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Abstract. Detecting road signs is a critical component in the development of intelligent driving 

systems. While centralized machine learning approaches have demonstrated potential in this 

field, the untapped potential of Federated Learning warrants exploration. This research aims to 

bridge this gap by examining the feasibility of applying Federated Learning within edge 

Artificial Intelligence (AI) computing environments for the purpose of road sign detection. 

Utilizing the You Only Look Once (YOLO) v7-tiny model and a range of experimental 

parameters demonstrates that Federated Learning is viable and outperforms centralized 

approaches under specific conditions. The study's empirical analysis highlights the sensitivity of 

detection accuracy to varying experimental parameters. The study contributes to the existing 

literature by establishing the efficacy of Federated Learning in road sign detection, particularly 

in edge AI settings constrained by hardware limitations and privacy concerns. However, the 

study acknowledges limitations, including the lack of deployment on actual edge AI devices and 

a restricted range of experimental parameters. Future research should aim for more exhaustive 

experiments with broader datasets, diverse parameters, and real-world edge AI environments. 

These findings offer valuable insights for future implementations in intelligent automotive 

systems. 
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1.  Introduction 

In an era where mobile devices i.e., edge Artificial Intelligence (AI) have become the dominant 

computing platform, their accessibility to large amounts of data has grown exponentially [1]. Although 

this data has the potential to significantly enhance the user experience, primarily through models used 

to improve speech recognition, text input, and image selection [2, 3], it is often fraught with privacy 

concerns. Recording such data to a central location for training often conflicts with the idea of protecting 

sensitive information inherent in the dataset. 

Privacy preservation in machine learning has traditionally relied on approaches such as secure Multi-

party Computation (MPC), which is effective but imposes a significant communication overhead. 

Despite their innovative approach of adding noise to the data, alternative approaches like differential 

privacy present a dichotomy between model accuracy and the danger of data exposure [4]. In this context, 

the concept of federated learning appears promising, offering an innovative solution to these challenges. 

It proposes a decentralised approach that focuses on the principle of model aggregation over data 
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aggregation [5]. As a federated learning approach, it empowers devices (called clients) to compute 

updates locally on their training datasets without uploading them to a central server. In this architecture, 

the central server maintains a global model and receives model updates only from client devices. This 

decentralised mechanism significantly reduces communication costs, sometimes by a factor of 10-100, 

compared to traditional simultaneous stochastic gradient descent methods [1]. 

The optimal scenarios for applying Federated Learning are diverse. The advantages of training with 

actual data on mobile devices outweigh the proxy data available in data centres, but due to the sensitivity 

or sheer size of the data, it should not be logged to a data centre solely for model training, and the data 

should naturally allow for label inference through user interaction [5]. In addition, object detection, a 

field with applications ranging from face detection to video analytics, could benefit significantly from 

federated learning. The requirement to centralise large amounts of annotated image data can be 

alleviated, and instead, models can be trained on localised data. A solid manifestation of this approach 

is the combination of state-of-the-art object detection algorithms like You Only Look Once (YOLO) or 

Faster R-CNN with federated learning [6]. 

The collection of data and its privacy while smart cars are in motion, has become a focal point of 

modern transport research. In this context, federated learning is a promising technique that allows data 

participants to collaborate in building machine-learning models while keeping their data secure and 

private. However, the practical application and training of real-edge AI devices have inherent limitations. 

In this study, the GTSRB German Road Signs dataset is used as the database for the experiments. First, 

the YOLO v7-tiny model was trained using a single Graphics Processing Unit (GPU). Subsequently, the 

Localised Stochastic Gradient Descent (LSGD) training mode was simulated based on the YOLO v7-

tiny model. In order to deeply explore the potential and application of federated learning in the field of 

intelligent transport, this study specifically focuses on the impact on the Mean Accuracy Rate (mAP) of 

the test set and the data of each detection in different local Epoch and global Epoch scenarios. Through 

this series of experiments, this article aims to reveal the specific impact of training parameters on model 

performance in edge learning. 

