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Abstract. The traditional methods of art generation, such as texture synthesis and texture 

mapping, have been instrumental in crafting digital art for decades. They are used as artistic tools 

to design and map textures onto 3D models, thereby generating 2D images or animations. 

However, they can only generate simple, repetitive images. Thanks to the rapid development of 

deep learning and artificial intelligence, today’s text-to-image synthesis (T2IS) models can 

generate high-quality, realistic images matching the textual description given by the users. This 

review paper aims to present a comprehensive exploration of groundbreaking AI-based T2IS 

models in history. We start with an in-depth analysis of the fundamental concepts that underpin 

T2IS models, followed by an introduction to the primary, or vanilla, models that have served as 

the foundation for the fields’ development. Then, we delve into the examination of several 

groundbreaking AI-based T2IS applications, from GAN-based to Diffusion-based models, 

demonstrating their ability to produce high-quality, contextually accurate images from textual 

descriptions, along with their strengths and weaknesses. In the end, we will discuss the current 

challenges and potential future directions in the realm of T2IS.  

Keywords: Text-to-Image Synthesis, Generative Adversarial Networks, Diffusion Models, 

Variational Autoencoders, Diffusion Models. 

1.  Introduction 

The technology of Artificial Intelligence Generated Content (AIGC) has grown rapidly and gained huge 

popularity and social attention due to its astonishing ability to content generation in various forms, such 

as text, pictures, audio, and video [1]. Many AI content generation products, such as ChatGPT [2], are 

acknowledged to produce high-quality content at a fast pace. AI-based text-to-image synthesis (T2IS) 

technologies, as part of AIGC technology, also gained huge popularity due to the dramatic progress that 

it has achieved. Users can obtain photo-realistic images simply by providing the AI-generated image 

model with textual descriptions of the image. 

The quality of AI-generated art has also been acknowledged by professionals. The first auctioned 

piece of AI-generated art, the Portrait “Edmond de Belamy”, was created with Generative Adversarial 

Network (GAN) [3]. It was sold for $432,500 at Christie’s auction. In 2022, an AI-produced artwork 

called “Théâtre D’opéra Spatial” by Jason M. Allen (Figure 1) won the art award at the Colorado State 

Fair’s annual art competition. This artwork is created using the AI-based T2IS product Midjourney. 

Another artwork also generated by Midjourney, “The Electrician” by Boris Eldagsen, clinched the 2023 

Sony World Photography Awards, organized by the World Photography Organization. The artist later 

declined this award because he maintained that the competition couldn’t deal with AI-generated artwork. 
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On the other hand, the contest organizer admitted their unawareness about the degree to which AI was 

employed in the creation of the artwork. 

 

Figure 1. Images generated by Midjourney won the award. Left Théâtre D’opéra Spatial”. Right “The 

Electrician”. 

As shown in Figure 1, the artwork gives the impression of a vintage photograph, depicting two 

women, with one squatting behind the other. Additionally, there’s a hand reaching out towards the 

woman in the forefront.  

This magic of image synthesis is made possible through deep neural networks [4]. In the early stages, 

image synthesis was not based on deep learning-based techniques. The traditional methods, such as 

texture synthesis [5] and texture mapping [6], were unable to deliver complex images. Later, the deep 

learning-based image synthesis models, such as GANs [3], Variational Autoencoders (VAEs) [7], and 

diffusion generative models [8], were established and offer more precise control over the image 

generation procedure and the capability to create high-resolution images. 

T2IS is a deep-learning-based image synthesis conditioned on text descriptions, which has been a 

focal point of ongoing research in the field of computer vision. Given a text prompt from users, the 

models can synthesize high-quality and realistic images like the above; at the same time, the generated 

images align with the text prompt well. This paper aims to review and discuss the recent findings and 

techniques related to AI-based T2IS. The papers mentioned are as follows. In Section II, the related 

concepts of T2IS models are discussed. In Section III, the primary/vanilla models that are used in T2IS 

models are introduced. Section IV presents several promising T2IS models built upon those primary 

models. Section V discusses the limitations and future direction of T2IS models. Finally, this paper is 

concluded in Section VI. 

