
Research on the principle, performance, and application of

UCB algorithm in multi arm slot machine problems

Ruijie Huang

Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist

University United International College, Zhuhai, 519087, China

s230034077@mail.uic.edu.cn

Abstract. As Internet technology continues to evolve, recommender systems have become an

integral part of daily life. However, traditional methods are increasingly falling short of meeting

evolving user expectations. Utilizing survey data from the MovieLens dataset, a comparative

approach was employed to investigate the efficacy, performance, and applicability of the UCB

(Upper Confidence Bound) algorithm in addressing the multi-armed bandit problem. The study

reveals that the UCB algorithm significantly impacts the cumulative regret value, indicating its

robust performance in the multi-armed bandit setting. Furthermore, LinUCB—an enhanced

version of the UCB algorithm—exhibits exceptional overall performance. The algorithm's

efficiency is not just limited to the regret value but extends to handling high-dimensional feature

spaces and delivering personalized recommendations. Unlike traditional UCB algorithms,

LinUCB adapts more fluidly to high-dimensional environments by leveraging a linear model to

simulate the reward function associated with each arm. This adaptability makes LinUCB

particularly effective for complex, feature-rich recommendation scenarios. The performance of

the UCB algorithm is also contingent upon parameter selection, making this an important factor

to consider in practical implementations. Overall, both UCB and its modified version, LinUCB,

present compelling solutions for the challenges faced by modern recommender systems.

Keywords: Recommendation algorithms, Multi-Armed Bandit Algorithm, UCB, LinUCB

algorithm.

1. Introduction

The rapid advancement of information technology and growing frequency of user interactions are

causing the Internet to generate massive amounts of data daily. This explosion of data, often referred to

as "information overload," is not only putting significant load pressure on Internet infrastructure but also

making it increasingly challenging for users and businesses to find relevant information efficiently.

Recommendation systems have emerged as a vital solution to the problem of information overload.

These systems have become an integral part of daily life, guiding users through a sea of information

based on their preferences. However, these systems face several challenges, including the "cold start"

problem, where the lack of initial user data makes personalized recommendations difficult [1]. To

address these challenges, the Multi-Armed Bandit (MAB) problem in reinforcement learning serves as

a promising avenue for optimizing recommendation systems. Specifically, this study focuses on the

efficacy of the Upper Confidence Bound (UCB) algorithm within the MAB framework. The LinUCB

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1

algorithm is a context-aware multi-armed bandit approach, designed to minimize cumulative regret

through a balanced strategy of exploration and exploitation [2, 3]. It has been successfully implemented

in Yahoo's personalized news recommendation system, significantly improving user engagement

metrics such as clicks and read time. In summary, the LinUCB algorithm represents a significant

advancement for recommendation systems. By leveraging user context, it can deliver highly

personalized content, thereby enhancing user satisfaction and, consequently, the competitive advantage

of various platforms. Cumulative regret serves as a measure of algorithmic performance, a concept that

will be elaborated upon in subsequent sections of this study.

2. Problem Description

2.1. Multi arm slot machine problems and their basic concepts

2.1.1. Classical Multi-Armed Bandits. A learner and environment play a sequential game called a bandit

problem (reflecting the uncertainly in decision-making and outcomes of the decisions). The game is

performed on n tricks. In each rounds t=1,2,…,n, the learner chooses an action At from a set of k possible

actions and receives a random reward Xt. The learner's aim is to maximize the cumulative reward over

a period of time ,i.e., maximize ∑ Xt = X1 + X2 + ⋯ + Xn
n
t=1 .Then Regret =Reward lost by taking sub-

optimal decisions(Largest possible cumulative reward in n rounds if we know which arm is the best)
∑ Xt

n
t=1 .It is crucial to balance the trade-off between exploration and exploration [4].

