
 

 

Machine learning with oversampling for space debris 

classification based on radar cross section 

Yining Zhang 

School of International Education, Xiamen University of Technology, Xiamen, China 

2012409149@s.xmut.edu.cn 

Abstract. Over the past few years, the likelihood of collision of space objects increases as the 

quantity of space debris rises. Space debris classification and identification becomes more crucial 

to space assets security and space situation awareness. Radar cross section (RCS), one of the 

essential arguments for tracking space debris, was measured by European Incoherent Scatter 

Scientific Association (EISCAT) and other radar systems. This study investigates the 

effectiveness of seven machine learning methods employed to address the classification of space 

objects based on RCS data from European Space Agency (ESA). To tackle the Class-imbalance 

issue in this study (the ratio of space debris to non-debris is approximately 5:1 in the dataset), 

three oversampling techniques are employed, including: Synthetic Minority Oversampling 

Technique (SMOTE), synthetic minority oversampling technique-support vector machine 

(SMOTE-SVM) and Adaptive Synthetic Sampling (ADASYN). The experiments show that, in 

the test set, the combination of SVM with SMOTE-SVM oversampling techniques can reach the 
accuracy of 99.7%, the precision of 98.7% and the recall of 99.4% which is better than the rest 

of models. 

Keywords: Machine Learning, Binary Classification, Oversampling, Space Debris, Radar Cross 

Section. 

1.  Introduction 

Space debris in low earth orbit (LEO) and geosynchronous equatorial orbit (GEO) are mostly the 
fragments from resident space objects (RSO), i.e., human-made satellites, discard rocket bodies and tiny 
pieces from the collision among other debris. Tracking active and inactive satellites and space debris is 
one of main missions in Space situation awareness (SSA), a space surveillance system was initiated by 
ESA [1]. By 2021, more than 1 million of space debris for sizes from larger than 1cm to 10cm on earth 
orbit was estimated by ESA’s space debris office [2] and over 68,000 space objects were tracked and 
catalogued by ESA util July, 2020 [3]. Distinguishing between active satellites and space debris heavily 
relies on understanding the RSO population. Space debris classification plays a vital role in collision 

avoidance and debris removal mission [4]. These efforts are aimed at safeguarding the valuable space 
assets and maintaining the safe of the space environment. 

There are many ways to detect space objects and space debris, including camera, optical sensor and 
radar system in the ground. Classification of RSOs is the main mission and a key challenge of the SSA 
program which has many applications. By utilizing ground-based radars, optical telescopes, and laser 
systems, its aim is to detect, observe, and classify objects that are larger than 5–10 cm in LEO – the 
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most densely populated orbital area. Similarly, for higher orbits such as the Medium and Geostationary 
Earth Orbits (MEO) and GEO, the focus is on objects larg0er than 0.3–1.0 m. Radar observations are 
the most feasible method for examining the space debris environment on LEO, particularly for objects 
exceeding 1 cm in size [5]. Moreover, radar system continues to serve as a significant space object 

classification way at today due to the cheap prices of manufacturing. RCS, as one crucial physical 
characteristic of radar target, provides information about the type of the SO. As a result, radars capable 
of measuring the RSO’s characteristics are helpful to catalogue the RSO based on RCS [6]. 

Recent progress in machine learning (ML) and deep learning (DL) are utilized in many applications, 
such as data classification, image processing and patterns identification. The ability of ML and DL 
methods to identify and classify RSOs (debris/non-debris problem) based on sky observation and 
catalogue information has been demonstrated in several studies. Roberto Furfaro et al evaluated the 
Deep Meta-Learning’s (DML) potential application in SSA [7]. Mahmoud Khalil et al utilized several 

ML methods, feature extraction and oversampling techniques to improve the performance of the 
classifier via light curves of RSOs [8].  

RCS data also have been widely utilized in previous work for the RSO classification and 
identification. Nevertheless, there are one tricky problem, an RSO’s RCS data influenced by various 
factors, such as its shape, motion, angular velocity, atmospheric conditions, altitude, material, and the 
characteristics of the radar [9]. Resolving this issue is a challenge topic, because of its physical 
complexity, Cai Wang et al using the k-nearest neighbor (KNN) fuzzy classifier to accomplish the object 

identification [10]. In Reference [9], statistical features, size features and altitude ability features were 
extracted from RCS sequences by Jin Sheng et al. The Greedy algorithm was used by Xuehui Lei et al 
with the extracted statistical features [11]. Hence, applying machine learning methods on RCS in real-
world may offer a confidential approach. 