2.  Related Concepts 

2.1.  Artificial Intelligence Generated Content 

Artificial Intelligence Generated Content (AIGC) is a method of content generation: a trained model, 

learning to understand and replicate the statistical distribution of training data [9], is built to 

automatically generate content with high production efficiency, quantity, and quality. Today, there are 

three modes of content generation: Professionally-Generated Content (PGC) mode, User-Generated-

Content (UGC) mode, and AIGC mode [10]. In PGC mode, content is created by artificial force. The 

generated content produced by professional groups guarantees high quality; however, reaching the 

quantity standards requires lots of time and work. In UGC mode, the content is generated by the users 

through platforms. It provides data availability and simplicity of content generation but loses the quality 

due to users’ large range of skill levels. AIGC mode overcomes the challenges of the first two. 
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2.2.  Artificial Intelligence Model 

AI models refer to a computer program that is designed to perform tasks that are related to human 

intelligence, such as recognizing patterns and making predictions. A model is built with a machine 

learning algorithm and a large dataset. In the training process, the dataset is used by the model to train, 

validate, and test itself, aiming to improve its performance by updating the internal parameters of the 

model. The algorithm determines how the model is trained. 

Different AI models, trained with different algorithms and datasets, are built to solve different types 

of jobs. Some models’ training relies on algorithms of natural language processing and a large dataset 

of text to understand human languages, such as Recurrent Neural Networks or Transformer models. The 

models discussed in this paper are basically trained to comprehend human prompts and synthesize 

images given with textual data. 

2.3.  Evaluation Methods of T2IS 

Typically, there are two primary standards for evaluating T2IS models: image quality and text-image 

alignment accuracy. Fréchet Inception Distance (FID) [11] is a common metric used to assess image 

quality quantitatively. It measures the Fréchet distance between images in the real world and the ones 

synthesized by models. The image synthesized with high fidelity has a smaller FID. To evaluate the 

text-image alignment accuracy, inception score (IS) [12], CLIP score [13], or R-precision [14] are 

widely applied. There are also evaluation benchmarks with human rates involved, such as DrawBench 

[15], UniBench [16], and PartiPropts [17]. 

3.  Primary Models for Image Synthesis 

Currently, most of the T2IS models are built upon five primary models: Transformer [18], CLIP [19], 

Generative Adversarial networks (GANs) [3], Variational Autoencoders (VAEs) [7], and Diffusion [20]. 

This section briefly discusses their architecture and some noteworthy methodologies and techniques 

employed in these models. 

3.1.  Transformer 

Today, transformer architecture [18], which was originally proposed by Vaswani et al. (2017) for NLP 

tasks, is a crucial component in numerous generative models [21]. It is composed of encoder-decoder 

stacks, each containing N identical layers, as shown in Figure 2. The transformer model also abandons 

the use of recurrence and convolution layers. 
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Figure 2. The encoder-decoder structure of the Transformer architecture [18]. 

3.1.1.  Positional Encoding. Instead of using traditional recurrence to capture the relative words’ 

position information, the transformer utilizes positional encoding to inject the positional information 

into the input embedding. The transformer model first turns each word of the input sequence into a 

dimensional embedding vector. Then, the positional encoding vectors, which share the same 

dimensionality as the input embeddings, are generated by using sine and cosine functions with varying 

frequencies. Finally, the positional encoding vectors are added to the original input embeddings. By 

doing so, the input embeddings have the positional information to the system. 

3.1.2.  Encoder-Decoder. The encoder receives the input embeddings, which have undergone positional 

encoding, and produces hidden representations. These hidden representations are then used by the 

decoder to generate the output. Both the encoder and decoder layers are built using a multi-head self-

attention mechanism, coupled with a fully connected feed-forward network. 

