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Abstract. CycleGAN has been a benchmark in the style transfer field and various extensions 

with wide applications and excellent performance have been introduced in recent years, however, 

discussion about its architecture exploration which could enable us to further understand the 

concept of generative model is scarce. In this paper, several architectures referenced from 

classical convolutional neural networks are implemented into the generator and discriminator of 

the cycleGAN model, including AlexNet, DenseNet, GoogLeNet, and ResNet. Their feature 

extraction modes are imitated and modified into blocks to embed into the encoder part of the 

generator while the discriminator directly uses their model except it outputs a patch classification. 

In advance to mitigate the possible imbalance between generator and discriminator ability, a self-

adjusting learning rate strategy based on the discriminator confidence is introduced. Multiple 

evaluation metrics are utilized to measure the performance of each model. Experimental results 

indicate an AlexNet-like architecture model could achieve a competitive performance than the 

baseline cycleGAN and present better fine details and high-frequency information. 
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1.  Introduction 

Style transfer is a conspicuous topic in the computer vision and artificial intelligence field, which enables 

combining art and humanities with technological advances in neural networks and applying them to 

reality. It reconstructs the source image that keeps geometry content and converts texture appearance 

style into target one [1]. Human face style transfer has always been a popular topic among style transfer 

ever since its origin [1], style transfer between reality and animation style or painting style is relatively 

mature in various applications. Style transfer between photo and sketch could have a variety of 

applications, ranging from criminal investigation where hand-drawn suspect portraits based on 

description could be converted into realistic style photos which provide more appearance information 

so that police and the public could identify them more efficiently, to entertainment use for example to 

create a sketch style self-portrait as social media avatar, to virtue reality scenarios synthesis, where 

creator could draw only laconic lines of face to get a realistic looking portrait and greatly reduce 

workload. 

In the fundamental research of style transfer, content and style are demonstrated to be distinguishable 

in the neural network, which then was used to reconstruct images constrained by content loss and style 

loss, the former one from a feature map in a deep layer while the later one from each layer [1]. Then the 

network was extended to Convolutional Neural Network (CNN) [2], and perceptual loss was introduced, 
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computed by comparing features from the target and generated image extracted with a VGG [3]. 

CycleGAN inherent its feature-extraction network architecture and implement the adversarial 

architecture and break the limitation of requiring paired dataset of other works [4, 5], where dual 

generators and discriminators in both directions are trained to raise cycle-consistency loss, that is the 

style-transferred image could be inversely converted back to the original source image, ensuring the 

generator would transfer appearance style while preserving geometry content [6]. Later research on style 

transfer such as StarGAN explored style transfer in multiple domains [7], and StyleGAN proposed an 

alternative generator architecture that enables intuitive control of synthesis [8]. These later researches 

ameliorated the architecture and promote the generated quality at a higher level, though little research 

has been done on architecture based on CycleGAN. Therefore, this paper hopes to explore different 

network architectures in both generator and discriminator of CycleGAN based on existing classical 

convolutional neural network architectures.  

This research would focus on the effect of different network structures on portrait style transfer. 

Various convolutional neural network architectures in CycleGAN [6] would be implemented, including 

AlexNet [9], DenseNet [10], GoogLeNet [11], and ResNet [12]. These classical architectures would be 

implemented in discriminator while down-sampling convolutional generator layers are replaced by 

blocks designed to contain characteristics from corresponding classical architecture. Additionally, a self-

adjusting learning rate strategy was attempted to solve the training stability problem caused by the 

difference in generator and discriminator strengths. These CycleGAN could convert images between 

photo and sketch domains in both directions, and the approach could also be generalized to other 

domains if data is available. Synthesis images are evaluated by multiple metrics to statistically measure 

the generative quality of each architecture. 

2.  Method 

2.1.  Dataset preparation 

This paper uses CUHK Student Face Sketch dataset published in 2009 [13], in which contains in total 

of 188 faces with blue backgrounds. For each face, there is a corresponding sketch drawn by an artist 

based on a photo taken in a frontal pose, under normal lighting conditions, and with a neutral expression. 