Figure 1 illustrates the model, highlighting how regret in reinforcement learning measures the

performance gap between the learner's policy and the optimal policy within a set of competing policies

[5]. This set of policies, often referred to as the competitor class Π, includes the optimal policy for all

possible environments in E. By measuring the regret relative to Π, we can assess the learner's

performance in terms of the loss incurred compared to the optimal policy. The regret captures the

difference between the maximum expected reward achievable using any policy in Π and the expected

reward collected by the learner. To ensure a comprehensive evaluation, it is important that Π

encompasses the optimal policy for all environments in E. This way, the regret reflects the learner's

performance relative to the best possible policy across all possible situations. The Environment does not

reveal the reward of the action not selected by the learner. The learner should gain information by

repeatedly selecting all actions which called exploration. When the learner select a “bad” action, it loses

from the cumulative reward (The learner should try to “exploit” the action that returned the largest

reward so far). Example: Two-armed slot machine, i.e., k=2, Let’s assume we played 10 rounds and

receive the following rewards:

Figure 1. The relationship between the competitor and K-armed Bandit (Photo/Picture credit: Original).

Table 1. Action-Reward Distribution for Left and Right Moves Over 10 Trials.

Action\Reward 1 2 3 4 5 6 7 8 9 10

Left 0 10 0 0 10

Right 10 0 0 0 0

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

2

Table 1. In the first 10 rounds, the left and right options were chosen five times each. Assuming 10

additional rounds to be played, the left option shows signs of improvement, boasting an average yield

of $4, compared to the right option's average yield of $2. This situation illustrates one of the central

challenges in bandit problems: the inherent uncertainty involved in selecting from multiple options.

Suppose there are k arms l possible action: {1, …, k}. Reward from each action is a Bernoulli random

variable, e.g.,

 Reward from action I={
0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜇𝑖

1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇𝑖
 (1)

This k action can represent k different ads, and ui’s can be click probability of a user who is shown

advertisement I. So, it is obvious to have E[𝑅𝑒𝑤𝑎𝑟𝑑(𝑖)] = 𝜇𝑖, i=1, …, k (expected value of the Reward

from action I).

The muti-armed bandit problem is to se queitially decide which action to take in each round 1, 2, …,

n without any prior knowledge on the mean rewards 𝜇1 , … , 𝜇𝑘.if we know 𝜇𝑖’s, the optimal policy

would be to take the action with the largest mean reward in all rounds, i.e.,

𝑘∗=arg max 𝜇𝑖 ,𝑖 ∈ {1, … , 𝑘} (2)

And our total expected reward over n rounds with that choice would be n*𝜇𝑘∗The regret of any

algorithm l policy is then given by the difference between n*𝜇𝑘∗ and the total reward our policy has

achieved, i.e.,

𝑅𝑛 = n ∗ 𝜇𝑘∗ − 𝐸[∑ 𝑋𝑡
𝑛
𝑡=1] (3)

The regret in reinforcement learning is a measure of how much worse the learner's performance is

compared to the best possible performance. It takes into account the randomness in the environment and

the policy being used. The difference between the maximum expected reward achievable with any policy

and the expected reward collected by the learner can be referred to as regret. The first term represents

the best possible performance, while the second term represents the actual performance of the learner.

The regret depends on the specific environment and policy being used. In environments where the

regret is large, it means that the learner is performing significantly worse than the best possible

performance. On the other hand, in ideal cases, the regret would be small for all environments, indicating

that the learner is performing close to the best possible performance. In all possible environments, the

worst-case regret is the maximum regret that can occur. It represents the scenario where the learner

performs the worst across all possible situations.

2.1.2. Types of Bandits Problems. Stochastic Stationary Bandits means that the Reward of each action

comes from a fixed distribution [6]. None-Stationary Bandits explain that the Reward distribution may

change over time. Structured Bandits means that There is a known “structure” in the way rewards from

different arms are distributed. Then Contextual Bandits means before taking an action at each round, we

receive a “side information” or “context” about the current state of the environment [7]. Over time the

goal is to learn the best action for each context. The application of personalized recommendations, where

the context can be user’s age | gender|.