3.1.3.  Self-attention Mechanism. The self-attention mechanism serves as the central element of 

transformer models. Its role is to learn how to assign diverse weights to tokens depending on their 

respective relevance [21]. In the proposed transformer [18], scaled dot-product attention is used. The 

attention mechanism, shown in Equation 1 below, takes three vectors: 𝑄, 𝐾, and 𝑉. These vectors are 

generated by multiplying the input with weight matrices 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣. These weight matrices are 

updated in the training process for optimization.  

Vaswani et al. (2017) [18] found it beneficial to apply multi-head attention, which is the extension 

of the self-attention mechanism, shown in Equation 2: linear activations are applied h times to the vectors 

𝑄, 𝐾, and 𝑉; each time, different learned linear representations are used. Each of the h projections 

produces the outputs in the same manner as the self-attention mechanism parallel. These outputs are 

then concatenated and projected to generate the final result.  
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Equation 1: 

 
Equation 2:  

 

3.2.  CLIP 

3.2.1.  Significance. CLIP, which stands for Contrastive Language-Image Pre-training, released by 

OpenAI in 2021 [19], is the core component of many state-of-the-art T2IS models, such as DALL-E 

[22] and Stable Diffusion [23]. It is a joint language-vision model that efficiently learns visual concepts 

from natural language supervision [24]. As a result, given a list of text descriptions and an image, it can 

predict the most relevant text description with that image. The ability to associate natural language with 

visual information is the main reason that it is applied widely in many T2IS models.  

3.2.2.  Methods. The goal is to learn transferable visual models from natural language supervision [19]. 

The training involves two stages: contrastive pre-training and zero-shot classification. In the first stage, 

a text encoder and image encoder are trained jointly with a large dataset of 400 million text-image pairs 

collected from the internet. As a result, the model can predict which one out of 32,768 randomly selected 

text descriptions is best associated with one given image. Once the pre-training is complete, natural 

language servers as a means to reference the visual concepts that have been learned, facilitating the 

model’s zero-shot adaptation to subsequent tasks. 

3.3.  GAN 

GANs, first proposed by Goodfellow et al. in 2014 [3], typically have two trained networks: the 

discriminator and the generator, training and competing against each other at the same time. The 

discriminator is trained to distinguish the synthetic images from the authentic ones, while the generator 

is trained to generate more realistic images and try to fool the discriminator. One way to perceive the 

generator network is as a mapping tool that takes data from a representation space, known as the latent 

space, and converts it into data space, with our focus primarily being on images; the discriminator 

network can be considered as a function that maps image data to a probabilistic, reflecting the likelihood 

of the image originating from the actual data distribution rather than the synthetic data from the generator 

network. 

The generator cannot directly access the real data sample but learns via interaction with the 

discriminator. The discriminator can access both the synthetic and the authentic data samples. It receives 

error signals based on understanding whether the image originated from the real collection or was 

generated. This same error signal, transmitted through the discriminator, can also train the generator, 

thus improving its ability to create higher-quality images [9]. 

3.4.  VAE 

3.4.1.  Traditional autoencoder. An autoencoder is a particular kind of neural network engineered 

primarily for converting input data into a compressed and meaningful representation in the encoder part 

of the network and then decoding it back into a form that closely resembles the original input as much 
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as possible in the decoder part [25]. Traditional autoencoders could be better at generating new image 

data due to the simplicity of latent space.  

3.4.2.  Architecture. Variational Autoencoders (VAE), following the Variational Bayes Inference 

proposed by Kingma et al. in 2013 [7], present a probabilistic approach to defining an observation in the 

latent space. As a result, instead of creating an encoder that produces a singular value for each attribute 

of the latent state, the encoder is constructed to define a probability distribution for each latent attribute.  

The encoder is supposed to generate the latent variables 𝑧 that follow the optimized probability 

distribution to help the decoder learn efficient and meaningful latent representations of the input data. 

