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Abstract. In contemporary machine learning, training datasets are typically divided into batches, 

and models are updated incrementally through batch iterations to save memory and reduce 

overfitting. However, determining the optimal hyperparameters like learning rate, batch size and 

number of epochs remains a challenge which often relying on empirical insights. This paper 

explores a novel method called Adaptive Gradient Conflict Rate (AdaGCR) to optimize the 

training process. It leverages the idea of gradient conflict rate, which reflects the model’s position 

within a batch model set and accordingly adjusts the global learning rate. This proposed method 

is tested by training a Deep Neural Network (DNN) model with MNIST dataset which represents 

simple tasks and a ResNet-18 model with CIFAR-10 dataset which represents more complicated 

tasks for solving real world problems. Experiments conducted on DNN demonstrates the 

proposed method’s effectiveness in reducing overfitting and enhancing convergence, particularly 

with a well-suited initial learning rate. However, its applicability to more complex models like 

ResNet-18 may require further refinements, such as layer-specific learning rate adjustments. 

Future research should focus on fine-tuning AdaGCR and extending its utility across diverse 

machine learning models and tasks. 
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1.  Introduction  

In the contemporary machine learning training process, the training datasets are typically divided into 

several batches, with models being updated incrementally through batch-by-batch iterations. Training 

models in this way not only saves the memory usage but also reduces the risk of overfitting. However, 

the determination of optimal batch size and the number of epochs lacks a definitive formula or algorithm. 

These hyperparameters are typically established based on practitioners’ experiential insights. Setting 

those hyperparameters incorrectly can greatly impact the performance of models. An excessively large 

batch size might lead to overfitting, whereas an overly diminutive batch size could result in adding noise. 

In terms of number of epochs, training model after converging is doing nothing but adding noise to the 

model.  

Numerous studies have been implemented to study this problem. They found that errors evaluated 

by validation set first decreases but followed by an increase as the model starts to become overfitted [1]. 

To decrease the noise added by over training, many methods are developed to adjust the gradient for 

each update including AdaGrad which updates frequently occurring features less [2], AdaDelta which 

extends AdaGrad [3]. Though these methods can optimize the training process in many cases, they are 
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still not perfect solutions. For example, AdaGrad works well only under certain hyperparameters which 

require manual selection and its learning rate is always decaying throughout training. These makes 

AdaGrad cannot be widely adapted in every model training. AdaDelta follows main ideas in AdaGrad 

but makes some modification to ensure that model can keep improving after a great number of training 

iterations. But its effect is not as good as AdaGrad. 

The process of training by batches can be considered as moving a point towards a set of fixed points 

in space. The fixed points in the set are the models which best fit the data in the batch and the point to 

be moved is model being trained. Each training iteration can be considered as picking one fixed point 

from set and move point towards it. The length of each move depends on learning rate and the distance 

between two points. In this case, the probability of the angle between two vectors from the point to two 

fixed pointed picked from the set is larger than 180 degrees can also be used to detect the location of the 

point. When a point is distant from the set, its probability approaches 0. Conversely, when the point lies 

within the set, its probability is between 0 and 0.5. The closer the point to the mass center of the point 

set, the closer the probability is to 0.5. This paper aims to find a superior new method to optimize training 

process based on that probability. 

The rest of this paper will be organized as follow: Section 2 provides a discussion of the theory 

behind the proposed method, the dataset used, the model structure and the experiment details. Section 3 

provides a discussion of the experiment result and some possible reasons behind it. The conclusion and 

future work are discussed in Section 4. 

2.  Method 

There will be two experiments in this paper. The first one is a simple Deep Neural Network trained on 

MNIST dataset [4] and the second one is ResNet18 [5] trained on CIFAR-10 dataset [6]. 

2.1.  Dataset preparation 

MNIST dataset contains grey-scale images of 32×32 handwritten digits from United States Census 

Bureau employees and high school students with 60,000 training data and 10,000 testing data. Each 

image in MNIST is size-normalized and centred in a 28×28 image [6]. Some sample images on the 

MNIST dataset are provided in Figure 1.  

 

Figure 1. Sample images in the MNIST dataset [4]. 

CIFAR-10 dataset contains RGB images of 10 mutually exclusive classes. Each class has 5, 000 

training and 1, 000 testing data. Each image is 32×32 and contains exactly one object belongs to its class 

[4]. Some sample images on the CIFAR-10 dataset are provided in Figure 2.  
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Figure 2. Sample images in the CIFAR-10 dataset [6]. 

2.2.  Model description 

The model trained in the first experiment will be a DNN with only 3 full connected layers, with ReLU 

employed as the activation function. To train this model, the image is first flattened to a 1-d tensor with 

784 entries and input to first fc layer. The first fully connected layer transmits 500 parameters to the 

second layer and the second layer transmits 200 parameters to the third layer. The third layer returns 10 

parameters which is probability of the class the input image belonging to. 

The model trained in the second experiment will be ResNet-18. It is an 18-layer ResNet based on 

Convolutional Neural Network. At the heart of ResNet lies the fundamental concept of enabling its 

layers to adapt to a residual mapping rather than a direct underlying mapping, thereby allowing for the 

potential of updates to bypass multiple layers during training. ResNet18 is designed for ImageNet 

dataset, so its last fully connected layer outputs 1000 features. But CIFAR-10 only has 10 labels. 

Therefore, the original output layer in ResNet18 is replaced by a fully connected layer outputing 10 

features. 

2.3.  Proposed AdaGCR  

In 2-D space, the location of a point in a set of fixed points can be inferred from its probability of picking 

two points that are in the opposite direction (dot product of the vectors from unfixed point to fixed point 

is less than 0). 

 

(a) Probability of a uniformly distributed point set. 
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(b) Probability of a point set with more points distributed on top-right corner. 