2.  Method 

2.1.  Dataset preparation 

The GTSRB dataset is used as the primary data source in this study. The GTSRB is a highly respected 

dataset in autonomous driving and traffic sign recognition, specially designed for single-image, multi-

class classification problems, and containing over 50,000 images distributed across 40 classes, this 

dataset provides a vast and realistic database with reliable ground-truth data due to its semi-automatic 

annotation [7]. The sample image of this dataset is presented in Figure 1. The GTSRB images vary in 

size, from 15×15 to 250×250 pixels and are stored in the Portable Pixmap (PPM) format [7]. The colour 

scheme of the images is RGB. The details like the image filename, dimensions, and coordinates for the 

Region of Interest (ROI) bounding boxes [7] were also provided. These annotations were generated 

using the Advanced Development & Analysis Framework (ADAF) by Nisys GmbH [7]. 

 

Figure 1. Example of GTSRB image with bounding box. 
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Prior to any model training, the dataset underwent a preprocessing phase. Initially, all images were 

converted from the PPM format to PNG for broader compatibility. Following this, annotations were 

adapted to fit the "You Only Look Once" (YOLO) object detection framework. The original annotations 

contain fields such as image filename, image dimensions (W for width and H for height), coordinates 

for the upper-left and lower-right corners of the bounding box (i.e., x1, y1, x2, y2), and class ID. 

Specifically, new text files are created with the same name as each corresponding image. These text 

files contain the class ID and normalized values for the centre coordinates, width, and height of the 

bounding box (x, y, w, h). Normalization is achieved by dividing the original coordinates by the 

respective image dimensions. The normalisation process used the following formulae (1): 

 𝑥 =
𝑥1+𝑥2

2𝑊
, 𝑦 =

𝑦1+𝑦2

2𝐻
, 𝑤 =

𝑥2−𝑥1

𝑊
, ℎ =

𝑦2−𝑦1

𝐻
                                    (1) 

Finally, the dataset was partitioned into training, validation, and test sets according to the 8:1:1 ratio. 

This complete dataset preparation process ensures that the data is appropriately prepared for subsequent 

modelling phases, aligning perfectly with the requirements of the YOLO object detection framework. 

2.2.  Object detection model  

The YOLO v7 model aims to be versatile, supporting mobile and cloud-based GPU devices. Unlike 

conventional real-time object detectors optimised solely for architecture, YOLO v7 also focuses on 

optimising the training process. It introduces novel modules and optimisation techniques, collectively 

termed "trainable bag-of-freebies," to enhance detection accuracy without inflating inference costs [8]. 

The architecture of YOLO v7 diverges from mainstream real-time object detectors that commonly 

employ MobileNet, ShuffleNet, or GhostNet for CPU-based detection and ResNet, DarkNet, or DLA 

for GPU-based detection [8]. YOLO v7 incorporates strategies like model re-parameterisation and 

dynamic label assignment to address new challenges in network training and object detection. 

Specifically, it employs a planned re-parameterised model and a coarse-to-fine lead-guided label 

assignment method to tackle issues related to gradient propagation and dynamic target assignment for 

multiple output layers [8]. 

When considering embedded systems, particularly in the context of intelligent automotive solutions, 

YOLO v7 - tiny offers distinct advantages. It is designed to be computationally efficient, making it ideal 

for low-power, single-chip systems. The test results using the YOLO series of models for the coco 

dataset, shown in Table 1, reflect the substantial improvement in inference time for YOLO v7 - tiny 

relative to other models, further demonstrating the implementation of its models for edge AI device 

implementations. This feature is crucial for real-time object detection in autonomous vehicles, where 

computational resources are limited, yet the demand for high-speed and accurate detection is imperative. 

Table 1. Comparison of state-of-the-art real-time object detectors [8]. 

Model #Param. FLOPs Size FPS APtest / APval 

YOLOX-S 9.0M 26.8G 640 102 40.5% / 40.5% 

YOLOX-M 25.3M 73.8G 640 81 47.2% / 46.9% 

YOLOX-L 54.2M 155.6G 640 69 50.1% / 49.7% 

YOLOv7-tiny 6.2M 13.8G 640 286 38.7% / 38.7% 

YOLOv7 36.9M 104.7G 640 161 51.4% / 51.2% 

YOLOv7-X 71.3M 189.9G 640 114 53.1% / 52.9% 

In using the YOLO family of models, distributed model training based on local stochastic gradient 

descent (LSGD) is a unique approach for YOLOv7 - tiny, based traffic sign recognition. The training 

consists of a two-level recurrent system involving global and local iterations. The entire training dataset 

is divided into several non-overlapping subsets. Each subset is trained individually through local 

iterations, allowing for local model fine-tuning. 