The encoder network turns the input samples x into parameters (mean and variance) of a probability 

distribution for each latent variable. Then, a random sample from a standard normal distribution (mean 

is 0 and standard deviation 1) is generated. The latent variable 𝑧 for each dimension is generated using 

the following formula: z = μ + σ * ε, where ε is a noise variable ∼ N (0, 1). Finally, the decoder network 

maps these latent variables back to the input data that resembles the original input [7]. 

The parameters of the model are trained by two objective functions. The first one is Reconstruction 

Loss. This loss measures how well the decoder can reconstruct the original input data from the latent 

representations generated by the encoder. A lower reconstruction loss means the VAE is better at 

reproducing the original data, suggesting that the latent representations capture the important features 

of the data. The second one is called KL Divergence. This part of the loss function measures the 

difference between the learned latent distribution (output of the encoder) and a prior distribution, 

typically a standard normal distribution. This loss encourages the encoder to generate latent variables 

that follow the chosen prior distribution [7]. 

3.5.  Diffusion 

The main idea of the diffusion model is that it learns to invert a procedure that progressively deteriorates 

the structure of the training data [20]. The process involves two main phases. The first phase involves 

several steps where low-level noise is incrementally added to each input image, with the noise’s scale 

differing at every step. This procedure gradually degrades the training data until it transforms into pure 

Gaussian noise. The second phase reverses this “forward diffusion” process. This phase is carried out in 

a similar step-by-step manner but in reverse order. It sequentially removes the noise, eventually 

recreating the original image. During inference, images are produced by gradually reconstructing them 

from random white noise. A neural network, typically built on a U-Net architecture, estimates the noise 

subtracted at each step, ensuring the dimensions are preserved throughout the process. 

4.  Pioneering AI-Based Text-to-Image Synthesis Models 

4.1.  GAN-Based 

4.1.1.  Stacked Architecture: StackGAN and StackGAN++. Though GANs proposed by Goodfellow et 

al. [3] achieved good results, the training procedure is typically unstable and greatly influenced by the 

selection of hyper-parameters; in addition, it has difficulty in generating high-resolution (e.g., 256 x 256) 

images [26]. StackGAN, by Zhang et al. [26], is proposed to solve the challenges by decomposing the 

problem into simpler sub-problems through a sketch-refinement process.  

StackGAN contains two-stage generative adversarial networks. In the Stage-I, the GAN outlines the 

basic shape and colors of the object based on the provided text description, generating low-resolution 

images. In the second stage, GAN takes results and text descriptions from the Stage-I as inputs and 

generates high-resolution images with photo-realistic details. As a result, the Stage-II GAN has the 

capability to correct errors in the Stage-I outcomes and introduce convincing details through the refining 

procedure. 
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Han and his colleagues also introduced a Conditioning Augmentation technique. This approach 

promotes smoothness in the latent conditioning space, enhancing the variety of the generated images 

and stabilizing the training of the conditional GAN. 

StackGAN++ [27] improves upon the original StackGAN model by incorporating a multi-stage 

generation process. Rather than just having two stages, StackGAN++ can have multiple stages, each 

refining the image at an increasing resolution. This allows the model to generate more fine-grained 

details in the images. 

4.1.2.  AttnGAN. The early GAN-based T2IS, such as StackGAN and Conditional GAN [28], encodes 

the textual prompt into a single vector, which was then used as the conditional element; however, this 

approach has limitations in generating images with complex content because it misses fine-grained word 

level information for image synthesis. AttnGAN, proposed by Xu et al. [29], solved this problem. 

This model employs an innovative attentional generative network that creates intricate details at 

various image sub-regions by focusing on the relevant words in the natural language description. 

Additionally, a sophisticated attention-based multimodal similarity model is implemented to compute a 

detailed image-text matching loss, which assists in the effective training of the generator. 

The AttnGAN that’s being proposed markedly exceeds prior benchmarks, improving the highest 

known inception score by 14.14% on the CUB dataset and by an impressive 170.25% on the more 

demanding COCO dataset. 