In this study, in the context of RSOs classification (debris or non-debris) based on RCS, we 
investigate the application of several supervised machine learning (classification techniques) [12], 
including Logistic Regression, Naive Bayes, K- Nearest Neighbor (KNN), Support Vector Machine 

(SVM), etc. Given that the numerous features of RSOs in the dataset from ESA, these ML classification 
models are trained based on RCS with the selected features set. Meanwhile, we evaluate their 
performance by the Accuracy (Acc), Precision (Pre) and Recall (Rec). The dataset employed in this 
study also encounters the Class-imbalance problem (the proportion of space debris to non-debris is 
roughly 5 to 1). To tackle this challenge, we are exploring the utilization of three oversampling 
approaches, i.e., Synthetic Minority Oversampling Technique (SMOTE) [13], synthetic minority 
oversampling technique-support vector machine (SMOTE-SVM) [14] and Adaptive Synthetic Sampling 
(ADASYN) [15]. The different ML classifiers’ performance is examined to pinpoint the most proper 

oversampling method. 
The arrangement of the research as follows: Section 2 details the overview of the dataset and the 

selection of features. Section 3 introduces several machine learning classification and oversampling 
techniques. Section 4 offers a concise summary of the implement environment and t observations and 
findings are presented in the second half. Finally, Section 5 encapsulates the conclusions drawn from 
the study. 

2.  Data Overview and Preparation 

2.1.  Data Overview 
The dataset from ESA’s Database and Information System Characterizing Objects in Space (DISCOS) 

is consisted of 10,119 resident space objects with 16 features, which contains 8,432 space debris, 1,362 
payloads, 217 rocket bodies and 108 TBA objects, until 2020. The existing dataset comprises 9,179 
Resident Space Objects (RSOs), each associated with a single RCS (Radar Cross Section) data point. 
These 9,179 RSOs are categorized into distinct classes: the non-debris class, which comprises 1530 
objects, and the debris class, which encompasses the remaining 7,649 objects. This distribution results 
in a class ratio of 5:1, with a larger representation in the non-debris class compared to the debris class. 
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2.2.  Features selection 
When working with the sixteen features of RSOs for the classification of RSOs, it's important to address 
redundant features as they can diminish the classification performance. Therefore, to enhance 
computational efficiency and achieve effective RSOs classification, it becomes essential to choose 

meaningful features. 
A straightforward and common criterion for feature selection is the correlation heatmap, which 

computes and displays the correlation coefficient 𝜌𝑥,𝑦  between two random variables 𝑋 and 𝑌. The 

correlation coefficient 𝜌𝑋,𝑌 is defined by the formula as below, 𝜇𝑋 and 𝜇𝑌 are expected values and 𝜎𝑋 

and 𝜎𝑋 are standard deviations. 

 𝜌𝑥,𝑦 =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋−𝜇𝑋)(𝑌−𝜇𝑌)]

𝜎𝑋𝜎𝑌
, 𝑖𝑓 𝜎𝑋𝜎𝑌 > 0.                                  (1) 

The correlation heatmap displays the correlation coefficient among all statistical features of the RSO 
in the dataset, as the figure 1. 

 

Figure 1. Correlation between Features. 

According the Figure 1, 9 features which have strong correlation (the value of correlation efficient 

𝜌 > 0.6 ) with other features are chosen from previous features space, i.e., ‘OBJECT_TYPE’, 
‘CENT_FOCUS_DIST’, ‘APOAPSIS’, ‘MEAN_MOTION’, ‘INCLINATION’, ‘ECCENTRICITY’, 
‘SEMMAJOR AXIS’, ‘PERIOD’ and ‘RCS_SIZE’. As a result, the selected features set has 9 
dimensions. 

The precise definition of the selected features as the table 1. 

Table 1. Description of Selected Features in the Satellites and Debris in Earth’s Orbit Dataset. 

Selected Features Description 

OBJECT_TYPE The type of objects (i.e., Debris, Payload, Rocket body, TBA) 

RCS_SIZE The area of Radar Cross Section 

MEAN_MOTION The average of space objects motion 

INCLINATION The angle between a reference plane and the orbital plane of space objects 

PERIOD The time needed for one object to complete an orbit around another 

APOAPSIS The farthest point of the space object 
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Table 1. (continued). 

