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Abstract. The prevalence of monitoring video is critical to public safety, but existing Object 

Detection and Action Recognition models are overwhelmed by camera operators, unable to 

identify relevant events. In light of this, Grounding Situation Recognition (GSR) provides a 

practical solution to recognize the events in a surveillance video. That is, GSR can identify the 

noun entities (e.g., humans) and their actions (e.g., driving), and provide grounding frames for 

involved entities. Compared with Action Recognition and Object Detection, GSR is more in 

line with human cognitive habits, better allowing law enforcement agencies to understand 

the predictions. However, the crucial issue with most existing frameworks is the neglect of 

verb ambiguity, that is, superficially similar verbs but have distinct meanings (e.g. buying 

v.s. giving). Many existing works propose a two-stage model, which first blindly predicts the 

verb, and then uses this verb information to predict semantic roles. These frameworks ignore the 

importance of noun information during verb prediction, making them susceptible to 

misidentifications. To address this problem and better discern between ambiguous verbs, 

we propose HiFormer, a novel hierarchical transformer framework with direct and 

comprehensive consideration of similar verbs for each image, to more accurately identify 

the salient verb, semantic roles, and the grounding frames. Compared with the state-of-

the-art models in Grounded Situation Recognition (SituFormer and CoFormer), HiFormer 

shows an advantage of over 35% and 20% on the Top-1 and Top-5 verb accuracy 

respectively, as well as 13% on the Top-1 Noun accuracy. 

Keywords: Grounded Situation Recognition, Transformer, Deep Learning. 

1.  Introduction 

The rapidly developing surveillance technology is significantly improving our lives. At the end of 2019, 

the number of surveillance cameras in the world exceeded 770 million [1], which is approximated to 

have a market size of 69.1 billion dollars by 2026 [2]. Despite the high coverage of surveillance cameras, 

human activity detections still rampage in places with a less sufficient police force, even directly under 

high-resolution cameras. Now, as the field of Artificial Intelligence and Computer Vision develops, new 

solutions such as Biometric Identification [3,4,5], Object Detection/Tracking [6,7,8], Crowd Density 

Analysis [9,10,11,12,13], and Action Recognition [14,15,16,17,18,19] have come to light, which in 

theory could automatically detect objects or actions. However, this seemingly useful technology remains 

confined to the laboratories as a consequence of deficiencies: 1) The narrow scope of the detection 

process (e.g., action-only or object-only) cripples the model accuracy, for it requires a comprehensive 
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consideration of multiple factors to determine the nature of a situation. 2) Although these models could 

determine what action or object is in the image, they could not recognize the details or causes of the 

entire event. As shown in Figure 1, the Object Detection model monotonously determines the probability 

for each noun entity but makes no effort to recognize the action taking place. 

 

Figure 1. Comparison between Object Detection (left) and Grounded Situation Recognition (right). 

To tackle the existing problems, Grounded Situation Recognition (GSR) [20], first proposed by Pratt 

et al., aims to recognize images following the human cognitive pattern. Unlike the Object Detection 

process shown in Figure 1, which mechanically predicts the likelihood of each noun entity, the task of 

GSR is to understand the given image from an event-based perspective, which is to identify the involved 

noun entities, their mutual interactions as well as the relative and absolute locations of the noun entities. 

In the case of Figure 1, GSR recognizes not only the two men and the certificate, but also the apparent 

action of giving, as well as the classroom where the action is taking place. This comprehensive image 

analysis makes GSR models more accurate, significantly reducing misidentifications. Furthermore, in 

addition to the traditional Situation Recognition, GSR also makes a grounding frame prediction for all 

relevant noun entities based on the semantic information of the salient action, the noun entities, and their 

mutual relations. This provides the model with locations of noun entities within the image, thereby 

benefiting many downstream tasks such as multimedia understanding [21,22,23] and information 

retrieval [24,25,26]. In summary, Grounded Situation Recognition aims to predict the salient verb, noun 

entities, and grounded frames when analyzing an image by utilizing the crisscrossing semantic relations. 
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Figure 2. Instance of Verb Ambiguity. 