4.1.3.  DF-GAN. Both stacked architecture [26, 27] and AttnGAN [29] made impressive results, but 

their architecture has drawbacks. The stacked architecture brings entanglements between generators of 

different image scales. The AttnGAN, due to its architecture, has a weakness in maintaining semantic 

consistency and making full use of the textual data [30]. 

DF-GAN [30] is proposed to address the limitations of the existing GAN-based models. It has a 

simplified backbone that uses only one pair of generators and discriminators to synthesize high-quality 

images directly, making the training process more efficient. It uses a new regularization technique called 

Matching-Aware zero-centered Gradient Penalty to promote the generator to synthesize more realistic 

and text-image semantic consistent images without introducing extra networks, reducing the training 

complexity and computational cost. The system also employs an innovative component known as the 

Deep Text-Image Fusion Block, designed to skillfully harness the semantic aspects of text descriptions. 

This module deeply integrates text and image features during the generation phase, leading to enhanced 

image quality and greater semantic coherence. 

4.1.4.  VQGAN+CLIP. CLIP [19], as discussed in the previous section, can make a positive impact as it 

is combined with generative models, such as GANs. When deployed as a discriminator element within 

a generative deep learning framework, CLIP can direct the generator component to create digital images 

that optimally correspond to a provided text prompt.  

VQGAN-CLIP [13], which was a popular GAN+CLIP-based T2IS model in 2021. In this model, 

VQGAN (Vector Quantized Generative Adversarial) [31], an effective and expressive model that 

combines convolutional neural networks with transformer architectures, serves as a generator producing 

high-quality images. It interacts with CLIP, which guides the generator to produce images that match 

text prompts well. 

4.2.  Transformer-Based 

DALL-E, or Craiyon, proposed by Ramesh et al. in 2021 [22], is a zero-shot text-to-image generator 

that autoregressive models the text and image tokens as a single stream of 1280 tokens, where 256 of 

them are text tokens, and 1024 of them are image tokens. It generates images from a simple text prompt 

from the users and outputs only one that best matches the users’ requirements. 

The training of DALL-E has two stages. In the first stage, a discrete variational autoencoder (dVAE) 

is trained to compress each 256 x 256 RGB image into a smaller-sized 32 x 32 grid of image tokens. In 
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the second stage, a BPE text encoder is utilized to generate 256 text tokens with the 32 x 32 = 1024 

image tokens, and then a Transformer is trained to autoregressive models these text and image tokens. 

In addition, CLIP [19] is utilized for the re-ranking purpose during the inference stage. As a result, the 

model receives a textual description, predicts the image tokens, and then decodes them into an image 

during inference. The result follows a zero-shot fashion, which means that it can synthesize images that 

weren’t encountered during the training phase. 

Ramesh et al. [22] compared DALL-E with three prior approaches, which are AttnGAN [29], DM-

GAN [32], and DF-GAN [30], in terms of Inception Score [12] and Fréchet Inception Distance [11]. 

The results show that with sufficient data and scale, the proposed approach is competitive with previous 

domain-specific models. Specifically, the proposed approach achieves state-of-the-art results on the 

CUB and Oxford-102 datasets and competitive results on the COCO dataset.  

Even though DALL-E achieves good results compared to the prior works, it is only good at 

generating cartoonish images. It falls short in precision while producing images that closely resemble 

real-life photography. 

4.3.  Diffusion-Based 

Recently, it is widely believed that diffusion-based models outperform GANs-based models, according 

to the paper [33] released in 2021. In recent years, more and more state-of-the-art diffusion-based T2IS 

models have been launched by multiple companies and gained popularity.  

