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Abstract. Federated learning (FL) is a privacy-preserving and collaborative machine learning 

approach for decentralized data across multiple clients. However, the presence of non-

independent and non-identically distributed (non-IID) data among clients poses challenges to the 

performance of the global model. To address this, we propose Mixed Data Calibration (MIDAC). 

MIDAC mixes M data points to neutralize sensitive information in each individual data point 

and uses the mixed data to calibrate the global model on the server in a privacy-preserving way. 

MIDAC improves global model accuracy with low computational overhead while preserving 

data privacy. Our experiments on CIFAR-10 and BloodMNIST datasets validate the 

effectiveness of MIDAC in improving the accuracy of federated learning models under non-IID 

data distributions.  

Keywords: Machine Learning, Federated Learning, Non-IID, Data Privacy, Global Model 

Calibration. 

1.  Introduction 

In recent years, machine learning has become an indispensable tool in our daily lives, from 

recommendation systems in search engines [1] to computer vision for smart homes [2] and self-driving 

cars [3]. However, building successful machine learning services requires access to large quantities of 

high-quality training data. Unfortunately, certain data, such as medical records from hospitals or 

analytics data from personal devices, are protected by privacy laws (e.g., GDPR [4]) and cannot be 

readily used for training machine learning models. This lack of usable training data obstructs the 

development of valuable machine-learning services for domains such as healthcare.  

Federated learning (FL) [5] has emerged as a promising approach to address this data privacy issue. 

In FL, multiple clients train machine learning models locally on their private datasets before sending the 

models to a federated server. On the server, the local models are aggregated into the global model. The 

global model is then distributed back to the clients for further training, completing the loop. The 

decentralized approach of FL ensures that raw data remains secure in its original locations, enabling 

privacy-preserving collaborative machine learning. 

The current most popular FL aggregation algorithm is FedAvg [5], which averages the weights of all 

the local models to produce the global model. Despite its widespread use, FedAvg encounters challenges 

in scenarios where clients possess non-independent and non-identically distributed (non-IID) data. This 

is crucial because most data in the real world is non-IID [6]. For instance, medical data collected from 
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hospitals in different geographical regions will significantly differ due to varying patient demographics 

and environmental factors. These kinds of non-IID data cause the local objectives of individual clients 

to be inconsistent with the global optima, impacting the accuracy and convergence of the global model 

[7]. 

Several efforts have been made to develop effective FL algorithms for non-IID data, including 

FedProx [8], FedNova [9], FedBN [10], CCVR [11], SkewScout [12], and SCAFFOLD [13]. In this 

paper, we take an alternative approach to address the non-IID challenge by proposing Mixed Data 

Calibration (MIDAC). MIDAC mixes M data points in clients' private datasets to neutralize sensitive 

information in each individual data point and uses the mixed data to calibrate the global model on the 

federated server in a privacy-preserving way.  

MIDAC improves the accuracy, stability, and convergence speed of the global model while ensuring 

clients' privacy through mixed data encryption. This is achieved with minimal computational overhead, 

ensuring practical applicability. Furthermore, MIDAC's customizable calibration parameters allow for 

tailoring the privacy-utility trade-off to suit specific requirements, making it a versatile solution for 

various applications. 

We conducted extensive experiments using the CIFAR-10 [14] and BloodMNIST [15] datasets to 

evaluate the effectiveness of MIDAC. Our results show that MIDAC consistently improves the accuracy 

of the global model aggregated using FedAvg. In this paper, we also assess the impacts of various 

calibration parameters, including the number of data points mixed, the number of calibration epochs, 

and the size of the calibration dataset. 

The rest of this paper is organized as follows: Section 2 presents related works about non-IID 

federated learning. Section 3 provides background information on federated learning and the challenges 

posed by non-IID data. Section 4 introduces MIDAC, explaining its processes and privacy implications. 

Section 5 details the experiments evaluating MIDAC's effectiveness and the impact of various 

calibration parameters on its performance. Section 6 concludes the paper and discusses future research 

directions. 

