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Abstract. Automatic driving technology has become a highly researched field in recent years, 

aiming to achieve vehicle driving without human intervention. In this regard, reinforcement 

learning techniques have played a crucial role. This study discusses and analyses the use of 

reinforcement learning in automatic driving methods. The research begins with the process of 

reinforcement learning. In the architectural framework, there is a special emphasis on designing 

innovative reward functions to encourage safe and socially acceptable driving behaviour, while 

considering uncertainty factors through advanced Bayesian neural networks. This paper 

primarily focuses on aspects such as scene understanding, localization and mapping, planning 

and driving strategies, and control. Furthermore, the paper analyses the key elements of 

automatic driving and delves into the specific complexities associated with each element. It 

highlights the utilization of reinforcement learning within the realm of autonomous driving. 

Reinforcement learning assists autonomous vehicles in understanding the surrounding 

environment, accurately identifying paths, making intelligent driving decisions, and safely 

controlling the vehicle. Reinforcement learning especially working with deep learning plays a 

crucial role in realizing and continuously improving automatic driving. Finally, the paper 

concludes with a summary and outlook on the entire study. 
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1.  Introduction 

Autonomous driving (AD) technology holds immense potential to revolutionize the transportation 

industry by enhancing safety, reducing traffic congestion, and providing increased mobility for all. 

Reinforcement Learning (RL) has surfaced as a prospective method to train autonomous vehicles to 

make complex decisions in real-world environments. This research proposal outlines a comprehensive 

study aimed at leveraging reinforcement learning techniques to enhance the decision-making 

capabilities of autonomous vehicles for safer and more efficient driving. Autonomous driving 

technology encompasses several key areas, including perception, decision-making and planning, control 

systems, localization and mapping and human-machine interaction interface.  

RL has made remarkable strides in the field of autonomous driving research. One significant 

application area is in path planning and decision-making. Researchers have applied reinforcement 

learning algorithms to autonomous vehicles, enabling them to make intelligent decisions in complex and 

dynamic traffic environments, such as collision avoidance, optimizing vehicle speed, and making lane 

changes. A notable example of this approach is the utilization of deep reinforcement learning (DRL) to 

train autonomous vehicles for lane changes on highways, aimed at enhancing road traffic efficiency and 
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safety. Furthermore, RL has also made a significant impact on simulation training. Researchers leverage 

virtual environments to train autonomous driving algorithms, simulating various road conditions and 

driving scenarios. This approach can substantially reduce the number of trials required on actual roads, 

mitigating potential safety risks. Additionally, it aids in enhancing algorithm performance and 

robustness. Another application area is traffic flow optimization. By coordinating the driving of multiple 

autonomous vehicles, RL algorithms can assist in reducing traffic congestion and enhancing road 

utilization efficiency. Research indicates that in urban environments, the implementation of intelligent 

traffic signal control and vehicle-to-vehicle coordination through RL can significantly reduce traffic 

delays and emissions. 

However, despite the extensive potential utilization of RL in the domain of autonomous driving, 

there are still challenges to address. For instance, RL algorithms often require a substantial amount of 

training data. Yet, collecting a large volume of real-world data in autonomous driving scenarios can 

pose challenges related to safety and cost. Additionally, the interpretability of RL models remains a 

significant concern. In the context of AD, understanding why a model makes specific decisions is crucial, 

highlighting the need for transparent and interpretable models. 

This study discusses and analyses RL-based methods for AD. The focus is primarily on the 

application of RL in scene understanding, localization and mapping, planning and driving strategies, 

and control. Additionally, the paper analyses key elements of AD and delves into the specific 

complexities associated with each element. 

2.  Methodology 

In this section, the main focus is on introducing the methodology of RL in autonomous vehicle 

technologies. The methodology of this paper involves a systematic and comprehensive approach 

targeted for enhancing the effectiveness of AD through the strategic integration of cutting-edge 

technologies. Starting with a meticulous definition of the state space and problem formulation as a 

Markov Decision Process (MDP), the research primarily centres on utilizing scene understanding, 

localization and mapping, planning and driving policy, and control. Within the architectural framework, 

special emphasis is placed on designing innovative reward functions to encourage safe and socially 

acceptable driving behaviour, while also considering uncertainties through advanced Bayesian neural 

networks. This framework undergoes meticulous optimization through rigorous simulations, emulating 

a range of real-world scenarios as a pre-training testing ground for autonomous agents. Subsequently, 

the agents transition to real-world experiments in controlled environments, ensuring that AI-driven 

decisions based on core domains effectively lead to tangible enhancements in autonomous driving 

performance. 