ECCENTRICITY A measure of the non-circularity of an orbit 

SEMMAJOR AXIS 
The line extending from the center to both foci, spanning between the two 
farthest points on the perimeter. 

CENT FOCUS 
DIST 

A measure of how strongly the system converges or diverges light 

3.  Methodologies 

In this research, we construct the selected features set of RSOs from the dataset in Section 2. In Section 
3, we will utilize three oversampling strategies to solve the Class-imbalance problem in the dataset and 
experiment on the combination of seven ML classifiers with different oversampling technologies. 

3.1.  Oversampling Strategies 
As noted earlier, the dataset displays a significant class imbalance which can influence the ML 

algorithms realization and potentially causing the bias in the space debris class. Hence, in order to 
address this issue, oversampling techniques were utilized which insert synthetic instances into the 
minority class. Three oversampling techniques were employed in this paper, i.e., Synthetic Minority 
Oversampling Technique (SMOTE), synthetic minority oversampling technique-support vector 
machine (SMOTE-SVM) and Adaptive Synthetic Sampling (ADASYN). 

SMOTE's core concept involves the identification of the k-nearest neighbors (KNN) for each 
minority class sample. Subsequently, synthetic data points are inserted by connecting these points with 

lines. The process iterates by randomly selecting minority data points until a balanced distribution is 
attained, aligning the minority and majority class sizes. 

SMOTE-SVM, unlike KNN-based oversampling techniques, doesn’t identify the borderline directly. 
Instead, it focuses on reinforcing the borderline by leveraging Support Vector Machines (SVM). 

ADASYN operates on the core principle of generating additional the minority samples, taking into 
account their distributions. This process leverages the KNN to identify the density distribution 
associated with all the minority samples. As a result, it introduces a sufficient number of minority 

samples to harmonize their representation with that of the majority class within that specific distribution. 

3.2.  Classification Models  

• Logistic Regression: A statistical method used for the ML classification. It uses the logistic 
function to describe the probability of the outcome from the particular class. The formula as below. 

 𝑃(𝑁 = 1|𝑀) =
1

1+𝑒−(𝑐0+𝑐1𝑀1+𝑐2𝑀2+⋯+𝑐𝑛𝑀𝑛)                 (2) 

𝑃(𝑁 = 1|𝑀) is the probability that the probability that the dependent variable 𝑁 belongs to class 1 
given the input features 𝑀. The coefficients associated with features 𝑀 are denoted by 𝑐n. 

• Naive Bayes: A ML classification algorithm via Bayes' theorem. The formula as below. 

 𝑃(𝑁|𝑀) =
𝑃(𝑁) 𝑃(𝑀|𝑁)

𝑃(𝑀)
   (3) 

𝑃(𝑁|𝑀) is the probability of the data point belonging to class, 𝑃(𝑁) is the prior probability of class, 

𝑃(𝑀|𝑁) is the probability of observing features (likelihood), 𝑃(𝑀) is the marginal likelihood, the 

probability of observing features 𝑀. 

• K- Nearest Neighbour: The straightforward and efficient supervised machine learning algorithm 
employed in classification analysis without strict formulae. It makes predictions by taking into account 
either the majority class or the average value of the KNN points within the feature space. 

• Support Vector Machine: The robust supervised ML method applied for classification purposes. 
It is based on the idea that by maximizing this margin, it reduces the risk of overfitting and generalizes 
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well to new, unseen data. SVM is effective for separable data through the application of various kernel 
functions. 

• AdaBoost: The ensemble machine learning method that combines numerous weak learners to 
produce a robust classifier. It focuses on improving the classification performance by giving more 
weight to the data points that are misclassified by previous weak classifiers. 

• Random Forest Classifier: The ensemble ML method that is used for classification purposes. It 
serves as an extension of the decision tree method and combines multiple decision trees to enhance the 
prediction accuracy. 

• Perceptron: A Perceptron is a supervised learning algorithm that models a simplified neuron. It 
takes a set of input data, assigns power weights to these inputs, calculates the sum of data, then processes 
outcomes through the function. The output of the activation function determines the class to which the 
input is assigned (usually binary classification: 0 or 1). 