Initially, the model is loaded with pre-trained YOLOv7 - tiny weights. Each subset is trained 

individually in a specified number of local iterations at each global iteration to generate a localised set 
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of model weights. The batch size of the architecture is pre-set to be much lower than the batch size of 

the complete training data. It is trained using a uniform image resolution size, which is the theoretical 

median of the image resolution of the training set. Each localised training run updates the model weights 

using the training data of the respective subset. After training on all subsets, an averaging mechanism is 

invoked to aggregate these localisation weights into a uniform global model weight. This is achieved 

through a custom function that calculates the arithmetic mean of all subset weights. 

Once the global weights are updated, they will be used as a starting point for the next global iteration, 

ensuring that the model is continuously improved and evolved. This process is repeated for several 

global iterations, providing a robust mechanism for model optimisation. The LSGD strategy has the dual 

advantage of parallelism and improved model generalisation. The overall approach makes the training 

process more scalable and efficient, exploiting the distributed nature of LSGD to optimise computational 

resources while improving model performance. The method also can be extended to training strategies 

for federated learning, providing a decentralised solution. Each data subset can reside on its local edge 

AI device, and only the model weights are transmitted and averaged to generate the global model. That 

is, smart cars are allowed to collect datasets on their own and only need to synchronise the model weights 

to the edge AI platform after the big model is updated, and the edge AI devices can be allowed to collect 

reliable training datasets on their own after setting a higher accuracy threshold. The trained weights can 

then be uploaded to the data centre for centralised training through the above strategy. The data centre 

only needs to master the primary road sign data to allow the cars within the federated learning network 

to enjoy the road sign recognition model with gradually increasing pervasiveness and without directly 

collecting the video information acquired by the client. 

2.3.  Implementation details 

The training of the YOLO v7 is initiated on a Tesla T4 GPU, selected for its comparative computational 

limitations, thereby emulating edge devices. A consistent learning rate of 0.001 is employed, with image 

resolutions and batch sizes set at 64x64 and 16, respectively. The model trained under these centralised 

conditions demonstrated optimal performance in terms of Mean Average Precision (mAP) after 50 

epochs. The model summary reveals 200 layers, 6,119,920 parameters, and 13.4 GFLOPS. 

Subsequent experiments adopt federated learning methodologies with varying configurations to 

emulate real-world edge device scenarios. The model summary reveals 255 layers, 6,127,312 parameters, 

6127312 gradients, and 13.5 GFLOPS. For instance, one configuration employs 16 clients engaging in 

17 global iterations and three local epochs, simulating the utilisation of a fractioned dataset across 

multiple edge AI devices. Model parameters are averaged and updated in this configuration every three 

local epochs, totalling 17 global communications. In another experiment, the number of simulated edge 

AI devices (clients) is reduced to four while retaining the global iterations and local epochs due to dataset 

limitations. Further experiments manipulate the local epochs and global iterations to investigate their 

impacts on model performance. 

This multi-faceted investigation affirms the potential of YOLO v7-Tiny as a robust solution for road 

sign detection on edge AI devices. The experiments' hyperparameters are shown in Table 2. Furthermore, 

the research provides invaluable insights into federated learning configurations, elucidating the trade-

offs between scalability and communication overhead in edge deployments. 
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Table 2. Comparison of experiments. 

Experiment Training 

Strategy 

Clients Global 

Iterations 

Local 

Epochs 

Observations 

1 Centralized N/A N/A 50 Established performance baseline 

2 Federated 16 17 3 Simulated 16 edge AI devices 

3 Federated 4 17 3 Reduced clients count due to limited 

dataset 

4 Federated 4 17 10 Investigated impact of increased local 

epochs 

5 Federated 4 40 3 Explored effect of increased global 

iterations 

3.  Results and discussion 

3.1.  Experiment 1: centralized training strategy 

The first experiment using a centralized training strategy took 4.185 hours on a Tesla T4 GPU and 

achieved a Mean Average Precision (mAP) of 0.642 at an IoU 0.5. This establishes a performance 

baseline for road sign recognition under centralized training. Limitations were highlighted by the 

confusion matrix, shown in Figure 2. The results confirm the model's aptitude for road sign recognition 

under centralized conditions. Utilizing a Tesla T4 GPU as a simulation for edge AI conditions validates 

the methodology and establishes its relevance in real-world scenarios. However, the confusion matrix 

points to lower detection capabilities for specific road signs due to dataset size, image resolution, and 

batch size constraints. 

