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Abstract. Diffusion models, a state-of-the-art generative model, have drawn attention for their 

capacity to produce high-quality, divers, and flexible content. However, the training of these 

models typically necessitates large datasets, a task that can be hindered by challenges related to 

privacy concerns and data distribution constraints. Due to the amount of data and hardware 

required for large model training, all centralized training will be done by large companies or labs 

with computing power. Federated Learning provides a decentralized method that allows for 

model training across several data sources while maintaining the data's localization, reducing 

privacy threats. This research proposes and evaluate a novel approach for utilizing Federated 

Learning in the context of diffusion models. This paper investigates the feasibility of training 

and fine-tuning diffusion models in a federated setting, considering various data distributions 

and privacy constraints. This study used the Federated Averaging (FedAvg) technique to train 

the unconditional diffusion model as well as to fine-tune the pre-trained diffusion mode. The 
experimental results demonstrate that federated training of diffusion models can achieve 

comparable performance to centralized training methods while preserving data locality. 

Additionally, Federated Learning can be effectively applied to fine-tune pre-trained diffusion 

model, enabling adaptation to specific tasks without exposing sensitive data. Overall, this work 

demonstrates Federated Learning's potential as a useful tool for training and fine-tuning diffusion 

models in a privacy-preserving manner. 
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1.  Introduction 

In recent years, the popularity of Artificial Intelligence Generated Content (AIGC) has surged, spanning 
disciplines like Computer Vision (CV) and Natural Language Processing (NLP). For instance, the 
recently emerged image generation models Stable Diffusion (SD) [1], Imagen [2] and DALL-E [3], or 
the language generation model Chat Generative Pre-Trained Transformer (ChatGPT) [4]. They all 
generate high-quality synthetic content and guarantee authenticity and diversity. Large generative 
models are typically trained with hundreds of millions of parameters [1] and require large amounts of 

training data up to terabytes or petabytes to perform high-resolution text-to-image, text-to-video tasks. 
Simultaneously, the training process for extensive generative models mandates significant 
computational and storage capabilities. Resource-constrained devices are not capable of complete 
training of large generative models. Therefore, most of the big models are centralized trained by a 
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handful of Big Tech companies. Moreover, as the scale of these models expands, there's a parallel 
increase in the accessibility of data. 

The centralized data on the server-side raise considerations about the data authority, data security 
and data privacy in the training dataset. The training dataset is predominantly compiled from online 

sources, although users are often unaware if their personal data has been utilized. Taking face generation 
[5] as well as portrait generation as an example, training a portrait generation model requires the 
collection of many portraits or face images sourced from online platforms. However, an individual's 
face holds a pivotal role in their identity, constituting one of the most sensitive pieces of personal 
information. This stands in contrast to online accounts and passwords, which can be altered. Given the 
relative permanence of facial features, the accumulation of facial data unavoidably raises concerns over 
personal privacy. Hence, the collection of facial data will inevitably involve personal privacy issues. 
And collection of facial data has the potential risk of massive facial data leakage [6]. 

To address these challenges mentioned above, a distributed training approach that is different from 
centralized training can be considered. Federated learning (FL) [7] is a distributed learning algorithm 
proposed by Google. In Federated learning, multiple clients collaboratively train a shared model by 
leveraging local data. During each training round, clients keep all training data locally. Only the learned 
parameters (model weights) need to be transferred to the central server. Finally, server-side aggregates 
of local updates are used to update the global model. The updated model is then broadcast to all clients. 
The entire training process does not require any direct data interaction to build a robust model. In 

addition, federated learning also significantly reduced communication costs since it avoids the raw data 
exchange. Thus, FL is promising in training generative model in distributed and privacy-preserving 
manner. 

This study focused on leveraging federated learning for generation diffusion model [8] training. The 
diffusion model was chosen because the backbone recent popular image generation models is the 
diffusion model. This study set up two types of federated diffusion model framework. One is pre-training 
the unconditional diffusion model using Federated Averaging (FedAvg) algorithm [7], and the other is 

fine-tuning [9] the stable diffusion model in a distributed way by using FedAvg algorithm. This study 
experimented with the above two frameworks separately. By comparing the results of centralized 
training with results of distributed training, this study evaluated whether distributed diffusion model 
training also guarantees the generation of high-quality and photorealistic synthetic images. Finally, the 
feasibility and limitations of distributed learning applied to diffusion modelling were discussed. 

2.  Method 

This section presents a short overview of federated learning algorithm and deep generative models. 
Furthermore, this section provides the technical background of diffusion fine-tuning. 

2.1.  Denoising Diffusion Models (DDPM) 
DDPM is a novel generative model proposed in 2020 by Ho et al. [8]. The diffusion model is a step-by-

step transformation of a noise obeying a Gaussian distribution into an image that matches desired 
distribution. A U-net [10] usually acts as a backbone to predict noise and complete the denoise process. 
There are two parts in training diffusion model. The first part is forward diffusion process, and the other 
part is reverse diffusion process. 