However, almost all existing works in this field neglect the existence of verb ambiguity (similar- 

looking verbs with different meanings). For instance, “providing,” “buying,” and “giving” have 

drastically different meanings despite looking quite similar (as shown in Figure 2). Most works in this 

field use identical two-stage frameworks, which first predict the verb, and then use this information to 

predict the nouns. With the complete ignorance of noun information during verb prediction, these 

models could not discern between many similar verbs, whose only difference is with their semantic roles. 

Recent works (such as SituFormer [27] and GSRFormer [28]) try to tackle both of the above 

problems by proposing a three-stage transformer framework. On the firsthand, they try to alternately 

update verbs and semantic roles by 1) predicting the verb in stage 1; 2) predicting semantic roles in stage 

2 based on the verb; 3) refining the verb features in the third stage with the newly acquired semantic 

roles. On the other hand, when processing an image with the salient verb found, SituFormer tries to 

consider the other highly similar verbs. However, the approaches to both problems are still largely 

ineffective: 1) the interconnecting semantic relations between verbs and nouns remain underexploited, 

for the refinement process lacks repetition; 2) the problem of verb ambiguity still remains unsolved, for 

many of the computed similar verbs could still have drastically different meanings due to their different 

semantic roles. Therefore, without considering these semantic roles, the actually similar verbs remain 

neglected. Furthermore, they have overcomplicated this task by adding redundant and inherently 

ineffective modules. 

To address this problem, we propose HiFormer, a novel transformer-based GSR model. HiFormer 

takes advantage of its hierarchical internal structure and directly considers all similarities during the 

decision-making process, significantly reducing the chance of misidentifying, and leading to more 

reliable and accurate predictions for GSR. We uniquely contribute to the task of Grounded Situation 

Recognition in the following three aspects: 

1. We unravel the problems of previous works, pointing out their neglect of verb ambiguity. The lack 

of macroscopic analysis regarding the similarity between verbs causes their accuracy to re-main gloomy. 

Despite repeated attempts at improvement, their current performances are still pessimistic, for they 

oversimplify the retrieval process of similar verbs and ignore the significance of semantic roles. 

2. We propose a novel hierarchical transformer framework, taking advantage of its internal hierarchy 

to explicitly consider all similarities for each image. This approach effectively reduces the 

misidentifications caused by verb ambiguity, directly confronting the most crucial issue of the GSR task. 

3. We achieve stage-of-the-art performance accuracy on the challenging SWiG benchmark, far 

surpassing all the previous works by over 35%, 21% on the Top-1, Top- 5 verb accuracy, and over 13% 

on the Top-1 noun accuracy. 

Our proposed HiFormer can be applied to the surveillance camera network to alert the local 

authorities and medical centers in the event of criminal activity or risky behavior. Due to the rapid 
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improvement in the economy and the development of technology both in developed and developing 

countries, surveillance technology will become increasingly widespread. Therefore, our Hiformer could 

deter and drastically reduce criminal activity, and in the end, improve the life quality of the general 

public as a whole. 

2.  Related Work 

This section will briefly introduce some previous essential works in Transformers, Action Recogni-tion, 

and Grounded Situation Recognition. 

2.1.  Progression of Action Recognition 

According to an analysis conducted by Gella et al. [29], Action Recognition is the task of recognizing 

the activity taking place in pictures and videos. Most existing works can be classified into four 

categories: 1) Action Classification; 2) Human-Object Interaction detection; 3) Visual Verb Sense 

Disambiguation; 4) Visual Semantic Role Labeling. In the beginning, Action Recognition took the form 

of Action Classification based on small-scale data sets [30,31,32,33], which laid the foundation 

numerous later works. However, this kind of classification is problematic in two folds. Firstly, the 

methods could not be extended to large-scale data sets. Secondly, these works all assume a singular verb 

label for each image, ignoring the fact that multiple activities could take place in the images 

simultaneously. In response to these problems, Human-Object Interaction detection was proposed [34], 

which solved both of the above problems. However, more deficiencies have come to light regarding 

HOI detection. Firstly, it neglects the existence of multiple meanings of the same verb. For example, the 

verb “take” means accepting, acquiring, and carrying. Secondly, it ignores the importance of noun 

information within the verb prediction process, which is often the only difference between similar verbs 

such as “riding a bicycle” or “riding a horse”. These observations have led to many arguments regarding 

how actions should be analyzed on the level of verb senses. Later, Gella et al. [36] proposed a new task 

of visual Verb Sense Disambiguation, where each image is annotated with verb sense labels. However, 

although this task handles the ambiguity of verbs, it neither identifies nor localizes the noun entities 

within the images. Some recent works [37,38] solve this deficiency by proposing Visual Semantic Role 

Labeling, which not only predicts and identifies the semantic roles but also provides grounding frames 

to localize these roles. 