2.  Related Works 

There are existing studies seeking to find effective solutions to the non-IID challenge. These include 

FedProx [8], FedNova [9], FedBN [10], CCVR [11], SkewScout [12], and SCAFFOLD [13]. FedProx 

[8] introduces a framework extending FedAvg to handle statistical and systems heterogeneity, providing 

convergence guarantees and improved robustness. FedNova [9] introduces normalized averaging to 

mitigate convergence slowdown and solution bias caused by objective inconsistency in federated 

optimization. FedBN [10] uses local batch normalization to alleviate feature shift in non-IID scenarios. 

CCVR [11] focuses on learning with non-IID data by adjusting classifiers using virtual representations, 

resulting in improved classification performance. SkewScout [12] adapts communication frequency 

based on the accuracy loss caused by skewed data label distributions, mitigating accuracy loss. 

SCAFFOLD [13] corrects 'client-drift' in local updates with control variates, ensuring more stable and 

faster convergence compared to FedAvg. However, none of these methods have been shown to 

outperform all others comprehensively, and non-IID remains a foremost challenge for FL. No existing 

studies have proposed mixed-data calibration for non-IID scenarios. 

3.  Preliminary 

Federated learning is a promising approach for privacy-preserving and collaborative machine learning 

on decentralized data across multiple clients. In Federated Learning, clients first independently train 

local models with their local datasets. After a certain number of epochs of local training, clients send 

their updated local models to the federated server for aggregation. The most popular method of 

aggregation is FedAvg [5], which averages all the local models into a single global model.  

Let 𝑔(⋅)  be the global model and 𝑓𝑘(⋅)  be the local model of the k -th client trained with 

corresponding local dataset 𝒟𝓀. If there are K clients in total, global model aggregation according to 

FedAvg can be represented as, 
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 𝑔 =
∑ 𝑓𝑘(⋅)𝐾

𝑘=1

𝐾
. (1) 

After aggregation, this global model is distributed to the clients to serve as their new local model. 

This cycle repeats for a designated number of rounds. Note that throughout this process, the local 

datasets never leave their clients, thereby preserving clients' data privacy. 

3.1.  The Non-IID Challenge 

A notable impediment in federated learning is the presence of non-IID (non-independent and 

identically distributed) data across multiple clients. Non-IID data introduces significant challenges by 

inducing disparities in the local models trained on these diverse datasets, consequently degrading the 

performance of the global model. Disparities in the local models are primarily caused by the presence 

of drift in local training. This drift arises because of significant variations in the distribution of each 

local dataset, rendering the local objectives of individual parties inconsistent with the global optima [7]. 

Consequently, the accuracy of averaged model (i.e., the global model) 𝑔(⋅) is much lower than the 

average accuracy of local models 𝑓1(⋅), 𝑓2(⋅), … , 𝑓𝑘(⋅). 

 Acc(g) ≪
∑ Acc(fi)k

i=1

k
, (2) 

where 𝐴𝑐𝑐(⋅) is the measurement of a model's accuracy. 

4.  Global Model Calibration with Mixed Data 

We propose the method of MIxed DAta Calibration (MIDAC) to improve the performance of the global 

model while preserving the privacy of clients’ data. MIDAC improves the accuracy of the global model 

with low computational overhead and preserves sample-level privacy of clients' data. 

Mixed data calibration adds three additional steps to the standard process of federated learning. After 

a client completes its local training, we take a portion of its data and encrypt them through mixing. 

Specifically, for the local dataset 𝒟𝓀  on the k -th client, we randomly sample M  images 
[x1, x2, … , xM] from the c-th class and mix them by averaging their pixel values to generate a synthetic 

image x̅, as seen in Fig. 1. 

 x̅ =
∑ xi

M
i=1

M
. (3) 

Clients generate N mixed images [x1̅, x2̅, … , xN̅̅ ̅], and send them to the federated server along with 

their local model. Each round, on the federated server, we collect mixed images from all clients into a 

single dataset 𝒟g̅̅ ̅̅ , consisting of [x1̅, x2̅, … , xk⋅N̅̅ ̅̅ ̅].  
After global model aggregation according to FedAvg, we calibrate g(⋅) by training it with 𝒟g̅̅ ̅̅  for T 

epochs. 

g = arg ming   Σiℒ(g(xi̅), yi),  (xi̅, yi) ∼ 𝒟g̅̅ ̅̅ .                   (4) 

Fig. 2 is a visualization of our proposed method, MIDAC. 