2.1.1.   Forward diffusion process 

A sequence of noisy samples, 𝑥1..., 𝑥𝑇 , are produced by the forward diffusion process given a data set 

𝑥0~𝑞(𝑥) sampled from the true distribution. The variance scheduler 𝑡 regulates the level of noise. The 

data sample 𝑥0 gradually loses its distinguishing characteristics as the step t increases. Eventually, as 𝑡 

increases, an isotropic Gaussian distribution replaces 𝑥𝑡. Equation 1 below can be used to express the 
forward diffusion process: 

   q( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ) = N(𝑥𝑡; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡I)  (1) 
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Where √1 − 𝛽𝑡𝑥𝑡−1  is the Gaussian distribution's mean and 𝛽𝑡  is the Gaussian distribution's 

variance. So the noisy sample xt can be express as the following equation 2: 

        𝑥𝑡  = √1 − 𝛽𝑡𝑥𝑡−1  + √𝛽
𝑡
𝜖  (2) 

Where 𝜖 is random sampled Gaussian noise. The Figure 1 illustrated both diffusion processes.  

 

Figure 1. Directed Diffusion model graphical [8]. 

2.1.2.  Reverse diffusion process 
The reverse process is the denoising inference process of diffusion. By reversing the forward process 

and sampling from q( 𝑥𝑡−1 ∣∣ 𝑥𝑡 ), the real sample can be reconstructed from a Gaussian input sample. 

Due to the need for the whole dataset, q( 𝑥𝑡−1 ∣∣ 𝑥𝑡 ) is not easily to estimate. In order to conduct the 
reverse process, a model pθ must be trained to understand how to approximate these conditional 
probabilities. Typically, a U-net is used to predict the noise at time t, and by denoise this predicted noise 
the image at time xt-1 can be restored. The training objective can be formulated as minimizing the 
distance between the real noise ϵt and the noise estimation ϵθ(xt, t) by the model. 

2.2.  FederatedAveraging (FedAvg) 

FedAvg [7] is a distributed framework that allows multiple users to train a machine learning model 
simultaneously. FedAvg algorithm involves the following steps: 1) Initialization of global model 

parameters 𝑤0. 2) The central server transmits global model parameters 𝑤0 to all participating clients 
and proportionally selects a number of clients for local training. 3) The Client uses the global model 
parameters to initialize the local model parameters, followed by local training. When a predefined 

number of local training times E is reached, the locally trained model parameters 𝑤 will be uploaded 
into the server. 4) Using weighted average aggregation, the server transforms local model parameters 

into global model parameters. Repeat from step 2 until the number of communications rounds reaches 𝑡 
times. 

2.3.  Diffusion Fine-tuning 

Fine-tuning is a commonly used strategy within transfer learning methodologies. Its primary aim is to 
leverage the knowledge acquired from pre-trained models and apply it effectively to various new 
problems, often referred to as downstream tasks. Conventional fine-tuning entails making adjustments 
to the entire set of pre-trained model weights using a limited number of samples. In 2021, Microsoft 
introduced a fine-tuning approach for large language models known as Low Rank Adaptation (LoRA) 
fine-tuning [11]. Subsequently, this method was also adopted for fine-tuning the Stable Diffusion model. 

Assuming that the amount of weight change in the model during task adaptation is low rank, a bypass 
weights ∆𝑤 is added next to the original pre-trained model to do a dimensionality reduction and then 
dimensionality increase operation. The parameters of the pre-trained model are fixed during training, 

and only the downscaling matrix 𝐴 and the upscaling matrix 𝐵 are trained. Since ∆𝑤 = 𝐵𝐴, for LoRA, 

only the bypass weight ∆𝑤 need to be trained.  

2.4.  Federated diffusion pre-training and Federated LoRA diffusion fine-tuning 

In this section the entire framework of federated diffusion training and fine-tuning will be laid out. 
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2.4.1.  Federated diffusion pre-training 
The federated diffusion model training considers scenarios where a C number of clients with sufficient 
computing power and large amounts of data. The FedAvg algorithm is used to optimise the global model. 

The following is the training procedure: 1) Initialization of global diffusion model parameters 𝑤 2) 

Server send the global parameter 𝑤  to a random selected subset 𝑐 ∈ 𝐶  to do the local training 

(𝐿𝑜𝑐𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 =  𝐸) and transfer the updated weight 𝑣 to the server 3) Server aggregates the 

updated 𝑣 to the new parameters 𝑤’. And repeat the step 2 and 3 until the reach the communication 

round 𝑇. 

2.4.2.  Federated LoRA diffusion fine-tuning 
FedAvg algorithm is used to optimise the global model. But this time the weight w of the global model 

is not updated, only the bypass weight ∆𝑤 is updated. The whole process is as follows: 1) Initialization 

of global bypass weights 𝛥𝑤 2) Server send bypass weights 𝛥𝑤 to a random selected subset c∈C to do 

the local fine-tuning (Local finetuning step = E) and transfer the updated bypass weights 𝛥𝑣 to the server 

3) Server aggregates the updated bypass weights 𝛥𝑣 to the new parameters 𝛥𝑤′. And repeat the step 

2 and 3 until the reach the communication round 𝑇. 