2.2.  Transformer in Grounded Situation Recognition 

The Transformer Framework [39] was first proposed by Vaswani et al. to tackle problems in Natural 

Language processing. Its built-in attention mechanism allows it to easily model the long-range 

dependencies between words and phrases without laboriously stacking up multiple layers. It is 

significantly more efficient than conventional Convolutional Neural Networks. Furthermore, due to the 

inherent structure of the attention block, transformers are much more parallelizable compared to 

Recurrent Neural Networks. Later, this model became widely used and modified in Natural Language 

Processing. Modifications on the transformer framework such as Lightweight variants [40,41,42], 

recurrent transformers [43,44] and hierarchical transformers [45,46,47], etc. According to a survey by 

Khan et al. [48] many works have been trying to implement this successful model in Computer Vision. 

Its minimal need for inductive biases and ability to tackle long-range dependencies makes it much more 

suitable for the task than conventional convolutional neural networks. Furthermore, the robust design of 

the transformer model makes it competent in various sub-areas, such as video, image, and audio, without 

any laborious modifications. Therefore, the transformer model is becoming increasingly popular in 

Computer Vision. 
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Figure 3. Overall Architecture of Hierarchical Transformer. 

In the Specific field of Grounded Situation Recognition, the Transformer model was first proposed 

by Cho et al. in GSRTR [49], by replacing the object-centric queries in DETR [50] with semantic role 

queries. More recently, Wei et al. proposed SituFormer [27], a two-stage model that predicts the verb 

and nouns separately using two transformer-based detectors, to improve the performance. 

3.  Hierarchical Transformer Framework 

This section will further elaborate on the Hierarchical Transformer Framework (HiFormer). 

3.1.  Overview of HiFormer 

To address the above problems, we reshape the transformer framework in Grounded Situation 

Recognition by proposing a renewed learning framework named HiFormer. As shown in Figure 3, 

HiFormer is a two-stage transformer-based model that directly tackles the problem of verb ambiguity. 

It computes and considers the similar images for each training set image and thoroughly exploits the 

semantic verb- noun relations. In the first stage, the Leaf Transformer (TRMleaf) learns the preliminary 

representation for each image. Then, the support image set for each image is computed during the KNN 

retrieval pro- cess, which serves as a transition to the Root Transformer. Finally, the Root Transformer 

utilizes the support image sets to refine the representations of each image. 

Formally, HiFormer can be represented by Eq. 1-3 as, 

 TRM
leaf
(𝑅(0), 𝑃(0) ∣ 𝐼) (1) 

 KNN({𝑅(0), 𝑃(0)}
sim
∣ {𝑅(0), 𝑃(0)}

all
) (2) 

 TRM
root
({𝑅(𝑡), 𝑃(𝑡)}

sim
∣ 𝑅(𝑡+1), 𝑃(𝑡+1)) (3) 
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where the three equations respectively denote the working procedures of the Leaf Transformer, KNN 

retrieval process, and Root Transformer. Firstly, the Leaf Transformer learns the role tokens 𝑅(0) and 

the preliminary representations 𝑃(0) of each image, using the image features 𝐼 extracted by the CNN 

backbone. Afterwards, we compute a support image set {𝑅(0), 𝑃(0)} sim of size 𝑘 for each image in the 

retrieval process. Finally, the Root Transformer refines the preliminary representations of the original 

images with their support verb sets. 

 

Figure 4. Leaf Transformer. 

3.2.  Leaf Transformer 

Leaf Transformer is trained to independently learn the preliminary representations of salient verbs and 

their corresponding semantic roles, consisting of an encoder and a decoder. 

