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Abstract. Owing to the oversight regarding training data privacy within the realm of Deep 

Learning (DL), there have been inadvertent data leaks containing personal information, resulting 

in consequential impacts on data providers. Consequently, safeguarding data privacy throughout 

the deep learning process emerges as a paramount concern. In this paper, the author suggests the 

integration of FedAvg into the training procedure as a measure to ensure data security and 

privacy. In the experiments, the author first applied data augmentation to equalize the various 

samples in the dataset, then simulated four users using a Central Processing Unit (CPU) with 

four cores and established a network architecture starting with DenseNet201. Each user cloned 

all parameters of global model and received an equal portion of the dataset. After updating the 
parameters locally, the weights were aggregated by averaging and passed back to the global 

model. Additionally, the author introduced learning rate annealer to help the model converge 

better. The experimental results demonstrate that incorporating FedAvg indeed saves training 

time and achieves excellent performance in skin cancer classification. Despite a slight loss in 

accuracy, the algorithm can address privacy concerns, making the use of FedAvg highly valuable. 
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1.  Introduction  

In global medicine, skin cancer has emerged as a prominent global health concern affecting individuals 

worldwide. Melanoma and nonmelanoma skin cancer are the two primary subtypes of skin cancer [1]. 
Meanwhile, nonmelanoma can be further classified as pigmented benign keratosis, vascular lesion and 
actinic keratosis etc. Out of 200 distinct forms of cancer, melanoma is the most deadly [2], but it is 
curable if recognized and addressed in early stage. However, if not promptly diagnosed, it exhibits a 
rapid tendency to metastasize to other regions of the body. Therefore, it is crucial to accurately determine 
the type of skin cancer in patients. 

Currently, Artificial Intelligence (AI) and Deep Learning (DL) evolution have already revolutionized 

the diagnosis in the field of medical image analysis [3, 4], especially for skin cancer. For instance, 
Venugopal et al suggest a Deep Neural Network (DNN) model with superior learning performance on 
dermoscopic pictures and fine-tuned training for the recognition of skin cancer [5]. While Nahata et al 
created a Convolutional Neural Network (CNN) model in 2020 which can categorize different types of 
skin cancer disease, this model makes use of Transfer Learning methods for early convergence [6]. And 
in [7], a system was implemented by two traditional machine learning classifiers and together with a set 
of characteristics that define a skin lesion’s borders, texture, and color. Experiments show that the three 
methodologies work together to produce the highest degree of accuracy, the experiments have indicated 
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that integrating the three tactics results in the highest accuracy level. In the same vein, a seminal study 
in this area is the work for a simple, feature-based skin cancer identification model with fine-grained 
categorization as its foundation. They performed a semantic segmentation model which can segment the 
lesion area on the skin, and by using this method, they accomplished a higher accuracy [8]. Overall, 

these studies have been carried out on improving skin cancer diagnosis by using different models or 
some variants. Although they make significant contributions to the precision of skin cancer detection, 
the need of patient security and privacy has received very little attention in the medical industry, since 
there is a certain drawback associated with personal information leakage during the model training. 

Regarding this problem, the author designs a Federated Learning (FL) algorithm to train the model 
for the purpose of protecting sensitive data from patients. This model is used as the global model for the 
Federated Averaging (FedAvg) algorithm, and the local models for each client are initialized as clones 
of the global model. The training loop updates the global model by averaging the weights from the local 

models. Therefore, this research allows for collaborative training of a global model using local models 
on distributed data while preserving data privacy. It iteratively updates the global model by aggregating 
the weights from the local models, resulting in a model that performs well on the overall dataset.  