Multi-armed gaming machine algorithms, as a form of reinforcement learning, discard the traditional

reinforcement learning's characteristic of single-step forward, can be dynamically updated accordingly,

and these dynamically updated parameters can continue to feed back to the system, thus realizing

adaptive reinforcement Learning. Common multi-armed gaming machine algorithms in recommender

systems include traditional MAB algorithms and MAB algorithms that take contextual information into

account, among which traditional MAB algorithms include Thompson sampling, UCB algorithm

(upward confidence interval block algorithm), Epsilon Greedy algorithm (greedy algorithm), LinUCB

(linear upward confidence interval bounding algorithm), CBA (group UCB algorithm), Thompson

sampling (Thompson sampling algorithm), Contextual MAB algorithms are commonly known as

LinUCB algorithm.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

3

2.2. Mathematical Model

In each round, an arm is selected and its associated reward is observed. If the kth arm is selected and a

reward of x is obtained, the probability of receiving that specific reward can be calculated based on the

probability distribution 𝑟𝑘. The objective is to maximize cumulative rewards through continuous arm

selections, which requires a delicate balance between exploration and exploitation. In other words, the

aim is not only to choose arms believed to yield high rewards but also to explore potentially high-

rewarding arms by testing new options. A multi-armed slot machine, mathematically modeled with K

arms, each featuring an unknown reward probability distribution, serves as the foundational framework

for this problem [8]. The goal is to identify high-reward arms and maximize cumulative rewards by

continually making selections. Various algorithms can address this challenge, enabling a trade-off

between exploration and exploitation.

3. Overview of UCB algorithm principles

3.1. Basic ideas and working principles

To better understand their probability distributions, the algorithm prioritizes slots with higher upper

confidence bounds for exploration. Slots with higher upper confidence bounds are prioritized by the

algorithm for exploration to improve understanding of their probability distributions. The algorithm

adjusts the upper confidence bound as exploration progresses and gradually opts to select slots with

higher upper confidence bounds to use [9]. The maximum regret that can happen is the worst-case regret

in any possible environment. In each round, assign a value to each arm (called the UCB index of that

arm) based on the data observed so far that is an overestimate of its mean reward (with high probability),

and then choose the arm with the largest value I index [10].

E.g.,

UC𝐵𝑖(t-1) =𝜇𝑖̂(t-1) +Exploration Bonus (4)

The item on the left is UCB index of arm I in round t-1, First item on the right is average reward

from arm I till round t-1,then 𝜇𝑖̂(𝑡 − 1) =
∑ 𝑋𝑠1[𝐴𝑠=𝑖]𝑡−1

𝑠=1

𝑇𝑖(𝑡−1)
, Second item from the right is a decreasing

function of 𝑇𝑖(𝑡 − 1) which means number of samples obtained from arm I so far, so the fewer samples

we have for an arm, the larger will be its exploration bonous. Being optimistic about the unknown

supports exploration of different choices, particularly those that have not been selected many times.

Should be large enough to ensure exploration but not so large that sub-optimal arms are explored

unnecessarily .Let{𝑋𝑡 , 𝑡 = 1, … , 𝑛}be a sequence of independent 1-subGaussian random variables with

mean 𝜇.Let’s 𝜇̂ =
∑ 𝑋𝑡

𝑛
𝑡=1

𝑛
,then,

P (𝜇̂ + √2log (
1

𝛿
)

𝑛
> 𝜇)≥ 1 − 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿 ∈ (0,1) (5)

The first term on the left-hand side of the inequality in parentheses is empirical average over n

samples, the second term on the left-hand side of the inequality in parentheses is the term add to the

average to over estimate the mean.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

4

Figure 2. Average rewards of arm from their samples until round t (Photo/Picture credit: Original).