As shown in Figure 4, the Leaf Transformer consists of an Encoder and a Decoder. The Leaf Trans-

former Encoder is designed to learn the representation of the salient verb and predict the preliminary 

verb category. At the same time, the Leaf Transformer Decoder is devised to learn the corresponding 

semantic role representation based on the salient verb. 

3.2.1.  Representation of Salient Verb 

As shown in Figure 4, the CNN backbone first extracts a feature map 𝐹𝑖𝑚𝑔 ∈ ℝ𝑐×ℎ×𝑤 from the im-age, 

with is transformed into a sequence of image features [𝑓1, 𝑓2, … , 𝑓ℎ−𝑤] by a 1 × 1 convolutional layer 

and a flattening operator, where each element 𝑓𝑖 ∈ ℝ𝑑 represents the features of a single pixel. Inspired 

by ViT [51], we initialize a vector of learnable verb tokens 𝑡𝑣 ∈ ℝ𝑑 to represent the salient verb. Then, 

the verb tokens and image features are encoded with positional embedding 𝐸pos  to take positional 

information into account. Finally, the encoded image features are fed to the Leaf Transformer Encoder, 

equipped with a multi-head self-attention module. The detailed working procedure of the Leaf 

Transformer Encoder stands as below. 

 
[𝑒𝑣, 𝑒1, 𝑒2, … , 𝑒ℎ×𝑤] = MSA ([𝑡𝑣 , 𝑓1, 𝑓2, … , 𝑓ℎ×𝑤] ⊕ 𝐸

pos
)⏟                  

query/key/value

 (4) 

The output can be divided in to two parts: 1) verb embedding 𝑒𝑣 ∈ ℝ1×𝑑; 2 ) image embedding 

𝑒1...ℎ𝑤 ∈ ℝℎ𝑤×𝑑. Which will later serve as input for the decoder. 
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3.2.2.  Representation of Semantic Roles 

Before entering the decoder, a verb classifier determines the preliminary verb category 𝑣 based on the 

verb embedding acquired by the encoder, from which we fetch the corresponding semantic roles and 

initialize them to a role embedding vector [𝑟1, … , 𝑟𝑚]. Where 𝑚  is the number of roles, and each 

element 𝑟𝑖 ∈ ℝ𝑑 represents the embedding for a single role. 

After acquiring the verb, semantic role, and image embedding, we feed them to a transformer decoder 

module to further learn the preliminary representations of the verb 𝑝𝑣 and semantic roles [𝑝𝑛1 , … , 𝑝𝑛𝑚] 

as shown below: 

 
𝑃𝑣 = [𝑝𝑣 , 𝑝𝑛1 , … , 𝑝𝑛𝑚] = MHA([𝑒1…ℎ𝑤] ⊕ 𝐸𝑝𝑜𝑠⏟          

query

, [𝑒𝑣, 𝑟1, … , 𝑟𝑚]⏟        

key/value

),
 (5) 

where 𝑝𝑣 , 𝑝𝑛1 , … , 𝑝𝑛𝑚 are all vectors of real numbers with size 1 × 𝑑. 

Note that the Leaf Transformer Decoder is equipped with a multi-head cross-attention block, where 

the image embedding with position encoding serves as the query for the Attention Mechanism, and the 

concatenated vector of verb features and role features serves as both the key and value. 

3.3.  Retrieval Process 

In this stage, we compute the support image set for each image (as shown in Figure 5), which consists 

of 𝑘 image with the highest cosine similarity to the said image. 

3.3.1.  Computation of the Support Image Set 

Before the actual computation begins, we split the Training/Validation/Test datasets into multiple 

segments of around 10000 images to guarantee the program efficiency under the high complexity of the 

pairwise similarity calculation. Next, for each segment in the dataset, we calculate the pairwise cosine 

similarity of all the images within using a brute-force method with 𝒪(𝑛2 ⋅ 𝑑) time complexity. Finally, 

for each image, we find 𝑘 images in the segment with the highest cosine similarity to it, and then save 

this information in a hash-table form. 

 

Figure 5. Retrieval Process. 
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3.3.2.  Retrieval of the Support Image Set 

Using the verb and role representations computed by the Leaf Transformer, we retrieve a support set 

{𝑃}sim  of 𝑘  images with the highest similarity to the current image in order to consider all the 

possibilities and prevent misidentification of similar verbs. 