2.1.  Problem Formulation and State Space Representation 

In this phase, the research will define the state space representation of the AD problem. This will involve 

selecting relevant sensor inputs such as camera images, LiDAR data, GPS coordinates, and vehicle 

dynamics information. The state space will also encompass contextual information like traffic signals, 

road signs, and the behaviour of surrounding vehicles and pedestrians. The problem will be formulated 

as an MDP, with the state, action, reward, and transition functions defined accordingly. 

2.2.  Reinforcement Learning Architecture  

The research will design a hierarchical RL architecture to enable autonomous vehicles to make decisions 

at different levels of abstraction. The high-level component will focus on strategic maneuver planning, 

such as lane changes, overtaking, and merging. The low-level component will involve vehicle control 

actions like acceleration, braking, and steering. Various RL algorithms will be evaluated for each 

component, considering factors such as stability, convergence speed, and sample efficiency. The chosen 

algorithms might include Deep Q-Networks (DQN) for maneuver planning and Proximal Policy 

Optimization (PPO) for control. 
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2.3.  Reward Function Design 

This phase will focus on creating reward functions that effectively guide the RL agent’s learning process. 

The research will explore novel reward designs that promote safe and efficient driving behavior. For 

instance, rewards could be based on adhering to traffic rules, maintaining a safe following distance, and 

minimizing jerk or sudden maneuvers. The rewards will also incorporate considerations for pedestrian 

interactions, yielding to other vehicles, and adapting to various road conditions. Socially acceptable 

driving behaviors will be encouraged through the reward structure. 

2.4.  Uncertainty Estimation and Risk-awareness 

To handle real-world uncertainties, the research will integrate uncertainty estimation techniques into the 

RL framework. Bayesian neural networks or Monte Carlo dropout will be investigated to model sensor 

noise and estimation errors. The research will develop strategies to propagate uncertainty through the 

decision-making process, enabling the agent to make cautious and risk-aware decisions in situations 

where confidence is low. This will involve balancing exploration and exploitation while considering the 

level of uncertainty. 

2.5.  Simulation and Real-world Experiments 

Simulation environments will be used extensively throughout the research. Initially, the RL agents will 

undergo pre-training in simulated environments to acquire basic driving skills and maneuver planning. 

High-fidelity simulators will replicate various driving scenarios, including urban, highway, and adverse 

weather conditions. The pre-trained agents will then undergo fine-tuning using reinforcement learning 

techniques. This phase will also involve creating realistic traffic scenarios, pedestrian behaviors, and 

dynamic road conditions to ensure robustness. 

Once the agents exhibit satisfactory performance in simulations, they will be deployed onto a real-

world autonomous vehicle platform. Controlled on-road experiments will be conducted in a safe and 

controlled environment. The vehicle will be equipped with the necessary sensors, computing hardware, 

and safety mechanisms to ensure compliance with regulations and ensure safe operation. The real-world 

experiments will provide validation and benchmarking of the RL agents’ performance in actual driving 

scenarios. 

3.  Main Link of Autonomous Driving and Application of Reinforcement Learning 

The chapter provides an overview of the key elements of AD and delves into the specific intricacies 

associated with each element. In this segment, it primarily describes the application of RL in the area of 

AD. RL helps autonomous vehicles understand their surroundings, find their way accurately, make smart 

driving decisions, and control the car safely. RL takes a vital important role that makes autonomous 

driving possible and keeps it improving. 

RL finds applications in a diverse range of autonomous driving tasks, showcasing its adaptability 

and effectiveness. These tasks encompass controller optimization, path scheduling, and trajectory 

optimization, where RL tunes vehicle control for smooth and safe driving. RL also shines in motion 

planning, dynamic path planning, and complex navigation tasks, enabling vehicles to navigate 

challenging environments, handle intersections, and adapt to lane changes. Furthermore, RL-driven 

strategies learn from past experiences, improving performance in areas like merging, splitting, and 

highway driving. Additionally, RL is employed in reverse RL, fine-tuning reward functions using expert 

driving data. This versatile approach enhances AD systems’ adaptability and decision-making in real-

world scenarios [1]. Figure 1 shows the standard blocks of an autonomous driving system [2]. 
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Figure 1. the standard blocks of an autonomous driving system [2]. 