Figure 2 illustrates that the true mean rewards are likely to fall within the displayed confidence

intervals. Notably, as the number of samples for an arm increases, the corresponding confidence interval

becomes narrower. The best arm 𝑖∗ to be selected many times so that:

𝑇𝑖∗(𝑡 − 1) →∞ 𝑎𝑛𝑑 𝜇𝑖̂
∗ → 𝜇𝑖∗ (6)

In other words the UCB index of the best arm will be approximately equal to its true mean 𝜇𝑖∗ .For

all arms:

𝑈𝐶𝐵𝑖(𝑡 − 1) ≥ 𝜇𝑖 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑟𝑒𝑐𝑎𝑙𝑙 𝑡ℎ𝑎𝑡 𝜇𝑖∗ ≥ 𝜇𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑖∗ (7)

In a 2010 article published by scientists at UBC, the transformation of the UBC algorithm was

explored for its application in Yahoo! News recommendations. This refined version of the UBC

algorithm has been named LinUCB. A standout feature of LinUCB is its ability to incorporate relevant

feature vectors into its calculations. LinUCB operates on the assumption that when an item is selected

and presented to a user, the returns are linearly related to certain relevant features, often referred to as

"context." These contextual features often form the most substantial part of the solution space in

practical applications. Therefore, the experimental process involves predicting returns and confidence

intervals based on user and item features. The item with the highest upper confidence bound is then

recommended. Following this, observed returns are used to update the parameters of the linear

relationship, thereby facilitating ongoing experimental learning.

3.2. Calculation method

At each round t=1, 2, …, n, choose the action:

𝐴𝑡 = 𝑎𝑟𝑔𝑖 𝑚𝑎𝑥 𝑈𝐶𝐵𝑖(t-1,𝛿)

= 𝑎𝑟𝑔𝑖 max (𝜇𝑖̂(𝑡 − 1) + √
2log (

1

𝛿
)

𝑇𝑖(𝑡−1)
) (8)

where 𝜇𝑖̂(𝑡 − 1) stands for average reward from arm I until round t-1, 𝑇𝑖(𝑡 − 1) stands for number of

times arm I is selected until round t-1.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

5

3.3. Algorithm steps and processes

Figure 3. UCB Algorithm steps (Photo/Picture credit: Original).

Figure. 3. Shows that the process of the UCB algorithm. First, Calculate the average reward for each

arm based on the historical data. Second, Calculate the upper confidence bound for each arm using the

following formula: UCB = average reward + c * sqrt (ln(total number of rounds) / number of times the

arm has been pulled), where c is a constant that determines the level of exploration. Third, Select the

arm with the highest UCB value and pull it. Forth, Update the historical data with the new reward

obtained from pulling the selected arm. Fifth, Repeat steps 1-4 until a certain stopping criterion is met.

4. Performance Analysis of UCB Algorithm

4.1. Theoretical analysis

The regret upper bound and the convergence speed constitute the theoretical analysis of the performance

of the UCB algorithm. In this case, regret refers to the difference in average reward from the optimal

arm during the computation. The convergence speed refers to the growth rate of the average reward in

the near-optimal arm. The speed of convergence is evaluated by the number of choices.

4.2. Numerical experiments
It is significant to compare the performance of three multi-armed bandit (MAB) algorithms on real

datasets, the MovieLens dataset is a vast collection of Movielens movie user reviews, which is

commonly used in recommendation systems for algorithmic testing. The Grouplens team cleaned the

data to remove user ratings that had less than 20 ratings or without complete demographic

information.1,000,209 anonymous ratings of approximately 3,900 movies by 6,040 users who joined

MovieLens in 2000.

Thus, to check their validity in real-world experiments, It is significant to run a sufficient number of

experiments and look at the average value of the cumulative regret. Choose the horizon as n = 50, 000.