The Retrieval process is as follows: 

 {𝑃}𝑠𝑖𝑚 = argtop − K ∈ 𝐼
𝑃𝐼𝑗

S (𝑃, 𝑃𝑗), (6) 

 S(𝑃, 𝑃𝑗) =
1

𝑚
∑ CosineSimilarity𝑚
𝑖=1 (𝑝𝑛𝑖

(0)
∈ 𝑃, 𝑝𝑛𝑖

(0)
∈ 𝑃𝑗), (7) 

where 𝐼 is the current image segment. Note that in the actual training or evaluation processes, the 

support image set of each image is already computed. Therefore, the retrieval process could be done in 

𝒪(1) time complexity using the preprocessed hash-table. 

3.4.  Root Transformer 

In this stage, the Root Transformer is trained to refine the verb and role features in an iterative and 

alternating way. Before the main procedure begins, we first use the pre-trained CNN backbone, Leaf 

Transformer, and hash-table to extract the preliminary representations from the raw images. Recognize 

that the Leaf Transformer is already trained to its full extent in the preliminary stage and does not 

participate in loss calculation or backward propagation in this stage. Then, the four main steps stand as 

follows: 1) retrieval of the support image set; 2) computation of neural messages; 3) refinement of 

semantic role features using previously acquired verb information; 4) refinement of verb features using 

previously acquired semantic role information. In this stage, the above steps are repeated five times, in 

which (𝑡) denotes the messages and representations in the 𝑡-th iteration. 

 

Figure 6. Root Transformer. 

3.4.1.  Computation of Neural Messages 

To allow the decoder to simultaneously consider all the images in the support image set, we use the Root 

Transformer Encoder to compute a compacted semantic message, following the neural message passing 

mechanism. 

 [𝑀𝑣
(𝑡)
, 𝑀𝑛1

(𝑡)
, … ,𝑀𝑛𝑚

(𝑡)
] = MHA(𝑝𝑣

(𝑡)
, 𝑝𝑛1
(𝑡)
⊕ 𝑟1, 𝑝𝑛2

(𝑡)
⊕ 𝑟2, … 𝑛𝑛𝑚

(𝑡)
⊕ 𝑟𝑚), (8) 
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In which 𝑀𝑣
(𝑡)
∈ ℝ1×𝑑 denotes the verb message, and 𝑀𝑛1…𝑚

(𝑡)
∈ ℝ𝑚×𝑑 denotes the 𝑚 semantic role 

messages. Unlike the Leaf Transformer Encoder, whose structure is highly similar to those of the Vanilla 

Transformer [39], the Root Transformer Encoder here consists only of a single multi-head self-attention 

module. 

3.4.2.  Refinement of Semantic Role Messages 

For each vector of role representations 𝑝𝑣→𝑛𝑖
(𝑡)

 of the original image, we utilize the semantic relations 

between it and the 𝐾 + 1 verb representation vectors to compute an update message 𝑀𝑣all
(𝑡)
∈ ℝ1×𝑑 . 

More specifically, we aggregate 𝑀𝑣
(𝑡)
, 𝑀𝑣1

(𝑡)
, 𝑀𝑣2

(𝑡)
, … ,𝑀𝑣𝐾

(𝑡)
 on their second dimension using a Fully 

Connected Network, which corresponds to the Agg module in Figure 6. The update message and the 

role embedding vector are then fed to the transformer sub-layer consisting of two Layer Normalization 

modules with a Feedforward Network in between, which will update the role feature 𝑝𝑛𝑖
(𝑡)

 to 𝑝𝑛𝑖
(𝑡+1)

. 

 𝑀𝑣𝑎𝑙𝑙
(𝑡)

= Agg (𝑀𝑣
(𝑡)
, 𝑀𝑣1

(𝑡)
, 𝑀𝑣2

(𝑡)
, … ,𝑀𝑣𝐾

(𝑡)
) (9) 

 𝑝𝑛𝑖
(𝑡+1)

= MLP (𝑀𝑣𝑎𝑙𝑙
(𝑡)

⊕𝑝𝑛𝑖
(𝑡)
) (10) 

3.4.3.  Refinement of Verb Messages 

Similarly, the verb representations of the original image are refined by the semantic role representations. 