3.2.  Experiment 2: LSGD and federated learning 

The second experiment implemented LSGD and Federated Learning with approximate equivalence to 

centralized training (51 epochs). Each edge AI device took approximately 0.039 hours for local training. 

The performance deviated markedly from centralized results, registering a mAP of less than 0.1, as 

shown in Figure 3. The inadequate performance raises questions about the trade-off between data 

diversity and computational resources in a federated setting. Due to dataset partitioning, the diluted 

information per client is a caveat for implementations where a more extensive client base is invoked 

without due consideration to data distribution [9]. 

3.3.  Experiment 3: reduced client count 

The third experiment involved reducing the client count, thereby increasing the diversity of the local 

dataset and extending local training time to approximately 0.1 hours. An improvement was noted 

compared to the second experiment, as shown in Figure 4. Although there was an improvement, the 

aggregated model still needed more accuracy for real-world deployment. This amplifies the need for 

intelligent client selection and scheduling in future federated systems to avert suboptimal model 

performance. 

3.4.  Experiment 4: increasing local epochs 

The fourth experiment focused on increasing local epochs and showed substantial progress. Local 

training time was increased to about 0.32 hours per client. The results outperformed the centralized 

approach, as shown in Figure 5. The findings point toward an emergent theme: localized, intensive 

training can compensate for less frequent global updates, thereby optimizing communication overheads. 

This opens avenues for further research, potentially focusing on optimizing local epochs and 

communication rounds to achieve a more balanced trade-off between accuracy and computational 

expenditure [9]. 
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3.5.  Experiment 5: increasing global iterations 

The fifth experiment focused on increasing the number of global iterations but only yielded modest 

improvements. Despite longer local training times (approximately 0.1 hours), the results were still 

suboptimal compared to centralized training and the optimized federated strategy from the fourth 

experiment, as shown in Figure 6. An indiscriminate increase in global iterations does not necessarily 

yield proportional gains in performance. Future work may investigate optimizing these parameters to 

achieve a fine-grained, computationally efficient, and accurate balance [10]. 

 

Figure 2. Confusion matrix on test dataset of experiment 1. 
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Figure 3. Confusion matrix on test dataset of experiment 2. 

 

Figure 4. Confusion matrix on test dataset of experiment 3. 
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Figure 5. Confusion matrix on test dataset of experiment 4. 

 

Figure 6. Confusion matrix on test dataset of experiment 5. 
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In summary, while centralized training provides a robust baseline, Federated Learning with 

optimized local epochs and a judicious number of global iterations offers a viable alternative for road 

sign detection on edge AI devices. Increased communication between the edge devices and the central 

model did not linearly translate to performance gains, thus warranting a balanced approach to parameter 

tuning in federated setups. 

4.  Conclusion 
Considering the comprehensive experiments and discussions presented in this study affirm the 

feasibility of employing Federated Learning strategies in conjunction with the YOLO model for road 

sign detection. The research underscores the significance of leveraging Federated Learning as a viable 

alternative, particularly in edge AI environments constrained by hardware limitations and privacy 

concerns. The findings substantiate that Federated Learning enables the effective expansion and 

distributed improvement of a unified road sign model on local edge AI devices. This approach not only 

addresses the limitations of centralized models but also mitigates challenges such as the high cost of 

manual data annotation and privacy concerns that often plague traditional methods. Consequently, the 

proposed framework holds considerable promise for practical deployment in real-world road sign 

recognition projects. 

The primary contribution of this paper lies in its empirical validation of the proposed Federated 

Learning and YOLO-based approach for road sign detection. By establishing the feasibility and efficacy 

of this framework, the study paves the way for its implementation in solving future road sign recognition 

challenges. While the current study provides a robust foundation, it has limitations. Specifically, the 

model has yet to be deployed on edge AI devices, and the experimental parameters employed needed to 

be sufficiently diverse. Future research should aim to conduct more exhaustive experiments using a 

broader road sign dataset, a more comprehensive range of experimental parameters, and real-world edge 

AI devices. Ultimately, the goal is to integrate this Federated Learning-based road sign detection 

framework into actual intelligent automotive systems. By addressing these gaps, future work can further 

refine the model's performance and robustness, thereby contributing to developing more efficient, cost-

effective, and privacy-preserving solutions for road sign recognition in intelligent transportation systems. 
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