Figure 3. Probability of picking two points in the set that are in the opposite direction 

(Photo/Picture credit: Original). 

According to Figure 3, the closer the point is to the mass center of the point set, the closer its 

probability of picking two points that are in the opposite direction is to 0.5. This idea does not work 

perfectly for a dynamic system like updating model in machine learning. But the “gradient conflict rate” 

— the ratio of how many iteration whose updating gradient is opposite to last iteration’s updating 

gradient to the number of iteration in one epoch will increase as model approaches the mass center of 

batch models. And if learning rate is equal to 0, the gradient conflict rate will be equal to the probability 

of picking two points in the set that are in the opposite direction. By multiplying the learning rate with 

a decay function, the gradient conflict rate can be a good approximation of the probability when model 

is close to the mass center. 

 

Figure 4. Decay function (Photo/Picture credit: Original). 

Therefore, the gradient conflict rate can reflect each epoch’s updating status. If the model after this 

epoch’s updating is still very far from the goal, then its gradient conflict rate for this epoch should be 

zero. Since the product of decay function shown in Figure 4 and learning rate is approaching 0 when 

gradient conflict rate is approaching 0.5, the model should move slightly around batch models’ mass 

center after adequate training epochs. In this case, further training will not significantly change model’s 

location. This new proposed optimizing method is named as “AdaGCR” which stands for Adaptive 

Gradient Conflict Rate. 
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2.4.  Implementation details  

The machine learning framework used in this paper is pytorch. The proposed method is based on SGD 

[7]. Its implementation is calculating the gradient conflict rate after one epoch’s training, then use that 

value and decay function to adjust global learning rate. 

In terms of the first experiment, the proposed new method is compared with SGD without any 

optimizer as baseline, AdaGrad [8] and AdaDelta [9]. The loss function employed is cross entropy loss. 

The experiments are conducted under several pairs of learning rate and batch size. 

The second experiment is similar to the first one except the model is ResNet-18 and the dataset is 

CIFAR-10. This experiment aims to test proposed method on more complex model designed for solving 

real world problems. The batch size is set to be 256 and the learning rate is set to be 0.1. 

3.  Results and discussion 

3.1.  Testing proposed method on DNN models trained by MNIST 

 

 

 

 
(a) lr = 0.01, batch_size = 32.  (b) lr = 0.01, batch_size = 32. 

 

 

 

(c) lr = 0.2, batch_size = 32.  (d) lr = 0.2, batch_size = 8. 

Figure 5. The loss of test dataset from DNN model trained by MNIST dataset (Photo/Picture credit: 

Original). 

Figure 5 presents the loss of test dataset from DNN model trained by MNIST dataset. The method under 

consideration has been evaluated across various combinations of hyperparameters. Its fundamental 
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concept involves decreasing the learning rate as the model approaches the desired outcome. 

Consequently, this approach performs optimally with a higher initial global learning rate. Specifically, 

when the batch size is set at 32 and the learning rate is 0.2, the proposed method outperforms both 

AdaGrad and AdaDelta. However, when the learning rate is reduced to relatively lower values such as 

0.05 and 0.01, the proposed method results in a slower model convergence. It can also be observed that 

the proposed method reduces the effect of overfitting after several epochs’ training. When batch size is 

small (batch size = 8), using SGD cannot make the model converging. But the proposed method can 

solve this problem and it performs as good as AdaDelta. This is because the proposed method detects 

model’s location and adjust learning rate only according to the distribution of point. In this case, the 

number of points does not significantly affect the result. 

3.2.  Testing proposed method on ResNet18 trained by CIFAR10 

 

 

 

(a) lr = 0.5, batch_size = 256  (b) lr = 0.1, batch_size = 256 

Figure 6. The loss of test dataset from ResNet18 model trained by CIFAR10 dataset (Photo/Picture 

credit: Original). 

The proposed method is tested under different hyperparameters. But according to Figure 6, its result on 

ResNet18 does not have a significant improvement compared with AdaGrad, AdaDelta and baseline 

SGD. The performance of model trained by the proposed method is better than the performance of model 

trained by AdaGrad but similar to the performance of model trained by baseline and AdaDelta. 

The observed phenomenon can be attributed to the intricate architecture of ResNet18. ResNet 

comprises both fully connected and convolutional layers, each with distinct weight structures. However, 

in the methodology presented in this paper, all weights are flattened when computing the gradient. A 

potential avenue for future research is to compute the gradient conflict ratio on a per-layer basis and 

subsequently adapt the learning rate for each layer accordingly. Moreover, because the idea behind 

gradient conflict rate is sample proportion, there should be enough batches in one epoch and the batch 

size cannot be set too large. According to the experiments in this paper, one epoch should have at least 

500 batches. Otherwise, the gradient conflict rate will lose accuracy and become meaningless. 

Additionally, the proposed method can be also considered for combining with the non-IID issue in 

heterogeneous federated learning [10] in the future. 
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4.  Conclusion 

In this paper, a novel optimization method rooted in SGD is introduced for learning rate adjustment. 

This method is tailored to enhance the training process in machine learning by considering the gradient 

conflict rate, which provides insight into the model’s positioning within each batch. Experimental 

evaluation across two distinct tasks reveals its potential in mitigating overfitting and enhancing 

convergence. Notably, it demonstrates significant benefits when applied to simpler DNN models, 

especially when paired with a well-chosen initial learning rate. However, its effectiveness may be 

limited when dealing with more complex models like ResNet-18, which may require more sophisticated 

adaptations to accommodate their intricate architecture. Further research and experimentation like 

adjusting learning rate by layers are needed to fine-tune the proposed method and explore its 

applicability to a wider range of machine learning models and tasks. 
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