3.1.  Scene Understanding 

This module involves the use of different sensors to get ambient data and processing the data with state-

of-the-art computer vision and deep learning (DL) methods to identify and interpret objects, road 

conditions, and the surrounding environment, enabling the vehicle to make informed decisions. RL can 

be utilized to train agents for object recognition in the environment, enabling the vehicle to detect and 

monitor objects like pedestrians, vehicles, and obstacles accurately. Agents can learn to understand 

scenes by assigning rewards based on their ability to correctly identify objects and respond to them 

appropriately. 

3.1.1.  Object Detection. In AD, object detection serves as the “eyes” of the vehicle, allowing it to 

perceive its environment and make informed decisions based on the presence and behaviour of objects. 

This information is then used by other components of the autonomous system, such as planning and 

control, to navigate safely, follow traffic rules, and avoid collisions. Object detection plays a critical role 

in achieving the perception capabilities required for fully autonomous vehicles.  

The primary techniques for object detection in autonomous driving and computer vision are 

supervised learning and DL like YOLO (You Only Look Once) CNN algorithm [3]. However, RL still 

play a role in improving or augmenting object detection in specific scenarios. In a study [4], authors 

proposed two driving models to examine the impact of 3D dynamic object detection in AD. They then 

formulated an enhanced model that exhibited superior navigation performance and safety standards. 

They found out that the model called Conditional Imitation Learning Dynamic Objects Low Infractions-

Reinforcement Learning (CILDOLI-RL) using Q-Learning and Deep Deterministic Policy Gradient 

(DDPG) functions better than the other model called Conditional Imitation Learning Dynamic Object 

(CILD) for safety-critical driving, like in dense traffic driving scenario for autonomous navigation with 

passenger.   

3.1.2.  Semantic Segmentation. Semantic segmentation in AD pertains to a computer vision assignment 

where every pixel in an image or sensor data is categorized with a semantic label, such as “road,” 

“vehicle,” “pedestrian,” “building,” or “tree.” This pixel-level labelling provides a detailed 

understanding of the scene’s composition, allowing autonomous vehicles to discern different road 

elements and objects in their environment.  

RL is not typically directly used semantic segmentation, while deep learning methods now have 

become the dominant approach for semantic segmentation due to their outstanding performance [5]. 

However, Reinforcement Learning somehow using as a supplement or improvement. Md. Alimoor Reza 

and Jana Kosecka proposed a semantic segmentation model for indoor environment using RL, which is 

a more modular and flexible than traditional monolithic multi-label CRF approach, cutting down the 

workload for data processing and maximize performance on the benchmark dataset [6]. 
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3.1.3.  Sensors Fusion. Autonomous vehicles are equipped with an array of sensors such as cameras, 

LiDAR (Light Detection and Ranging), radar, ultrasonic sensors, IMUs (Inertial Measurement Units) 

and GPS (Global Positioning System) (Figure 2). These sensors collect data regarding the vehicle’s 

environment, encompassing other vehicles, pedestrians, traffic signs, and roadway state. Sensor fusion 

in AD is the process of combining data from multiple sensors, and more, to construct a comprehensive 

and accurate depiction of the vehicle’s environment. 

Figure 2. different sensors on the vehicles [7]. 

3.2.  Localization and Mapping 

In AD, localization and mapping are fundamental to safe and precise navigation. Localization provides 

the vehicle with its current position, which is critical for path planning and control. Mapping assists the 

vehicle in discerning the road layout, identifying the positions of other vehicles, and recognizing the 

existence of obstacles. Together, they enable the vehicle to make informed decisions, avoid collisions, 

follow traffic rules, and navigate complex environments. Both localization and mapping are dynamic 

processes, continually updated as the vehicle moves. The integration of sensor data, machine learning, 

and advanced algorithms is essential for achieving accurate and reliable results in real-world driving 

scenarios. 

3.3.  Planning and Driving Policy 

Planning and Driving Policy in AD refer to the processes and strategies that enable a self-driving vehicle 

to make decisions and control its movements. 