Image data is in RGB format and has a relatively high resolution of 200×250. This paper will employ 

100 pairs of images as the training set, and 88 pairs as the testing set. Some sample images of the 

collected dataset are shown in Figure 1. 

Some basic image-augmentation methods are also implemented on the dataset for data preprocessing, 

including resizing images to 256×256 to fit with models input, images have 0.5 possibilities to be 

horizontally flipped so the trained models could be more robust and normalization that map data input 

into a normal distribution with mean=0 and standard deviation=1 to accelerate the convergence of model 

training. 
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Figure 1. Example of CUHK Student Face Sketch dataset. 

2.2.  CycleGAN model 

CycleGAN is an adversarial generative network for style transfer proposed by Zhu et al. in 2017, style 

transfer methods like pix2pix before it requires paired data which is a heavy limitation. This burden is 

solved by cycleGAN by dual generator and dual discriminators and introducing cycle-consistency loss. 

Therefore, based on classical GAN architecture, that input image 𝑥  into the generator 𝐺  synthesis 

𝑦′ =  𝐺(𝑥), and put into discriminator 𝐷𝑦 with real target image 𝑦, to calculate the loss function below. 

 min
𝐷𝑦

max
𝐺

ℒ𝐺𝐴𝑁 =  𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[log 𝐷𝑦(𝑦)] + 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log (1 − 𝐷𝑦(𝐺(𝑥))] (1) 

This loss function would restrain the discriminator 𝐷𝑦 to classify between the image from target 

training data 𝑦 and the image generated by the generator 𝐺(𝑥) and generator 𝐺 to synthesize image 

similar to the target image to deceive the discriminator 𝐷𝑦. The problem is that if training data 𝑥 and 

𝑦 are not paired images, that is they do not share a common geometry content, the generator 𝐺 might 

map the same set of input images to any random permutation of image in the target domain while 

ignoring the source content because discriminator 𝐷𝑦 only classifies if the input image having the target 

style and that is enough to confuse 𝐷𝑦. That is why cycleGAN introduce cycle-consistency loss showed 

below. 

 ℒ𝑐𝑦𝑐 = 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[‖𝐺(𝐹(𝑦)) − 𝑦‖] + 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[‖𝐹(𝐺(𝑥)) − 𝑥‖] (2) 

The cycle-consistency loss restricts the 𝐺(𝐹(𝑦)) to be similar with 𝑦, and vice versa, to let 𝐹(𝐺(𝑥)) 

to be similar with 𝑥. By letting 𝐺 convert the source style image to the target style, then convert it back 

to the source style by 𝐹 to output the original image, generators would be constrained to only modify 

the style of the image and preserve content. 

Besides cycle-consistency loss, cycleGAN also introduces identity loss though it is not contained in 

paper. It aims to preserve the original color style, to prevent from generator modifying color. 

 ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[‖𝐹(𝑦) − 𝑦‖] +  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[‖𝐺(𝑥) − 𝑥‖] (3) 

The full objective would be: 

 ℒ = ℒ𝐺𝐴𝑁 + ℒ𝑐𝑦𝑐 + ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (4) 
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Figure 2. Demonstration of CycleGAN workflow. 

2.3.  Implementation details 

2.3.1.  Architecture. Models in this paper will follow the principle and structure including the generator 

and discriminator of cycleGAN, The generator is adapted from the network proposed by Johnson et al. 

[5] which contains two stride-2 convolutions to extract features, nine residual blocks [14] to restore and 

augmentation images, and two 2-stride inverse-convolutions to reconstruct the image back to its original 

size. In both the down-sampling stage encoder and up-sampling stage decoder, instance normalization 

[15] accelerates model convergence and maintains independence between image instances, and ReLU 

as activation function. Patch-GANs [4] is implemented for discriminator, similar to cycleGAN. 

However, depending on the various models embedded, the size of the overlapping image from Path-

GANs will be different. 