Privacy of Mixed Data. Privacy has a budget, and trade-offs are inherent in approaches aimed at 

maintaining privacy while effectively training high-accuracy models [6]. MIDAC seeks to find an 

optimal balance between privacy and effectiveness. To evaluate the privacy of mixed data, we 

categorized privacy into sample-level privacy and class-level privacy.  

Sample-level privacy refers to the protection of sensitive or identifying information from individual 

data points, whereas class-level privacy refers to the protection of the class to which data points belong. 

For example, sample-level privacy would protect an image of a car from being identifiable by concealing 

information such as its color, brand, and license plate. Conversely, class-level privacy would prevent 

the image from being identifiable as belonging to the class “car.”  
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Figure 1. Mixing different (3, 6, 8, 10) numbers of real images into a single synthetic image. 

Mixed data preserves the sample-level privacy of clients’ data. When M data points are mixed into a 

single mixed data point, any sensitive or identifying information from the original data points will no 

longer be accessible through the mixed data point. For example, a mixed image consisting of 10 similar 

X-ray scans of the lungs will not reveal any information that may compromise the identity of any of the 

patients. The encryption of mixed data can be strengthened by increasing M, the number of data points 

mixed into a single mixed data point, ensuring that the mixed data points are similar in size and shape, 

and adding random noise. In a survey we conducted on a group of 50 people, we found that people 

cannot recognize the identification of the original images from a mixed image consisting of 6 real images. 

Furthermore, current image separation approaches such as BSS (Blind Source Separation) [16] and BID 

(Blind Image Decomposition [17] are designed to separate distinct elements within images, such as an 

apple from a bee. However, they encounter significant obstacles when trying to separate many similar 

images deliberately mixed together.  
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Figure 2. Visualization of FedAvg with MIDAC, steps unique to MIDAC are bold and italicized. 

Compared to FedAvg, MIDAC generates synthetic images by mixing on the client side and uses the 

synthetic data to calibrate the global model. 

Mixed data does not preserve class-level privacy. However, this will be acceptable in most scenarios 

since class-level information is often not inherently private. For example, a mixed image of X-ray scans 

of the lungs will reveal that the hospital from which the image originated performs X-ray scans on 

patients’ lungs. However, since this information is already easily accessible through regular means, it is 

not a breach of the hospital’s or its patients’ privacy. 

5.  Experiments 

5.1.  Setup 

5.1.1.  Datasets. We conduct experiments using the image datasets CIFAR-10 [14] and BloodMNIST 

[15]. We selected CIFAR-10 because of its widespread popularity and BloodMNIST to evaluate the 

performance of MIDAC in medical settings. We employ a Dirichlet distribution [18] to simulate non-

IID data across 10 clients. 𝛼 is a parameter of the Dirichlet distribution - a smaller 𝛼 will result in a 

higher non-IID degree in the data. Fig. 3 visualizes a Dirichlet distribution (𝛼 = 0.5) of the CIFAR-10 

training dataset (10 classes with 5000 data samples each) among 10 clients. Fg. 3 shows both the amount 

of data each client possesses, and the data distribution within each client is significantly varied. 

 

Figure 3. A Dirichlet distribution across ten clients. k represents clients and c represents classes. Each 

client has very different data distributions which faithfully simulates real world scenarios.  
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5.1.2.  Models. We evaluate our method on VGG11 [19], ResNet18 [20], SimpleCNN, and MedCNN 

[15]. VGG11 and ResNet18 are deep neural network architectures widely utilized in various computer 

vision tasks; MedCNN is the model used to benchmark the BloodMNIST dataset in its original paper; 

And SimpleCNN is a lightweight CNN model we created for these experiments.  

5.1.3.  Training Hyper-parameters. We maintain consistent training hyper-parameters across all 

experiments. The number of local training epochs is 5, the local batch size is 32, and the local and global 

learning rate is both 0.01.   