There are many examples using reinforcement learning in planning and mapping. For instant, 

Bojarski et al conducted research on end-to-end learning for self-driving cars, which uses DRL to learn 

a driving policy directly from raw sensor data [8]. Sallab et al proposed an AD framework using deep 

reinforcement learning, which use DQN to make planning. The utilization of DQN fasten convergence 

and improve performance [9]. In a study [10], authors used Q-learning to determine the most effective 

driving policy that helps the vehicles to change lane. They choose RL for convenience of connecting 

with perception module and avoiding building the environment model explicitly, taking into account all 

potential future scenarios. Wang et al [11] proposed a framework for autonomous robot navigation that 

integrates conventional global planning with DRL-driven local planning. This approach reduces training 

duration and mitigates the risk of the mobile robot becoming immobilized in the same place. In a study 

[12], authors proposed a lateral and longitudinal decision-making model based on QDN, Double 
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DQN(DDQN), and Dueling DQN. In comparative trials, DRL in AD consistently outperforms rule-

based methods in safety, efficiency, and generalization. As ADVs increase in mixed traffic, training 

DRL models gets tougher, highlighting the need for future research in multi-agent RL. In the terms of 

motion planning, it still have a lot to improve like safety and Sim2Real [13]. 

3.4.  Control 

In AD, ‘control’ pertains to the precise management of a vehicle’s movements, including steering, 

throttle (acceleration), and braking, to navigate the vehicle safely and efficiently. Control systems in 

autonomous vehicles are responsible for executing the driving policies and paths generated by higher-

level planning algorithms. 

And several examples of RL applications in control for AD. For instance, in a study [14], authors 

proposed two approaches (DQN, DDPG (Deep Deterministic Policy Gradient)) to navigate a dynamic 

urban environment in a simulation, adhering to a predefined route while minimizing collisions and 

staying on the road, aiming for maximum speed. The result shows that DDRG works better for its 

continuous control in both speed and steering. Liu et al [15] proposed a new longitudinal motion control 

method combining DRL with expert demonstrations in order to have better performance in urban driving 

situations. They compared the results with common RL and Imitation Learning (IL) baseline methods, 

showing a faster training speed and better safety and efficiency. 

In a study [16], authors explored autonomous driving based on vision using DL and RL techniques, 

which split the vision-based lateral control system into two modules: One relying on neural networks 

employing multi-task learning is used to analyse driver-view images to predict track features (perception 

module), and another is rooted in reinforcement learning to utilize these features for control decisions 

(control module). In a research endeavour [17], the authors introduced a control method that relies on 

DRL, utilizing the MDP and an associated proximal policy optimization learning algorithm. Their 

objective was to enable autonomous exploration of a parking lot. The outcomes revealed the attainment 

of a highly effective controller after just a few hours of training. 

In conclusion, the utilization of RL in AD, especially in the planning and control modules, usually 

work together with deep learning. This synergy harnesses the ability of RL to optimize decision-making 

through interaction with the environment and pairs it with the capacity of DL to process vast amounts 

of complex data. This combined approach is driving innovation in autonomous systems, enabling 

vehicles to adapt, learn, and make intelligent decisions on the road. As AD technology advances, the 

integration of RL and DL will continue to shape the landscape, promising safer, more efficient, and 

increasingly sophisticated autonomous transportation solutions. Although DRL had some limitations, 

such as a lack of continuity in speed and direction control and sim2real processing, it will still continue 

to advance the progress of self-driving technology in the future. 

4.  Conclusion 

This study has investigated and assessed RL methods applied to AD. Its primary focus has revolved 

around scene comprehension, positioning and mapping, strategizing for planning and driving, and the 

aspect of control. The utilization of RL combining with DL in AD has been highlighted, aiding in 

environmental understanding, accurate path finding, intelligent driving decisions, and safe vehicle 

control. IT has emphasized the key elements and complexities associated with AD. The limitations like 

lack of continuity in speed and direction control and sim2real processing are mentioned. Future research 

can further delve into the reliability, safety, and adaptability aspects of AD, as well as optimize the 

efficiency and accuracy of driving strategies. Additionally, exploring the handling of more complex 

traffic scenarios and multi-vehicle cooperative driving can be an interesting direction for further 

investigation. 
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