 

Figure 3. Demonstration of cycleGAN architecture. 
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2.3.2.  Generator. The down-sampling stage is extracting abstract features from the input image, with 

the price of geometry content. Therefore, if the down-sampling is too much, that is extracting features 

and down-size image to less than 1
4⁄  of its original length, the feature preserved would be so abstract 

that it is even impossible for the up-sampling process to reconstruct its geometry content. Then it would 

be reasonable to explore how to extract the features more efficiently within a limited down-sampling 

step. This paper will present some architecture designed based on the principle of some classical 

convolutional neural networks, that are utilized in the down-sampling block. Including AlexNet [9], 

DenseNet [10], GoogLeNet [11], and ResNet [12], would be both imitated in the down-sampling stage 

of the generator and partially used in the discriminator. The various types of neural networks used 

endeavor to comprise their primary concepts while modifications are carried out to fit the purpose of 

style transformation. These down-sampling blocks have a common initial layer, and share exactly the 

same input and output size of 64 × 256 × 256  from preprocessed image data and output 

256 × 64 × 64 feature into the residual blocks.  

Encoder architectures are illustrated in Figure 4. The self-defined convolutional block is also from 

cycleGAN implementation, containing a convolution layer, an instance normalization layer, and a ReLU 

activation, this convolution block is able to extract features from image identity efficiently and will be 

utilized frequently in architectures. In terms of the original cycleGAN, two such 3 × 3 convolutional 

blocks directly compose the down-sample module. For the AlexNet-like architecture, each 

convolutional block is followed by a 2 × 2  max pooling layer to further draw abstract features. 

DenseNet-like architecture is composed of a dense network and a transpose network, in the former, 

outputs of two convolutional blocks would concatenate with all previous inputs, and the latter takes the 

responsibility to map feature channels and size to the output standard and further extract information. 

The GoogLeNet-like architecture is an imitation of the Inception block [11], where four separate 

networks extract features in different levels and concatenate by a max pooling layer. The weights for 

different branches are from GoogLeNet, sequence from left to right in Figure 4 (e), the first block is 

2 :4 :1 :1, and the second block is 4 :6 :3 :2. The last one is the ResNet-like architecture, outputs of two 

3 × 3 convolutional blocks is concatenated with its own input, and a 1 × 1 convolutional block to map 

feature into standard output format. 

 

Figure 4. Demonstration of down-sampling model architectures. (a) a self-defined 𝑀 × 𝑁 

Convolutional Block, used in other architectures as 𝑀 × 𝑁  Conv Block. (b) cycleGAN baseline 

architecture. (c) AlexNet-like architecture. (d) DenseNet-like architecture. (e) GoogLeNet-like 

architecture. (f) ResNet-like architecture. 

2.3.3.  Discriminator. The application of these architectures on discriminator is more straightforward, 

this paper will directly use models from torchvision library with modifications to fit with Patch-GAN. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241144

27



For a better comparison of these network structures, discriminators should output feature maps in the 

same, or at least close channels. 

2.3.4.  Self-adjusting learning rate strategy. This experiment faces the challenge that, all of these 

convolutional neural networks are designed for classification, that is for discriminator, and their 

performance on generator has yet to be proven. Therefore, there might be an ability gap between the 

generator and discriminator [16], this would lead to the phenomenon that the discriminator converges at 

a speed far more rapid than the generator, then whatever generator synthesis the discriminator could 

always identify it as fake and thus loss the function of directing generator to synthesis image similar to 

target domain in adversarial generative network. To prevent this, a self-adjusting learning rate strategy 

is implemented, which will automatically coordinate the learning rate of the generator and discriminator, 

in order to maintain a relative symmetric ability between them. It is achieved by supervising the 

confidence of discriminators to classify real and fake image inputs as real, with the difference between 

confidence in real input and fake input increasing, which implies that the convergent speed of the 

discriminator is beyond that of the generator, learning rate of discriminator will decrease as it increases 

for generator. In this way, the convergent speed difference will be constrained so the discriminator could 

play the role of director. The performance of this strategy is shown in Figure 5. 

 

Figure 5. Demonstration of discriminator confidence of predicting real image as real and predicting 

fake image as real when ability of generator and discriminator are unbalanced, without (a) and with (b) 

self-adjusting learning rate strategy. 

3.  Results and discussion 

Table 1. FID, PSNR, and SSIM scores of each synthesis method. For these models, Source is the 

synthesized photo-style image and Target is the synthesized sketch-style image. 