For each algorithm run ten experiments and record the cumulative regret at each round t = 1, . . . , n in

all experiments. For the ETC algorithm, set the length m*k of the exploration phase as ≅
10% 𝑜𝑓 𝑛, 𝑖. 𝑒. , 𝑚 ∗ 𝑘 ≅ 5000. For the UCB algorithm, set the UCB index for arm I at round t-1 as

𝑈𝐶𝐵𝑖(𝑡 − 1) = 𝜇𝑖̂(𝑡 − 1) +
𝐵

2
√

4𝑙𝑜𝑔𝑛

𝑇𝑖(𝑡−1)
 (9)

Where B is the difference between the maximum possible reward value and the minimum possible

reward value. For example, for the Movie Lens dataset where rewards (i.e., ratings) can be in the interval

1-5 (stars), B should be set as 4. In general, a bounded random variable with difference between

maximum and minimum value being B is σ-subgaussian where σ = B 2, and the exploration bonus needs

to be updated as in. For the TS algorithm, updating the distributions 𝐹𝑖(𝑡), 𝑖 = 1, … , 𝑘 𝑓𝑜𝑟 the belief on

the mean rewards of arms as following:

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

6

𝐹𝑖(𝑡)~Ν (𝜇𝑖̂(𝑡),
𝐵2

4

𝑇𝑖(𝑡)
) , 𝑡 = 𝑘 + 1, … (10)

where 𝜇𝑖̂(𝑡) is the average reward of arm i until round t, B is as given above for the UCB algorithm,

𝑇𝑖(𝑡) is the number of samples received from arm i until round t, and N (µ, σ2) stands for the Gaussian

distribution with mean µ and variance 𝜎2.

Figure 4. Average Regret with Error Bars (Photo/Picture credit: Original).

The theoretical findings introduced in lectures, such as the logarithmic scaling of cumulative regret

for the algorithms discussed, hold true in the limit as n→∞. As shown in Figure 4. However, the actual

size of n required to observe this logarithmic behavior may vary depending on specific circumstances,

including the chosen algorithm and the underlying reward distributions.Set five different values for the

horizon: n = 500, n = 5, 000, n = 50, 000, n = 500, 000, and n = 5, 000, 000. For the ETC algorithm, set

the length m ∗ k of the exploration phase as 10% of n.

Figure 5. Cumulative Regret for Horizon n=500 (Photo/Picture credit: Original).

From the figure 5, it can be seen that the slope of ETC is higher, UCB is in the middle, and TS is

lower. As n increases, TS shows logarithmic regret behavior and the gap between the three algorithms

is clearly reflected, as shown in Figure. 6. At this time, ETC shows logarithmic regret behavior, as shown

in Figure. 7. When n=500000, ETC has the largest cumulative regret value, forming a gap with the other

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

7

two algorithms, and the cumulative logarithmic behavior of UCB is more obvious, as shown in Figure.

8. When n=5000000, the cumulative regret behavior of UCB is not obvious as shown in figure.9.

Figure 6. Cumulative Regret for Horizon n=5000 (Photo/Picture credit: Original).

Figure 7. Cumulative Regret for Horizon n=50000 (Photo/Picture credit: Original).

Figure 8. Cumulative Regret for Horizon n=500000 (Photo/Picture credit: Original).

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

8

Figure 9. Cumulative Regret for Horizon n=5000000 (Photo/Picture credit: Original).

At n=5000, TS shows logarithmic regret behavior and at n=50000, UCB shows logarithmic regret

behavior, this value varies from one algorithm to another. In order to compare the performance of the

UCB and the asymptotically optimal UCB algorithms. It is significant to explore the impact of the

exploration bonus on the algorithm performance. Choose n = 50, 000. The asymptotically optimal UCB

algorithm uses the UCB index given as

𝑈𝐶𝐵𝑖(𝑡 − 1) = 𝜇𝑖̂(𝑡 − 1) + 𝐵√
2log (ƒ(𝑡))

𝑇𝑖(𝑡−1)
 (9)

Where ƒ(𝑡) = 1 + 𝑡(log 𝑡)2 . It is significant to compare the performance of the asymptotically

optimal UCB and the standard UCB with three different 𝜏 values: 𝜏 = 1, 𝜏 = 2, and 𝜏 = 4. Note that,

the larger is the 𝜏 value the more will the algorithm explore, while with smaller 𝜏 it will more

aggressively exploit.