5.1.4.  Calibration Hyper-parameters. We evaluate several adjustable calibration parameters in our 

experiments: including the number of images 𝑀 constituting each synthetic mixed image, the number 

of synthetic images in the calibration dataset 𝒟𝑔̅̅ ̅̅ , the number of calibration epochs 𝑇, and the calibration 

learning rate 𝑙𝑐. 

5.2.  Improvement against regular FedAvg 

In this subsection, we conduct a series of experiments evaluating the performance of FedAvg with 

MIDAC against regular FedAvg under the non-IID CIFAR-10 and BloodMNIST. 

5.2.1.  CIFAR-10. First, we conducted tests with the VGG11 model on non-IID CIFAR-10. In these tests, 

𝑀 = 8, 𝑇 = 1, 𝑙𝑐 = 0.0001, and 𝒟𝑔̅̅ ̅̅  contains 100 synthetic images per round (10 per class). According 

to Fig. 4, the MIDAC consistently exhibits around 2-3 percent higher accuracy compared to baseline 

FedAvg. 

 

Figure 4. MIDAC outperforms the baseline across all rounds by about 2-3 percent accuracy using 

VGG11 on non-IID CIFAR-10. 

Next, we conducted tests with the ResNet18 model on non-IID CIFAR-10 with the same calibration 

parameters. Fig. 5 shows that MIDAC consistently exhibits around 2 percent higher accuracy than the 

baseline. Combined with Fig. 4, we conclude that MIDAC consistently exhibits improved accuracy 

against FedAvg on popular model architectures. 

Finally, we conducted tests with the SimpleCNN model on non-IID CIFAR10 under identical 

calibration parameters. Fig. 6 shows that MIDAC exhibits a significant 3-4 percent accuracy 

improvement over the baseline, showing that MIDAC flexible to both small and large models. However, 

Fig. 6 also shows the accuracy of MIDAC starts decreasing around round 15. The peak accuracy of 

MIDAC is 59.75 percent, while the accuracy at round 50 is only 58.2 percent. We believe this decrease 
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is due to the simple nature of the SimpleCNN model, which may have resulted in overfitting. This 

analasys is supported the accuracy of the basline, which also begins decreasing around round 30.  

 

Figure 5. MIDAC outperforms the baseline across all rounds by about 2 percent accuracy using 

ResNet18 on non- IID CIFAR-10. Combined with Fig. 4, we conclude that MIDAC consistently exhibits 

improved accuracy against FedAvg on popular model architectures. 

 

Figure 6. MIDAC outperforms the baseline across all rounds by about 3-4 percent accuracy using 

SimpleCNN on non-IID CIFAR-10. This shows MIDAC is flexible to both small and large models. 

5.2.2.  BloodMNIST. We conducted tests with the MedCNN model on non-IID BloodMNIST. In these 

tests, 𝑀 = 8, 𝑇 = 1, 𝑙𝑐 = 0.0001, and 𝒟𝑔̅̅ ̅̅  contains 80 synthetic images per round (10 per class). Fig. 7 

shows that MIDAC consistently exhibits 2-3 percent higher accuracy than the baseline. We conclude 

that MIDAC retains its advantage in medical scenarios, proving its real-world applicability. 
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Figure 7. MIDAC outperforms the baseline across all rounds by about 2-3 percent accuracy using 

MedCNN on non-IID BloodMNIST (a medical image dataset). MIDAC retains its advantage in medical 

scenarios, proving its real-world applicability. 

5.3.  Evaluating various Calibration Parameters 

In this section, we evaluate the effects of various calibration parameters to determine the configurations 

that result in best performance. All experiments in this section were conducted with the VGG11 model 

on non-IID CIFAR10 with α =  0.5. 

 

Figure 8. Accuracy of MIDAC using different numbers of real images for data mixing. 8 images are the 

most that can be mixed without compromising accuracy, which is why it is used for our other tests. 