3.  Experiment results and discussion 

3.1.  Federated diffusion pre-training experimental details 
The first experiments carried out is federated pre-training. The code is implemented by the PyTorch [12] 
framework. The dataset used in experiment is CelebA [13] for an unconditional face generation pre-

training. This dataset contains over 200k images of celebrities. To reduce the amount of computation, 

the images is resized to 64×64. The linear diffusion schedule ranging from𝛽1 = 10−4 to 𝛽𝑇 = 0.02 and 

time step 𝑇 = 1000 are used. The learning rate is 10−4  and the local batch size b is 16. 
Fréchet Inception Distance (FID) [14] metric is employed to rate the images' quality. FID quantifies 

the dissimilarity between a reference distribution and a distribution of generated samples by utilizing 
statistical properties such as mean vectors and covariance matrices extracted through a pretrained 
Inception V3 model [15]. Lower FID values indicate higher image quality. 

The experimentation began with centralized training, where we established a baseline. Initially, the 
plan was to train for a total of 20 epochs. However, it became apparent that there was minimal 
improvement in image quality beyond the 10th epoch. To optimize the utilization of computational 
resources and time, we decided to employ the results obtained at the 10th epoch as the baseline. Given 
the extensive time and computational resources required for sampling, the FID score is calculated by 

using a sample size of 64. The resulting FID score for the centralized model after 10 epochs of training 
was 17.96. 

Subsequently, this article delves into experimentation concerning the selection of both the number 
of clients and the number of local train steps. Initially, when the number of local steps (denoted as E) 
was set to 2, various experiments were conducted with different numbers of clients, specifically C = 2, 
4, and 8. The outcomes of this experimentation are illustrated in Figure 2 below. 
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Figure 2. The FID score trained with different number of Clients C (E=2) (Photo/Picture credit: 

Original). 

As depicted in Figure 2, the performance of the global model decreases as the number of clients 
increases. For instance, with only 2 clients, the FID score stands at 18.2, a value closely resembling the 

centralized baseline. However, as the number of clients escalates to 8, the FID score reaches 
approximately 32.  

 

Figure 3. The FID score trained with different number of local step E (C=4) (Photo/Picture credit: 

Original). 

In addition to exploring the impact of the number of clients, this paper conducted an additional 
experiment to assess the influence of the number of local steps. As illustrated in Figure 3, it becomes 
evident that increasing the local step (E) leads to improved performance in the training results of the 
global model. However, it also leads to an extended local training time. Striking a balance between local 
training duration and performance, the study ultimately settled on E=4 and C=4. With C = 4 and E = 4, 
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the model was ultimately trained to achieve an FID score of 18.1, closely resembling the results of the 
centralized model. The outcomes of the federated diffusion model sampling are shown in Figure 4. 

 

Figure 4. The generated sample of federated diffusion model (C=4, E=4 and T =10) (Photo/Picture 

credit: Original). 

3.2.  Federated LoRA diffusion fine-tuning experimental details 
Subsequently, this paper conducts the federated fine-tuning experiment, employing a dataset consisting 
of 16 photos of Cavachon dogs, each with an image size of 512 x 512 pixels. Figure 5 below illustrates 
a few examples from the dataset. The setting of number of clients is 4, each client has 4 images for local 
training. The global training round is 200. For LoRA fine-tuning the low-rank dimensions setting is 8. 

 

Figure 5. Overview of the Cavachon dog dataset (Photo/Picture credit: Original). 

The base pre-trained diffusion model is employed to generate images associated with the prompts " 
A photo of little dog", " A photo of little dog in a bucket", " A photo of little dog running", and " A 
photo of little dog swimming". Figure 6 illustrates the generation results of base model. 

 

Figure 6. Results of base model before fine-tuning (Photo/Picture credit: Original). 

Figure 7 illustrates the outcomes of the generation process following the fine-tuning of the model 
using federated LoRA. As depicted in Figure 7, after undergoing the federated LoRA fine-tuning 
procedure, the model has successfully adapted to the new task. The generated image samples now 
closely resemble the input reference images. Moreover, the volume of parameters exchanged between 

the client and server during each communication round remains remarkably low at just 3.1 MB 
(Megabytes), in stark contrast to the substantial 433MB parameter size of the entire U-net model. 
Federated LoRA not only ensures the quality of image generation, but also improves the efficiency of 
each communication round.  

 

Figure 7. Results of base model after federated LoRA fine-tuning (Photo/Picture credit: Original). 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/52/20241136

19



 

 

4.  Conclusion  

This paper explores the potential of application of federated learning algorithms in diffusion training as 
well as fine-tuning. By experimenting with federated diffusion pre-training, the model obtained by 
centralised training and federated training can be similar in terms of the quality of image generation. 

However, the choice of local steps and number of clients can have a huge impact on the result of the 
model. The choice of local step will be different for different amounts of data. For federated fine-tuning, 
the combination of LoRA and federated learning not only ensures the quality and fidelity of the 
generated images, but also significantly reduces the consumption and time of each communication. At 
the same time federated learning ensures data privacy and avoids large data transfers.  
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