Figure 10. Comparison of Standard UCB and asymptotically optimal UCB (Photo/Picture credit:

Original).

From the figure 10, it can be seen that as n grows, the overall rate of growth of cumulative regret

value decreases, Standard UCB (lota=1) cumulative regret value is less than Standard UCB (lota=2),

Standard UCB (lota=2) cumulative regret value is less than Optimal UCB, Optimal UCB cumulative

regret value is less than Standard UCB (lota=4).

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

9

4.3. Algorithm Comparison

It is significant to set n = 1, 000, 000 and plot on the same figure the results for ETC, UCB,

asymptotically optimal UCB, and Thompson Sampling algorithms (averaged over 100 experiments with

error bars) and compare their performance.

Figure 11. Algorithm Comparison (Photo/Picture credit: Original).

In the figure 11, Standard UCB (in=2), Standard UCB (in=4), and Asymptotically Optimal UCB go

basically in the same direction, and Asymptotically Optimal UCB cumulative regret value is lower than

that of Standard UCB, and the cumulative regret value of TS is shown to be the lowest as the round

increases.

5. Application and Improvement Research of UCB Algorithm

The more accurate the extraction of user preferences is implied, the more effective the recommendation

algorithm. The more efficient the recommendation algorithm is, the more precise the extraction of user

preferences is implied. The extracting of item features with sufficient accuracy can also reflect the user's

preference information to a certain extent. User preferences can be reflected by a lot of data generated

about users and various information directly related to items. Labeled data related to users and projects

is what we collectively refer to as labeled data, and we combine it to form multidimensional labels.

Initialisation: For each element, initialise its characteristic vector and covariance matrix. The

algorithm's main concept is to use a linear model to model the user's preference and then use the upper

bound confidence interval to select the optimal recommendation item.

The following are the specific descriptions:

First, for each element, initialize its functionality vector and its covariance matrix. Initiate the reward

estimation and confidence interval for each item simultaneously. Second, Analyze the user's feature

vector by analyzing their past behavior and feedback. Third, Using the current feature vector and

covariance matrix, calculate the upper bound confidence interval for each item. The item's reward

uncertainty range is represented by the upper confidence interval. Forth, Select the optimal item:

according to the upper confidence interval, select the item with the largest upper confidence interval as

the recommended item. Fifth, user feedback update: update the reward estimate and covariance matrix

of the selected item based on user feedback. sixth, repeat steps 2-5 until a predetermined number of

recommendations or convergence conditions are reached.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

10

Figure 12. Algorithmic step (Photo/Picture credit: Original).

Figure. 12. Two advantages of the LinUCB algorithm can be summarized from the above process:

The computational complexity is linearly related to the number of arms. Support dynamically changing

candidate arm set.

The key to the LinUCB algorithm is the use of a linear model to model the user's preferences and to

balance the strategies of exploration and exploitation by means of upper bound confidence intervals. By

continuously updating the reward estimation and covariance matrix, the algorithm can progressively

optimize the recommendation results and provide personalized recommendation suggestions.

Figure 13. Average Cumulative Regret (Photo/Picture credit: Original).

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

11

Figure 14. Average Cumulative Regret (Photo/Picture credit: Original).

Figure 13 illustrates that cumulative regret values are linearly correlated. After multiple rounds of

selection, these values reach single digits, optimizing the algorithm's performance in comparison to

traditional UCB approaches. Figure 14 corroborates this, indicating that as the number of rounds

increases, cumulative regret values maintain single digits without significant fluctuation. Summarizing

the attributes of the LinUCB algorithm, several advantages come to the fore: Accelerated convergence

relative to UCB algorithms is achieved through the inclusion of features, as substantiated in the paper.