Metho

d 

Original AlexNet-like DenseNet-like 
GoogLeNet-

like 
ResNet-like 

Source Target Source Target Source Target Source Target Source Target 

FID↓ 
34.049

5 

28.279

9 

22.244

2 

17.515

0 

31.246

4 

52.972

1 

41.995

4 

41.058

3 

42.529

1 

34.967

8 

PSNR

↑ 

20.020

0 

20.195

6 

19.151

8 

13.172

4 

18.908

4 

17.810

9 

17.610

6 

18.415

9 

19.542

2 

18.567

4 

SSIM

↑ 
0.5653 0.5825 0.6436 0.6963 0.4970 0.4449 0.5588 0.6296 0.5829 0.6417 

Sec 

per 

Epoch 

10.1 11.3 25.1 16.8 16.3 

Synthesis result samples of each architecture are illustrated in Figure 6, and several generation 

evaluation metrics are implemented and demonstrated in Table 1. Including Fréchet Inception Distance 
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using CLIP feature [17], PSNR, and SSIM. Results are the average value of 10 independent training 

with 20 epochs on each architecture, completed on a V-100 GPU.  

These results illustrated that the AlexNet-like architecture achieved a better result than the original 

cycleGAN on FID and SSIM measurements, however, for other more complex architectures it turned 

out to be worse. One of the most significant reasons for this phenomenon is, that although a self-

adjusting learning rate strategy is used and mitigates the issue, these models still suffer from the 

unbalance of the generator and discriminator, that their classify ability as discriminator is too powerful 

and convergent speed is too rapid.  

 

Figure 6. Generate results of each architecture. 

Apart from the asymmetric of the generator and discriminator, poor performances of DenseNet-like, 

GoogLeNet-like, and ResNet-like architectures could also be caused by the encoder extracting features 

to a too abstract level, that the decoder could not reconstruct fine detail from remaining information. 

Therefore, the results of these architectures lack the ability to express fine details, this is evident in the 

facial lighting and hair. From the synthesis sketch-style images, compared with sketch-style images 

synthesized by the original cycleGAN and AlexNet-like architecture model, they neglect the shadow 

part of images with only simple facial lines. And for hair, they turn to express hair like a whole entity, 

withdrawing detailed hair line. These fine details might be preserved in the output of the original and 

AlexNet-like architecture model’s encoders, but discarded from that of other models. 

Compared with the original result, AlexNet-like architecture appears to synthesize images with more 

exact fine details. Focus on the area near the eyes, where the lines are denser and information is 

expressed at a higher frequency, it is conspicuous that eyes synthesized by the original are fuzzier than 

those generated by the AlexNet-like one, it is hard to distinguish between black pupil and white area of 

the eye in the former, while the latter present this distinguish clearly. Within its encoder blocks, the 

convolutional layer is used to extract features into higher dimensions, followed by the max pooling layer 

to down-sample feature maps to a smaller size. This information-extracting strategy better clusters 

global meaningful information and presents a relatively better performance in the synthesis of high-

frequency information. 

This paper only experiments with paired-architecture encoder and decoder and the encoder with 

AlexNet-like architecture only experimented with the decoder with AlexNet-like architecture. More 

combinations should be available, to group different encoder and decoder architectures to test for their 

performance. For example, use the original decoder to work with each encoder, so the result would 

better represent the generative ability of each encoder, with less risk of model asymmetric. 
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4.  Conclusion 

In this research, different architectures of cycleGAN are explored on human face style transfer between 

photo and sketch style. Structures from classical convolutional neural networks are implemented in the 

cycleGAN framework to seek for a better synthesis model architecture. Experiments with a self-

adjusting learning rate strategy are conducted to evaluate the generative ability of each architecture. The 

result showed that cycleGAN with an AlexNet-like architecture model can achieve a better performance 

in both human-vision perception and various synthesis metrics, compared with baseline cycleGAN 

architecture. This paper only experiments with generators and discriminators with the same architectural 

style. In the future, more architecture combinations will further explore architecture's effectiveness on 

generative models and find architecture designs with better performance. 
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