We first aggregate 𝑀𝑣→𝑛1…𝑚
(𝑡)

 like the previous section to compute the update message. Then, we feed 

it to another transformer sub-layer, along with the to-be updated verb features, to conduct the refinement 

process below. 

 𝑀𝑛
all

(𝑡)
= Agg (𝑀𝑣→𝑛1

(𝑡)
, 𝑀𝑣→𝑛2

(𝑡)
, … ,𝑀𝑣→𝑛1

(𝑡)
) (11) 

 𝑝𝑣
(𝑡+1)

= MLP (𝑀𝑛
all

(𝑡)
⊕𝑝𝑣

(𝑡)
) (12) 

3.5.  Training Objectives 

3.5.1.  Preliminary Stage 

In the preliminary stage, we calculate the loss functions for the three main outputs: 1) the preliminary 

verb category predicted by the verb classifier after the encoder module; 2 ) the preliminary verb 

representations produced by the decoder; 3 ) the preliminary noun representations produced by the 

decoder, where the first output represents the encoder, and the second and third outputs represent the 

decoder. Although the preliminary verb category does not participate in the future stages, we still impose 

a loss function for it since it plays a crucial role in the input of the Leaf Transformer Decoder. 

The details of the loss functions are as below: 

 𝐿𝑣𝑒𝑟𝑏𝑒1 = 𝐿CE(𝑣
𝑔𝑡 , 𝑣1), (13) 

 𝐿𝑣𝑒𝑟𝑏𝑒2 = 𝐿CE(𝑣
𝑔𝑡 , 𝑣2), (14) 

 𝐿
noun𝑒

= ∑ [𝐿CE(𝑛𝑖
𝑔𝑡
, 𝑛𝑖))

𝑚
𝑖=1 , (15) 

 𝐿𝑏𝑏𝑜𝑥 = 𝐿CE(𝑏𝑖
𝑔𝑡
, 𝑏𝑖), (16) 

where 𝑣1 is the verb category predicted by the verb classifier between the encoder and decoder in the 

preliminary stage; 𝑣2, [𝑛1…𝑚]  and [𝑏1…𝑚]  are the verb, noun, and bounding box predictions 

respectively, based on the preliminary representations acquired at the end of the preliminary stage. The 

purpose of the three loss functions are: 1) 𝐿𝑣𝑒𝑟𝑏𝑒1 helps optimize the preliminary verb category 𝑣1;2) 
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𝐿𝑣𝑒𝑟𝑏𝑒2 assist optimization of the verb prediction 𝑣2 based on the preliminary representations of the 

salient verb. 3) 𝐿noun  quantifies the loss of noun prediction [𝑛1…𝑚]  based on the preliminary 

representation of semantic roles. 

3.5.2.  Refinement Stage 

Like the Leaf Transformer-decoder, we have to optimize the verb, semantic roles, and bounding boxes 

via cross-entropy loss functions. Same as the second step of the encoder, the detail of the decoder loss 

calculation stands as: 

 𝐿
verb𝑑

= 𝐿CE(𝑣
𝑔𝑡 , 𝑣), (17) 

 𝐿
noun𝑑

= ∑ 𝐿CE
𝑚
𝑖=1 (𝑛𝑖

𝑔𝑡
, 𝑛𝑖), (18) 

 𝐿𝑏𝑏𝑜𝑥 = 𝐿CE(𝑏𝑖
𝑔𝑡
, 𝑏𝑖), (19) 

where 𝑣, [𝑛1…𝑚] and [𝑏1…𝑚] are the verb, noun, and bounding box predictions based on their corre-

sponding refined representations. The respective purposes of these loss functions are identical to those 

above. 

3.6.  Process of Evaluation and Inference 

During non-training processes such as evaluation, our framework produces the result straightforwardly. 

The evaluation process consists of five simple steps: 1) the CNN backbone extracts the image features 

from the raw images; 2 ) the Leaf Transformer produces the preliminary verb and semantic role 

representations of the images; 3 ) we retrieve the support image sets of the images from the precomputed 

hash table (note that the support image sets of validation/test image are also precomputed); 4) the Root 

Transformer refines the verb and semantic role representations; 5) the verb category, noun category, and 

bounding box predictors use the well-refined representations to produce the final outputs of Grounded 

Situation Recognition. 