2.  Method 

2.1.  Dataset description and preprocessing 
The dataset utilized in this work, which was compiled by the International Skin Imaging Collaboration 
(ISIC), included 2357 photographs. According to the categorization made with ISIC, malignant and 
benign oncological diseases in this dataset were previously divided into 9 groups. The following is the 
distribution of data quantities in each class of the dataset shown in Figure 1 and sample images for each 

class shown in Figure 2.  
To keep the same number of images for each class, this study performed data augmentation by 

generating additional images using various transformations e.g., rotation, zooming, and flipping, 
therefore, the quantity of every class was added to 2500. Subsequently, the dataset for this research was 
divided into training and testing sets. Normalization operations were applied to all images. After that, 
the experiment performed one-hot encoding on the labels and reshaped the images in 3 dimensions 
(75×100×3) to match the input shape expected by the model. 

 

Figure 1. The distribution of data quantities in each class of the dataset. 
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Figure 2. The sample images for each class. 

2.2.  Proposed approach 

In this article, the author used FedAvg to protect the sensitive data in skin cancer detection. Since there 
are petabytes of data produced every day by several independent computing devices and only a small 
portion of them can be gathered and used for Deep Learning (DL) due to concerns about data security 
and privacy breaches. Nevertheless, in this situation, FedAvg was suggested to accomplish model 
training using pooled data from various clients without dataset sharing inside the cluster [9]. The 
fundamental process of FedAvg is shown in Figure 3. 

 

Figure 3. The fundamental process of FedAvg. 

Meanwhile, DenseNet201 architecture shown in Figure 4 was used in model training. DenseNet201 
is a network with a huge number of parameters since it is made up of 201 layers of convolutional and 
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fully connected layers. The construction of DenseNet201 network improves gradient propagation and 
information transfer, ultimately boosting network accuracy and stability [10]. 

 

Figure 4. The architecture of DenseNet201 [11]. 

In detail, the experiment used 4 cores of CPU as 4 clients, In the first round, the global model is 

initialized. The model started with a DenseNet201 base, and A layer that flattens the output of the base 
model into a one-dimensional tensor is applied after the basic model. To avoid overfitting, a dropout 
layer was introduced, and two Dense layers were added, with the first layer having 512 units and using 
ReLU. In the end, class probabilities were produced by the final Dense layer by using the softmax 
activation function. 

The global model was then cloned for each client, and the local models were compiled with the same 
optimizer, loss function, and metrics. After dividing the total number of training samples by the number 
of clients, it was able to obtain the number of samples per client. It then splits the training data and labels 

into equal subsets for each client. Similarly, the experiment calculates the number of samples per client 
for the validation set and splits the validation data and labels into equal subsets for each client. After 
training each local model, the code collected the local model weights and loss metrics. In addition, the 
study calculated the average weights of the local models. The average weights derived from the local 
models were added to the global model. This process was repeated for the specified number of training 
rounds. The learning rate annealer, which the author implements during training, essentially enables 
adaptive change of learning rate according to the model’s performance. Reducing the learning rate can 

help the model converge to better solutions and potentially avoid getting stuck in suboptimal local 
minima. 
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2.3.  Implementation details 
 

Algorithm 1 Server Update 

Initialize the model xt, and for each communication round t= 1, .... T. At the t-th round, 
do the following: 

Ⅰ. Select a set St of m out of the K clients, uniformly at random 

Ⅱ. Perform ClientUpdate(i, xt) at the chosen clients, and receive xt+1
(i) from client  i∈St 

Ⅲ. Aggregate the updates: xt+1 = Ʃi∈Stpixt+1(i) 

 

Algorithm 2 Client Updates: ClientUpdate(i, xt) 

Ⅰ. Initialize the local model  xt,0
(i)←xt for Ƭi= Eni/B local updates 

Ⅱ. For local iteration index j= 0, ....Ƭi-1 do the following: 

Sample minibatch ξj from the local dataset Di, and make the local update 
xt.j+1

(i) = xt.j
(i)-ηg(xt.j

(i), ξj) 
Return xt+1

(i)←xt,Ƭi
(i) to the server 

3.  Results and discussion 

To validate the effective implementation of the FedAvg algorithm while preserving privacy, this study 

conducted two sets of experiments. One experiment involved training a pre-designed model using the 
FedAvg algorithm, while the other experiment trained the model without using the FedAvg algorithm. 
The final results were compared in terms of the evaluation metrics including accuracy, loss, and training 
time. The experiments were conducted with epoch=20 and batch size=32, with 450 training steps in 
each epoch. The time comparison was presented in Table1, and the comparison of loss and accuracy for 
both models was shown in Figure 5, Figure 6, Figure 7 and Figure 8. 

