

to generate multiple output text sequences. During training, the Decoder network uses a teacher-

forcing mechanism, where the correct output of the previous moment is used as input for the current 

moment, so that the model can better learn the correct language rules and semantics. 

Many models use the masked technique for data training, hoping to destroy information about the 

structure of the sequence and prevent the model from “relying” on such information. In BART [3] and 

MASS [6], the model blocks a word or multiple consecutive words at random, while in Pegasus [7], 

important sentences are blocked from the input document and generated together as an output sequence 

from the remaining sentences. In T5[8], a large label-free corpus is utilized, and static and dynamic word 

vector representations are used to encode the text. AraT5 [9] replaces URLs and user mentions with 

URL and USER to reconstruct the word list and implement the small language T5 model. Hierarchical 

Reinforcement Learning (HRL)[10] proposes a new approach that uses policy gradients to adjust the 

prior probability distribution of potential variables learned at the discourse level of a hierarchical 

variational model. The hierarchical policy network is combined with a variational self-encoder for 

decision making via MDP. DialogVED [11] uses a multi-layer transformer-based encoder to encode 
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dialog contexts, extends the elements of the original relative distance matrix in T5 to two-tuples, and 

uses n-stream self-attention to predict consecutive n tokens. at the same time, consecutive latent 

variables are introduced into the enhanced codec pre-training framework. AugNLG [12] combines a 

self-training neural retrieval model with a shot less learning NLU model to automatically create data 

from open text. Sort n-gram phrases based on TF-IDF scores to eliminate words that are too general. 

This model can better solve the problem of sentence length and multimodality, and can determine 

the meaning of sentences in the context more accurately. However, it takes longer time to train and 

is prone to overfitting. Moreover, it requires a high vocabulary and the generated results are difficult to 

analyze. 

2.3.  Prefix models 

In the process of generating text, a method of prefixing the target generation sequence is used. This 

prefixing method can control the generation direction of the generated sequence and make the generated 

sequence more consistent with the rule constraints of the task. 

KM-BART [13] uses a convolutional neural network to extract visual embeddings by special tokens 

to inform models with different input patterns, and uses an autoregressive one-way decoder to replace 

the general visual embeddings with special tokens as inputs. UNILM [14] uses the transformer structure 

to randomly mask the input sequence and let the model predict the words corresponding to the mask 

position, and let the model learn to determine whether the two input texts are consecutive contexts during 

the pre-training process.UNILMv2 [15] adopts the “no-prompt” strategy, replacing the first two tokens 

in the predicted position with [SEP], instead of replacing the first token with [MASK] as in UNILM, 

which improves the model generalization performance. GLM[16] uses a dynamic masking technique to 

dynamically mask the text during the prediction process, thus reducing data sparsity and improving the 

accuracy and generalization performance of the model. 

Prefix models use a forward computation approach that is more computationally efficient when 

dealing with long sequences. It also uses fine-tuning techniques to learn multiple natural language 

processing tasks simultaneously. However, this model has higher data requirements and the number of 

parameters of the model is large. 

2.4.  Based on the ensemble model 

The integrated model is a more comprehensive generation model that votes on the results generated by 

multiple models and selects the result with the most votes as the final output. It is also possible to 

integrate multiple generative models as sub-models into one neural network model, where each 

generative model is considered as a sub-model and the integrated model is responsible for integrating 

and fusing their generative results. 

ProphetChat [17] uses the simulation of the inference phase for future augmented response 

generation. The computed weights sum the output probability distributions of the two models for each 

step to select k responses, and for each response n possible features are given and the best k features are 

selected as the final values of the selector. PLATO [18], on the other hand, uses a latent behavior 

identification task to identify the probability values corresponding to target responses in a given context 

and training data, and to compute the posterior probability distribution. 

Due to the use of multiple models for computation, the integrated model possesses strong accuracy 

and stability, and improves the generalization ability of the model. However, it is not yet a mainstream 

method because of the large computational effort and the difficulty in controlling the correlation 

between submodels. 

3.  Conclusion 

In this article, I give an overview of the text generation models that have emerged in recent years. I 

introduce four categories of text generation models: decoder models, encoder-decoder, models, prefix 

models and ensemble models. Most of the models are based on the transformer, which can be adapted 

to different tasks, while the prefix models use the mask matrix to increase the generalization ability of 
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the model, so that it can predict the meaning of the following more accurately. The encoder-decoder 

models have excellent performance, and the fine-tuning technique based on the T5 model can be used 

for almost any text generalization task. 

However, the training dataset is not sufficient. Language models require large amounts of textual 

data for training, but many current datasets do not cover a large number of domains. For this reason, 

GPT2 proposed the WebText [1] dataset and Google proposed the C42 dataset, but there is still a lack 

of high-quality datasets. Another challenge is the underdeveloped domain-specific text generation. In 

some fields, such as medicine and law, specialized knowledge is required. Knowledge augmentation 

can be used to address this issue. Graph2Seq [19] uses graph neural networks for knowledge 

graph interpretation. Chen Xing[20] et al. used a specific penalty mechanism for topic word selection 

and importance determination with the help of topic words in generative topic models. 

Text generation is a very important area of natural language processing. It is foreseeable that all the 

above challenges will be solved in the future and new models will be generated. But the basic ideas are 

derived from the extensions of the above four models to improve the performance by more means. 
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