In addition, the custom image inference process is highly similar to the evaluation process above. 

However, since we cannot precompute the support image set for inference images during training, the 

inference process is slightly different from the evaluation process in the third step. Instead of using the 

precomputed hash table, we manually find its support image set in the training set by calculating its 

Cosine Similarity with every image in the set. 

4.  Experiments 

4.1.  Dataset 

We use the most dominant dataset in Grounded Situation Recognition, the SWiG benchmark, to train 

and evaluate HiFormer. SWiG builds upon the imSitu dataset while retaining the original images and 

the frame annotations. SWiG provides additional grounding frames for each image’s visible semantic 

roles. There are 126,102 images, 504 verb classes, and 190 semantic role classes, where each verb is 

followed by 1 to 6 corresponding semantic roles. For each image, three sets of annotations exist made 

by different annotators. We split the Training/Validation/Test datasets into sets with sizes of 

75 K/25 K/25 K, respectively, following the official dataset split. 
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Table 1. Performance comparison with state-of-the-art models on the test set. 

Dataset Models 

Top-1 Verb Top-5 Verb Ground Truth Verb 

verb value 
val-

all 
grnd 

grnd-

all 
verb value 

val-

all 
grnd 

grnd-

all 
value 

val-

all 
grnd 

grnd-

all 

 

Test 

Traditional Situation Recognition models 

CRF [52] 32.34 24.64 14.19 - - 58.88 42.76 22.55 – – 65.66 28.96 - - 

CRF + DataAug 

[53] 
34.12 26.45 15.51 - - 62.59 46.88 25.46 – – 70.44 34.38 - - 

VGG+RNN [54] 35.90 27.45 16.36 - - 63.08 46.88 26.06 – – 70.27 35.25 - - 

FC-Graph [55] 36.72 27.52 19.25 - - 61.90 45.39 29.96 – – 69.16 41.36 - - 

CAQ [56] 38.19 30.23 18.47 - - 65.05 50.21 28.93 – – 73.41 38.52 - - 

Kernel 

GraphNet [57] 
43.27 35.41 19.38 - - 68.72 55.62 30.29 – – 72.92 42.35 - - 

Grounded Situation Recognition models 

ISL [20] 39.36 30.09 18.62 22.73 7.72 65.51 50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58 

JSL [20] 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45 

GSRTR [49] 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 57.45 19.67 

SituFormer [27] 44.20 35.24 21.86 29.22 13.41 71.21 55.75 33.27 46.00 20.10 75.85 42.13 61.89 24.89 

CoFormer [1] 44.66 35.98 22.22 29.05 12.21 73.31 57.76 33.98 46.25 18.37 75.95 41.87 60.11 22.12 

GSRFormer[3] 49.42 40.42 26.25 34.41 18.14 74.42 59.81 36.78 49.41 24.31 79.79 46.63 64.95 28.20 

HiFormer 

(Ours) 
79.29 49.20 17.35 35.83 7.33 94.06 57.01 19.95 42.13 8.95 59.73 20.87 44.50 9.69 

4.2.  Performance Comparison with State-of-the-Art Models 

For HiFormer, we use the evaluation metric for Grounded Situation Recognition proposed by Pratt et 

al. 1., which stands as below: 1) verb: accuracy of the verb prediction; 2) value: accuracy of prediction 

a single semantic role; 3) val-all: the accuracy of correctly predicting all the semantic roles in an image 

simultaneously; 4) grnd: the accuracy of single bounding box predictions; 5): the accuracy of correctly 

predicting all the bounding boxes at once. We deem a bounding box prediction as correct if the IoU 

between it and the ground truth bounding box is above 0.5. 

We further implement the above metrics under three different settings: 1) Top-1-Verb: only calculate 

the accuracy of the top-1 verb, its corresponding semantic roles, and grounding frames; 2) Top-5-Verb: 

calculate the accuracy of the top-5 verbs, its semantic roles and; 3) Ground-Truth-Verb: the ground 

truth verb is known before the prediction, so only the accuracy of roles and frames are calculated. Note 

that in the first two settings, the role and bounding box predictions are automatically considered incorrect 

if the top- 𝑘 verbs do not include the ground truth verb. 
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Table 2. Performance comparison with state-of-the-art models on the validation set. 