The effectiveness of the algorithm heavily hinges on feature construction, marking it as both a critical

engineering challenge and an area of significant value. Due to the computational involvement of features,

a dynamic pool of recommendation candidates can be managed, enabling editors to add or remove

articles as needed.

Feature dimensionality reduction becomes essential for computational efficiency. When comparing

LinUCB to traditional online learning models such as FTRL, two primary distinctions arise: LinUCB

employs individual models for each arm, requiring the context to only encompass user-related and user-

arm interaction features, thereby eliminating the need for arm-side features. In contrast, traditional

online learning methods apply a unified model across entire business scenarios. Unlike traditional online

learning models that employ a greedy strategy to maximize short-term gains without an exploration

mechanism, LinUCB adopts a more effective Exploration and Exploitation (E&E) mechanism,

prioritizing long-term overall benefits.

6. Conclusion

This study reveals that the cumulative regret value for LinUCB is in the single digits, indicating its

distinct advantage in optimizing algorithms with a focus on long-term, overall benefits when compared

to traditional UCB algorithms. This performance can be attributed to LinUCB's use of a linear model

for modeling the reward function of each arm, allowing for a better fit in high-dimensional feature spaces.

Such linear models facilitate more accurate reward predictions by learning the weights associated with

each feature, thus providing a nuanced estimate of each arm's potential value. By employing a linear

model, LinUCB adapts the reward function for each arm based on personalized user features. This

enables the algorithm to deliver more tailored recommendations, which align closely with individual

user preferences and characteristics. In contrast, traditional UCB algorithms assume a uniform reward

function across all arms and are unable to offer personalized recommendations.

While LinUCB exhibits strong performance in multi-armed bandit problems, there exists scope for

further refinement. Opportunities for future research include exploring avenues to enhance the

algorithm's efficiency and accuracy. Although LinUCB employs a linear model for the reward function,

some scenarios may involve more complex, nonlinear relationships. Investigating the application of

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

12

nonlinear models to LinUCB could provide solutions for handling more intricate reward functions and

contextual relationships.

References

[1] Wang, M. (2021). Research on Algorithm Based on Cold Start Problem of Recommender System

(Master's Thesis, University of Electronic Science and Technology of China).

[2] Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in

Applied Mathematics, 6(1), 4-22.

[3] Yuan, M. (2019). Research on LinUCB recommendation algorithm based on multidimensional

labels and user group characteristics (Master's thesis, Yanshan University).

[4] Tang, L., Jiang, Y., Li, L., et al. (2015). Personalized recommendation via parameter-free

contextual bandits. In Proceedings of the International ACM SIGIR Conference on Research

& Development in Information Retrieval (pp. 323-332). Santiago, Chile.

[5] Gong, X., Peng, P., Rong, L., Zheng, Y., & Jiang, J. (Year). Task analysis method based on deep

reinforcement learning. Journal of System Simulation.

[6] Zhao, X., Zhang, W., & Wang, J. (2013). Interactive collaborative filtering. In Proceedings of the

22nd ACM International Conference on Information & Knowledge Management (pp. 1411-

1420). San Francisco, California, USA.

[7] Khezeli, K., & Bitar, E. (2020). Safe linear stochastic bandits. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(06). https://doi.org/10.1609/aaai.v34i06.6581

[8] Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of

Machine Learning Research, 3(3), 397-422.

[9] Huang, T. (2022). Application of multi-armed slot machine algorithm in federated learning client

selection problem (Master's thesis, South China University of Technology).

[10] Hu, Y., Liu, X., Li, S., & Yu, Y. (2021). Cascaded algorithm selection with extreme-region UCB

bandit. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

13