4.3.1.  GLIDE. GLIDE, released by OpenAI in 2021 [34], is classifier-free guidance diffusion-based 

T2IS model. This model is trained on the same dataset as DALL-E [22], which is a CLIP guidance-

based model and generates better-quality images. [34] shows that classifier-free guidance results in an 

improved trade-off between Precision/Recall and the Inception Score/Fréchet Inception Distance; 

GLIDE samples, compared to those generated by DALL-E [22], are more photo-realistic and have better 

conformity with the captions; in addition, the model gets competitive zero-shot FID score on the MS-

COCO dataset. 

In addition, GLIDE is capable of image inpainting: the user can edit a specified region on an image 

with a text description. 

4.3.2.  DALL-E 2. One year later, when DALL-E [22] was released in January 2021, DALL-E 2 [35], 

also released by OpenAI, came out, generating a more realistic and correct image with greater resolution. 

According to the survey, more users prefer the image quality produced by DALL-E 2 than DALL-E. 

DALL-E 2 [35] leverages the robust representations of images learned from the CLIP text encoder, 

the contrastive models. A two-stage model is proposed: a prior model that transforms the text embedding 

into a CLIP embedding and a decoder that generates an image conditioned on the image embedding. 

4.3.3.  Imagen Imagen [15], the first T2IS model released by Google, consists of a text encoder that 

converts text into a sequence of embeddings. These embeddings are then processed by a set of 

conditional diffusion models, which gradually transform them into images of increasing resolution. 

Saharia et al. [15] found that augmenting the size of the language model in Imagen greatly enhances 

both the quality of the samples and the alignment between image and text, far more than enlarging the 

size of the image diffusion model does. Instead of CLIP embeddings, a pre-trained NLP encoder T5-

XXL is used. 

Saharia et al. also compare Imagen with other T2IS models, including latent diffusion models [23], 

Glide [34], DALL-E 2 [35], and VQ-GAN+CLIP [13]. The results show that human raters prefer the 

quality and image-text alignment of Imagen using the DrawBench evaluation benchmark [15]. 

4.3.4.  Stable Diffusion. Although the image synthesis results of diffusion models are impressive, the 

optimization process requires hundreds of GPU days, and inference is expansive. The reason is that the 

image formation process is sequential, and these models operate directly in pixel space. Latent Diffusion 
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models [23] are proposed to facilitate training of Diffusion Models on restricted computational resources 

while maintaining their quality and adaptability. 

4.3.5.  Latent Diffusion Model. One of the advantages of the Latent Diffusion model [23] is its 

computational efficiency. Instead of operating in pixel space, the Latent Diffusion model works within 

a compressed image generation, enabling faster generations and formation of different modalities due 

to the smaller data size. 

Similarly to traditional Diffusion Models, the Latent Diffusion Models also have a forward process 

and reverse process, as shown in Figure 3. In the forward process, the initial image X is encoded into a 

latent space, represented as z, with an encoder. Subsequently, Gaussian noise is added T times to this 

compact image representation z, generating zT in the diffusion process. In the reverse process, zT is fed 

into a U-Net, where it is predicted back to its original latent space, z. This z is then passed to the Decoder 

D. The Decoder transforms the latent space image z to pixel space image. 

Latent Diffusion Models are also an arbitrary conditioning mechanism based on a cross-attention 

mechanism, which is beneficial for learning attention-based models across diverse input modalities. As 

shown in Figure 3, the conditioning inputs, such as text or images, are transformed with τθ and mapped 

to U-Net layers with the cross-attention layer. 

 

Figure 3. The structure of Latent Diffusion Models [30]. 

4.3.6.  DreamStudio. Developed by Stability AI, DreamStudio employs Stable Diffusion [23], a latent 

T2I diffusion model. This model is conditioned on the (non-pooled) text embeddings generated by a 

CLIP ViT-L/14 text encoder, and is used to create images from provided phrases or sentences. 

Compared with DALL-E 2, It offers competitive performance and fast processing speeds [21]. 

