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Abstract. Tabular data are most prevalent datasets in real world, yet the integration of deep 

learning algorithms in tabular data often garners less attention despite their widespread 

utilization in other field. This phenomenon could be attributed to the dominance of the classical 

algorithms in their simplicity and interpretability, and the superior performance of the gradient 

boosting tree models in tabular data. In this paper, a simple yet affective adaptation of the 

Transformer architecture tailored specifically for tabular data is presented, not only achieving 

good performance but also retains a high degree of explain ability. The model encodes both 

continuous and categorical features, alongside their respective names, and feed them into an 

enhanced Transformer structure enriched with Scaled Exponential Linear Unit activation. 

Through rigorous experimentation, our model not only outperforms classical algorithms and 

similar Transformer-based counterparts, but also are comparable to the performance of gradient 

boosting tree models.  
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1.  Introduction 

Tabular data is an essential foundation across diverse fields, prominently in critical domains like 

healthcare, factory settings, advertising, and finance. Its inherent structure streamlines various benefits, 

such as the efficient storage, retrieval, and analysis of multifaceted information. Often employed in 

regression and classification tasks, tabular data predicts categorical or numerical outcomes based on 

data rows. This seemingly straightforward process can yield valuable and critical insights for 

professionals in various sectors, shaping informed decisions. 

While for classification and regression tasks involving tabular data, the landscape has been 

predominantly shaped by models rooted in gradient tree boosting techniques since 2016. This dominance 

primarily stems from their robustness and efficient training times. Exemplified by well-known 

implementations like XGBoost, LightGBM, and CatBoost, these models, derived from the gradient 

boosting methodology, form a pivotal aspect of the machine learning field [1-4]. In machine learning 

competitions, gradient boosting tree models are particularly prevalent due to their capability to achieve 

exceptional performance when the hyper parameters are properly tuned. 

Another facet of machine learning consists of those traditional algorithms, excelling in their 

simplicity, speed, and resource efficiency. Notable examples include Logistic Regression, Support 

Vector Machines (SVM), and k-nearest neighbours. excels at its simplicity, speed. They are frequently 
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employed in sectors such as manufacturing, healthcare, and settings where prediction accuracy is not 

the goal, but the prediction speed is of paramount importance and computational resources are valued 

assets. 

As the tasks surrounding tabular data is dominate by the traditional and gradient boosting tree 

machine learning algorithms, the realm of deep learning has striven to bridge the gap in performance 

for tasks around tabular data, concurrently. To begin with, the Multilayer Perceptron (MLP) model was 

served as a baseline. Then, various deep learning architectures tailored to tabular data have been 

formulated, novel models have drawn inspiration from diverse fields; for instance, the adoption of 

ResNet-like architectures from computer vision and the Transformer architectures from natural language 

processing [5, 6].  

In this paper, we introduce a model that attains prediction accuracy comparable to boosting tree 

algorithms while maintaining feature interpretability. Achieving this synergy involves encoding 

continuous features, embedding categorical names, and their respective features. These processed 

features are then directed injected into a modified Transformer module for prediction. Our adapted 

Transformer module is meticulously designed to cater to the nuances of tabular data. Given tabular 

data’s inherent sparsity and the presence of negative values, specific modifications have been 

implemented. Also, this customized Transformer module features a solitary layer of encoder and 

decoder. Moreover, the combination of ReLU and layer normalization layers is replaced with an SELU 

activation layer, effectively preserving the latent information [7].  

Furthermore, the specially crafted embedding layer serves the dual purpose of encoding feature 

names and category names, thereby revealing the intricate interconnections that exist between these 

categories and features. With the growing emphasis on safeguarding the privacy of personal and 

business data, approaches of withholding the disclosure of actual feature or category names and 

replacing them with pseudo-labelled character representations are being applied, as demonstrated in the 

recent Kaggle ICR competition. The interpretability provided by the embedding layer not only addresses 

this challenge of anonymity but also contributes to a more thorough comprehension of the intricate 

relationships between features and categories within specialized datasets, thereby enhancing their 

overall interpretability. 

Finally, in literature review section, related papers are researched and discussed. In the model section, 

the structure and design of model has been explained. In experiment section, experiment on various 

datasets is being conducted and the result of our model are being compared to various existing models. 

In Feature interpretability section, the unique property of our model that allows feature and category 

interpretability is introduced. Finally, in conclusion section, the result and conclusion of this paper is 

presented. 

2.  Literature Review 

The primary attention for related paper resides on the models which originated from the Transformer 

architecture, as it serves as the foundational architecture underlying our work.  

Originating as a solution for NLP translation tasks, the Transformer’s core structure encompasses 

encoder and decoder layers comprising self-attention mechanisms and feedforward neural networks 

(FFNNs). After the introduction of Transformer, it quickly gains it’s popularity, and the swift 

proliferation of the Transformer’s popularity in the NLP domain has permeated the broader landscape 

of deep learning. Notably, computer vision tasks have given rise to variations of Transformer structure, 

such as the Vision Transformer (ViT) [8]. In alignment with this trend, the field of tabular data analysis 

has witnessed the emergence of various adaptations of the Transformer. 

When Transformer first emerges, model with simple adaptation that only involves modification of 

input data that allows the input data to be fed into transformer architecture is introduced. The FT-

Transformer employs a straightforward yet effective approach [9]. It starts by tokenizing and embedding 

the categorical features. These embeddings are then combined with the continuous features, which have 

been processed through a dense layer. This approach enables smooth integration of input features into 

the Transformer architecture. On the other hand, the Tab-Transformer adopts an approach reminiscent 
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of wide and deep models [10]. It utilizes embeddings to process categorical features, which are 

subsequently fed into a Transformer layer. At the final dense layer, these embedded representations are 

combined with the continuous features to form a prediction. These adaptations represent instances of 

simplistic yet impactful integration of the Transformer model within the tabular data context. 