4.  Implementation and Testing 

In this study, all the models were developed within a Python 3.11.2 environment, The hardware setup 
includes a 5.2GHz i7-13700 CPU, a RTX 4080 GPU, and 16GB of RAM. 

4.1.  Evaluation Index 
In evaluating the performance of these ML classifiers, there are three universal metrics be used for 

binary classification analysis. (TP: true positive, FP: false positive, TN: true negative, FN: false negative) 

• Accuracy (Acc): The proportion of accurate predictions (comprising true positives and true 
negatives) to the total number of samples assessed, which can indicate the classifier’s capability to 
identify samples with the positive and negative classes.  

 𝐴𝑐𝑐 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
      (4) 

• Precision (Pre): The performance argument that measures the accuracy of positive prediction 
made by the classifier. Pre is aiming to assess the quality that the classifier avoids false positives. 

 𝑃𝑟𝑒 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
     (5) 

• Recall (Rec): The performance argument that measures the capability of classifiers to identity 
all relevant objects from the positive class. Rec can evaluate the classifier’s ability to capture as many 
positive samples as possible. 

 𝑅𝑒𝑐 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
    (6) 

4.2.  Classification Performance  
The performance (Acc, Pre and Rec score) of seven machine learning classifiers with selected features 
is represented in Table 2. 
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Table 2. The performance of the ML method. 

Classifier No oversampling SMOTE SMOTE-SVM ADASYN 
Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec 

Logistic Regression 85.1 6.9 37.4 88.7 62.3 85.5 94.0 87.7 90.3 93.7 89.7 96.0 
Naive Bayes 86.7 26.5 76.3 91.1 75.6 90.2 96.7 83.0 95.5 86.0 87.8 61.6 

KNN 90.3 13.7 79.3 90.9 86.0 81.1 98.2 82.9 95.7 98.9 97.5 89.9 
SVM 95.0 35.5 38.3 97.8 89.7 95.6 99.7 98.7 99.4 99.2 95.4 97.9 

AdaBoost 73.8 22.4 56.0 97.1 90.5 94.6 96.1 83.9 96.7 86.7 65.1 90.7 
RF 87.6 43.7 77.1 98.5 91.0 89.9 99.3 93.6 94.9 99.5 88.3 91.1 

Perceptron 90.1 34.8 70.0 95.1 77.6 86.4 96.5 88.8 87.4 92.7 92.0 92.1 

Average 86.9 26.2 62.1 94.2 81.8 89.0 97.2 88.4 94.3 93.8 87.9 88.5 

 

Drawing from the investigation of several computational experiment results, we can make the 
following observations and findings: 

• As far as the selection of a particular classifier, the SVM model has the emergence of frequently 
excellent performance (denoted by bold fonts), regardless of the oversampling methods employed. The 
peak performance is achieved when SVM with SMOTE-SVM method is employed on the selected 

features space, resulting in the accuracy of 99.7%, the recall of 99.4 and the precision of 98.7%. Likewise, 
the SVM model demonstrates outstanding performance in all oversampling strategies. 

• When we compare the capability of oversampling techniques, it becomes evident that SMOTE-
SVM has the best performance among the oversampling techniques utilized in this paper. The 
conclusion reinforced by the average performance score (the accuracy of 97.2%, the recall of 88.4% and 
the precision of 94.3%), regardless of the classifier employed. 

5.  Conclusion 

In this paper, we explore the efficacy of several machine learning techniques when applied to task of 
RSOs classification via the real-world RCS data. A series of computational experiments are 
implemented to process the dataset from ESA within the selected features set, which is generated from 
the correlation heat map. To solve the class-imbalance issue in the dataset which has an approximate 

ratio of 5:1 between space debris class and non-debris class. Therefore, three oversampling techniques 
are employed, such as SMOTE, SMOTE-SVM, and ADASYN. Eventually, seven machine learning 
classifiers, i.e., Logistic Regression, Naive Bayes, KNN, SVM, AdaBoost, Random Forest Classifier 
and Perceptron are assessed in terms of Acc, Pre and Rec. The SMOTE-SVM oversampling method 
with the SVM classifier have the best performance (Acc: 99.7%, Pre: 98.7% and Rec: 99.4) among all 
combinations. 

The following work is to investigate the potential of employing deep learning methods and several 
features extraction methods in comparison to the current feature selection approach. Moreover, there is 

a need to consider using a larger dataset because of the significant increase of RSOs year by year. 
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