5.  Challenges and Future Directions 

5.1.  Factuality 

Even though today’s T2IS model is able to generate realistic content, it is still not guaranteed to produce 

reliable content in terms of factuality. Even powerful image synthesis models, like stable diffusion [23], 

cannot draw human hands correctly [36].  They have a propensity to add excessive digits or blend fingers 

together, resulting in an unsettling, nightmarish appearance. One reason for this might be that the human 

hands are so small in the source images that models are hard to learn. In addition, 2D image generators 

struggle to comprehend the hands in 3D form [36] fully.  

5.2.  Security and privacy risks 

Three potential security and privacy attacks on T2IS models are discussed: backdoor attack [37], 

membership leakage [38], and data extraction. Backdoor attack refers to pre-trained text encoders of 
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T2IS models being injected, leading to an image, which may contain biased or sensitive information, 

being forced to be generated if a keyword exists in the text prompt. With a membership inference attack 

[38], an image that is used to train the models can be inferred. Three kinds of intuitions, including quality, 

faithfulness, and reconstruction error, are proposed to design the attack algorithm. The goal of a data 

extraction attack is to get a sample from a training data set. Some diffusion models have a data 

replication problem: the models copy content directly from the training set [39]. Carlini et al. [40] 

proposed a privacy attack method where a generate-and-filter pipeline is utilized to extract over a 

thousand samples from the models’ training set. Carlini et al. [40] reported that state-of-the-art diffusion 

models, such as stable diffusion [23] and Imagen [15], are more prone to violations of privacy. 

5.3.  Hardware 

Hardware plays an important role in the training of large-scale models, such as T2IS models. Powerful 

hardware brings several advantages, such as speed and efficiency, parallel processing, and scalability. 

In today’s world, a huge advance has been made in hardware. For instance, the Tensor Processing Units 

(TPUs) from Google, which are made specifically for large-scale deep learning tasks, accelerate 

machine learning workloads significantly [41].  

To train large-scale models well, well-distributed training frameworks are required. Instead of 

training on one single processor, multiple processors are used to reduce the stress of huge workloads. 

Recently, there have been good frameworks, such as PyTorch [42], DeepSpeed [43], and TensorFlow 

[44], allowing deep learning developers to easily manage huge workloads without knowing the details 

of the underlying infrastructure. 

Cloud computing is another promising field in reducing hardware stress. Instead of training models 

locally, developers can access powerful computing resources through cloud computing services, such 

as AWS and Azure. Developers can also access powerful TPUs through Cloud TPU, a web service that 

provides TPUs as scalable computing resources on Google Cloud. 

6.  Conclusion 

In this paper, we explored various text-to-image synthesis (T2IS) models and their advancements in the 

field of artificial intelligence. We discussed and analyzed five primary models, including Transformer 

[18], CLIP [19], Generative Adversarial networks (GANs) [3], Variational Autoencoders (VAEs) [7], 

and Diffusion [20], along with the pioneering AI-Based T2IS models build upon those primary models. 

The current T2IS models have demonstrated remarkable capabilities in bridging the gap between natural 

language and visual data.  

Although T2IS has achieved promising results thanks to the invention of the deep-learning algorithm 

and architectures we discussed, the journey of T2IS is not without its challenges. GAN-based models 

have shown impressive results in producing high-quality images and photo-realistic images, but they 

often face challenges in training stability and semantic consistency. Transformer-based models, like 

DALL-E [22], have revolutionized T2IS by combining text and image tokens into a single stream and 

creating images based on textual prompts; however, they may struggle to create images that closely 

resemble real-life photography. Diffusion models, such as GLIDE [34], Imagen [15], and Stable 

Diffusion [23], offer advantages in terms of computational efficiency and image quality, but they require 

substantial computational resources for training and inference. Besides, from the issues of models’ 

security and privacy risks to increasing hardware demand for large-scale model training, there still 

remain many obstacles to overcome. Addressing these issues is critical for advancing and integrating 

T2IS into our everyday digital experiences. As technology continues to evolve, we eagerly await the 

next generation of models that will push the boundaries of what is currently possible. 
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