Dataset Models 

Top-1 Verb Top-5 Verb Ground Truth Verb 

verb value 
val-

all 
grnd 

grnd-

all 
verb value 

val-

all 
grnd 

grnd-

all 
value 

val-

all 
grnd 

grnd-

all 

 

Test 

Traditional Situation Recognition models 

CRF [53] 32.34 24.64 14.19 - - 58.88 42.7650.21 22.55 - - 65.66 28.96 - - 

CRF + DataAug 

[54] 
34.12 26.45 15.51 - - 62.59 46.88 25.46 - - 70.44 34.38 - - 

VGG+RNN [55] 35.90 27.45 16.36 - - 63.08 46.88 26.06 - - 70.27 35.25 - - 

FC-Graph [56] 36.72 27.52 19.25 - - 61.90 45.39 29.96 - - 69.16 41.36 - - 

CAQ [57] 38.19 30.23 18.47 - - 65.05 50.21 28.93 - - 73.41 38.52 - - 

Kernel GraphNet 

[58] 
43.27 35.41 19.38 - - 68.72 50.21 30.29 - - 72.92 42.35 - - 

Grounded Situation Recognition models 

ISL [23] 39.36 30.09 18.62 22.73 7.72 65.51 50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58 

JSL [23] 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45 

GSRTR [50] 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 57.45 19.67 

SituFormer [27] 44.20 35.24 21.86 29.22 13.41 71.21 55.75 33.27 46.00 20.10 75.85 42.13 61.89 24.89 

CoFormer [58] 44.66 35.98 22.22 29.05 12.21 73.31 57.76 33.98 46.25 18.37 75.95 41.87 60.11 22.12 

GSRformer [28] 49.52 40.64 26.21 34.20 18.02 74.21 59.78 36.98 49.23 23.45 79.77 45.65 64.87 27.90 

HiFormer (Ours) 79.29 49.20 17.35 35.83 7.33 94.06 57.01 19.95 42.13 8.95 59.73 20.87 44.50 9.69 

4.3.  Performance Comparison with State-of-the-Art Models 

As shown in Table 1 and 2, HiFormer achieves state-of-the-art verb and noun accuracy under the top-1 

and top-5 verbs. Compared to the current best-performing GSR model CoFormer [12], the improvement 

in the verb prediction accuracy range from 21% under the Top- 5 Verb to 35% under the Top- 1 verb. 

Fur-thermore, HiFormer improves the noun and bounding box accuracy by 14% and 6%, respectively, 

under the Top-1 verb. However, our model shows some deficiency under the Ground Truth Verb metric, 

as well as the value-all and grnd-all accuracy (in which a prediction is only counted as correct if all 

nouns or grounding boxes are predicted correctly). Despite the model deficiency, the astounding 

improvement in the verb prediction accuracy demonstrates the effectiveness of our framework in solving 

verb ambiguity. 

5.  Conclusion 

We propose a novel two-stage hierarchical transformer framework, in which we simultaneously con- 

sider all similarities for each image instance. With this improved framework, HiFormer outperforms all 

state-of-the-art models regarding verb and noun accuracy. Compared to the current two best-performing 

models, CoFormer [58] and SituFormer [27], HiFormer prevails by over 35% on the top-1 verb accuracy, 

13% on the top-1 noun accuracy and 21% on the top-5 verb accuracy. Regardless, some limitations of 

HiFormer lie with the bounding box prediction and the accuracy under the Ground-Truth-Verb, which 

we intend to explore further in the future. Our hierarchical framework provides a foundation for future 

Grounded Situation Recognition works in solving the bottleneck for many downstream applications 

such as E-commerce [59,60,61,62,63], Intelligent Transportation [64,65,66], etc. We believe our work 

will contribute to moving Grounded Situation Recognition out of the laboratories and implementing it 

in the surveillance network to improve people’s lives. 
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Appendices 

Appendices A.  Internal Structure of Our Transformer Modules 

 

Figure A1. Internal Structure of Leaf Transformer. 

 

Figure A2. Internal Structure of Root Transformer. 
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