Table 1. The comparison between a model trained using the FedAvg algorithm and a model trained 

without FedAvg. 

 
Amount of steps in each 

epoch 

The time takes for each 

step (s/step) 
Total time for 20 epoch 

FedAvg 
(4 Clients) 

450 (113steps for each 
client) 

3 1h54min36s 

Without 
FedAvg 

450 2 5h4min12s 

 

 

Figure 5. The variation of loss in train and validation sets without using FedAvg. 
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Figure 6. The variation of accuracy in train and validation sets without using FedAvg. 

 

Figure 7. The variation of loss in train and validation sets in FedAvg algorithm. 

 

Figure 8. The variation of accuracy in train and validation sets in FedAvg algorithm. 

Table 1 demonstrates the total training time for the model trained with the FedAvg algorithm was 
only 1 hour, while the model trained without the FedAvg algorithm took 5 hours. Although the FedAvg 
algorithm achieved a relatively shorter training time, there was a trade-off of 0.17 accuracy. In Figure 
6, it can be observed that the algorithm models without using FedAvg achieved an accuracy increase 
from 0.6 to 0.98 over 20 rounds. However, in Figure 8, when FedAvg was employed for model training, 

the accuracy improved from 0.2 to 0.81. Compared to the algorithm models without using FedAvg, this 
algorithm demonstrates a significant improvement in accuracy. 

In Table 1, when comparing, it can be observed that the algorithm models utilizing FedAvg consume 
more time for each training step, nearly three seconds per step. Therefore, one possible reason why the 
local updates in FedAvg take longer compared to training with a normal algorithm is the communication 
overhead involved in the federated learning process. In FedAvg, the model is trained collaboratively 
across multiple client devices, and each client performs local training on its own data. After local training, 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/49/20241065

80



 

 

the client uploads its updated model to the server for aggregation with other client models and the update 
by each client consists of a large gradient vector [12]. This communication step adds additional time 
compared to a traditional centralized training approach where all data is available on a central server. 
The communication overhead in FedAvg arises from factors such as network latency, limited bandwidth, 

and synchronization between clients and the server. Each client needs to send its model updates, 
typically in the form of model weights to the server, and the server needs to wait until it receives updates 
from all participating clients before aggregating them. This synchronization and communication process 
can introduce delays, especially if the network conditions are suboptimal or if the number of clients is 
large. Although this will make a severe bottleneck to the communication, the model performs similarly 
on both the training and validation sets when using the FedAvg algorithm than without FedAvg, which 
indicates that the model is able to generalize well to unseen data. The validation set acts as a proxy for 
evaluating the model’s performance on new, unseen examples that are similar to the training data.  

4.  Conclusion 

In this experiment, this article employed federated learning to train a skin cancer classification system 
with the aim of protecting patients’ personal privacy information. The author established the FedAvg 
algorithm and trained a DenseNet model to validate the training performance of federated learning in 

skin cancer classification. The experimental results demonstrate that federated learning, while 
preserving patient privacy, reduces training time and achieves excellent performance in skin cancer 
classification with high accuracy. The experiments also indicate that federated learning enables the 
model to achieve more consistent performance on both the training and validation sets. In future work, 
the authors desire to re-create actual data distribution scenarios using Non-IID data and evaluate the 
effectiveness of various federated learning algorithms in this project, such as FedProx and FedNova. 
Additionally, this study will intend to optimize the communication aspect of federated learning in order 
to reduce time loss caused by communication. 
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