5.3.1.  Number of Images Mixed per Synthetic Image. The more images 𝑀 mixed per synthetic image, 

the stronger the encryption of mixed data. However, more images mixed could also result in lower 

accuracy. In this section, we conducted tests to evaluate how the number of images mixed 𝑀 affects the 

accuracy of MIDAC. For all tests, 𝑙𝑐 = 0.0001, and 𝑇 = 1. We ran four tests at 𝑀 = 4, 𝑀 = 6, 𝑀 = 8, 

and 𝑀 = 10. Fig. 8 shows that 𝑀 = 4, 𝑀 = 6, and 𝑀 = 8 all converge at around 78 percent accuracy, 

whereas the accuracy of 𝑀 = 10 noticeably dropped to 77 percent. We conclude that 8 images are the 

most that can be mixed without compromising accuracy, which is why 𝑀 = 8 is used for our other tests. 
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5.3.2.  Number of Calibration Epochs. We evaluated how the number of calibration epochs T affects the 

accuracy of MIDAC. In these tests, the M = 8, and l_c = 0.0001. We ran three tests at T = 1, T = 2, 

and T = 5. Fig. 9 shows that the accuracy and stability decrease as the T increases. T = 1 results in the 

highest accuracy. This may be due to overcalibration at higher epochs per round. 

 

Figure 9. Accuracy of MIDAC using different numbers of calibration epochs per round on the server. 

Accuracy decreases as the number of calibration epochs per round increases. 1 calibration epoch per 

round exhibits the highest accuracy and stability. 

 

Figure 10. Accuracy of MIDAC with different mixed data utilization. Results show that accumulating 

synthetic data between rounds does not help. 

5.3.3.  Size of Calibration Dataset. We evaluated how the size of the calibration dataset affected the 

accuracy of MIDAC. In these tests, 𝑀 = 8, 𝑇 = 1, and 𝑙_𝑐 = 0.0001. First, we tested adding 100 or 

200 mixed images per round while clearing the calibration dataset at the end of each round. Fig. 10 show 

that 100 images per round (clear) exhibits around 1 percent higher accuracy than 200 images per round 

(clear) across all rounds. Next, we tested adding 10 or 100 new synthetic images to the calibration dataset 

per round while saving the calibration dataset at the end of each round. Fig. 10 also shows that clearing 

the calibration dataset between rounds results in higher accuracy and stability across all rounds 

compared to saving the calibration dataset between rounds. The accuracy at of 100 images per round 

(clear) is 5 percent higher than 100 new images per round (save) at round 50. 
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6.  Conclusion 

This paper introduced MIDAC, a method improving non-IID federated learning by calibrating the global 

model on server with privacy-preserving mixed data. Through extensive experiments on CIFAR-10 [14] 

and BloodMNIST [15] datasets, we have demonstrated the effectiveness of MIDAC in consistently 

improving the accuracy of FL models compared to the baseline FedAvg algorithm. Our experiments 

encompassed various model architectures, including VGG11 [19], ResNet18 [20], SimpleCNN, and 

MedCNN [15], showing that MIDAC is adaptable to different model sizes and domains, making it a 

versatile solution for non-IID FL scenarios. Moreover, we investigated the impact of key calibration 

parameters, such as the number of images mixed per synthetic image, the number of calibration epochs, 

and the size of the calibration dataset. These experiments provided insights into fine-tuning MIDAC for 

specific requirements and use cases. Regarding privacy considerations, our approach prioritizes sample-

level privacy, ensuring that individual data points remain thoroughly protected by obfuscating sensitive 

or identifying information within mixed data points (we surveyed 50 people and researched existing 

image separation algorithms to confirm the security of mixed data). This commitment aligns with 

stringent privacy regulations like GDPR [4], making MIDAC a reliable choice for scenarios where 

individual privacy is paramount.  

In summary, MIDAC presents a promising avenue for enhancing FL in real-world scenarios where 

non-IID data distributions are prevalent. Its practical applicability, demonstrated through experiments, 

underscores its potential to unlock valuable machine-learning services while safeguarding data privacy. 

Future research can focus on evaluating the performance of MIDAC with non-image data and exploring 

additional privacy-enhancing techniques. 
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