Notably, a subset of models further augments the fundamental Transformer architecture, yielding 

considerable enhancements in tabular data tasks. For instance, the SAINT model incorporates self-

attention mechanisms from Transformers while introducing inter-sample attention, effectively capturing 

row-wise relationships and used neighbour-based classification for final prediction [11]. ExcelFormer 

amalgamates Transformer attention mechanisms with FFNNs, proposing AiuM and DiaM modules that 

facilitate feature representation updates and interactions [12]. TransTab, which shares its lineage with 

the Transformer architecture, accommodates variable column tables, thus accommodating pre training 

and transfer learning [13]. Finally, TabPFN, gaining traction in recent Kaggle competitions, harnesses 

the power of synthetic data and prior data fitting to pre train Transformer-like models, showcasing 

prowess particularly on small datasets [14]. 

While the aforementioned models manifest commendable utility, our research endeavours unveil yet 

another innovative adaptation of the Transformer model tailored to tasks in the tabular domain. Our 

model is meticulously crafted to address the intricacies and challenges inherent in this context. By 

modifying the input features to a more favoured representation and feeding it into the modified 

transformer architecture, where ReLU and layer norm are replaced with SELU activation, for better 

handling of tabular data. 

3.  The Model 

The model is constructed upon the Transformer architecture, and we have adapted this architecture to 

make it more suitable for addressing classification and regression problems involving tabular data. The 

overall model architecture is structured as follows: (1) Input processing layers, (2) Transformer-like 

layers, and (3) Dense layer. A detailed model architecture is shown in Figure 1. 

 

Figure 1. The detailed model’s architecture. 

3.1.  Input Processing Layers 

The first layer before the transformer like structures are the input processing layer. Our model treats any 

tabular data as decomposition of two elements: categorical element and numerical element. The 

separation of categorical element and numerical element is driven by its inherent differences. The 

numerical element encapsulates a continuous range of values, while the categorical element is discrete 

in natural and lack of mathematical meanings. Additionally, in this paper, categorical elements undergo 

a direct tokenization and processing through an embedding layer, which is similar to natural language 

processing tasks, where a unique vector dimension of 64 has been trained to represent each category. In 

contrast, to align the numerical element to the categorical vector dimension of 64, a modified positional 
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encoding is used, wherein the numerical value itself is adopted as the positional parameter. This 

approach ensures that each encoded value preserves the same numerical meaning from the input, while 

simultaneously exhibiting variations across different instances. 

3.1.1.  Categorical elements. A categorical element can be categorical features, binary features, and 

column names. An embedding matrix is created with size of categorical elements×64. Each categorical 

element is tokenized and matched to a corresponding row of the embedding matrix to generate a 

categorical feature embedding vector of size 64. 

3.1.2.  Numerical elements. The numerical element is any continuous features. A Gaussian noise with 

standard deviation of 0.2 is first been applied to each numerical element mimicking noise in the datasets 

and provide more augmentation, so that the model is more robust. Then, to allow continuous features 

match the shape of categorical feature embedding, the disturbed numerical element has been feed to 

positional encoding. Since numerical element itself have an underlying aspect of position and we need 

to expand the numerical element to the same shape of categorical feature embedding, with each position 

still holds the information of the original data but varies for different position of the vector. The modified 

positional encoding is as follows: 

 𝑷𝒆(𝒗𝒂𝒍𝒖𝒆, 𝟐𝒊) = 𝑺𝒊𝒏 (
𝒗𝒂𝒍𝒖𝒆

𝟏𝟎𝟎𝟎

𝟐𝒊
𝒅𝒎𝒐𝒅𝒆𝒍

)  𝒂𝒏𝒅 𝑷𝒆(𝒗𝒂𝒍𝒖𝒆, 𝟐𝒊 + 𝟏) = 𝑺𝒊𝒏 (
𝒗𝒂𝒍𝒖𝒆

𝟏𝟎𝟎𝟎

𝟐𝒊+ 𝟏
𝒅𝒎𝒐𝒅𝒆𝒍

) (1) 

Finally, the embedded categorical column names and numerical column names are being added to 

the corresponding categorical or numerical vectors. The categorical or numerical vectors are 

concatenated to form the final input to the transformer-like layers. 

3.2.  Transformer-like Layers 

To tailor the Transformer architecture to the characteristics of Tabular data, several modifications are 

applied to the architecture. 

3.2.1.  Transformers The original implementation of Transformer [13] consists of an encoder and 

decoder, each composed of several identical layers. Each layer consists of a multi-head self-attention 

layer followed by a feed-forward layer. Additionally, layer normalization and residual connections are 

used to stabilize training.  

Self-attention is a mechanism in the Transformer architecture that enables each position in a sequence 

to attend to other positions, capturing dependencies between different elements in the sequence. 

Specifically, a self-attention layer consists of three components: Key 𝐊  ∈ 𝐑𝐦 ×𝐤, Query 𝐐 ∈ 𝐑𝐦×𝐤, 

and Value 𝐕 ∈ 𝐑𝐦×𝐯. Each component is being applied to the input. Query and Key are multiplied to 

produce attention scores, which are used to compute a weighted sum of Values. Mathematically, for a 

sequence of input vectors X, the self-attention operation can be expressed as: 

 Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

(𝑑𝑘)
1
2

) 𝑉      (2) 

Here, Q, K, and V are the transformed Query, Key, and Value matrices, and 𝐝𝐤 is the dimension of 

the Key vectors. The softmax function normalizes the attention scores, determining how much each 

position contributes to the final output.  

In practice, when we implement this structure on tabular data, the attention between features can then 

be captured and applied to the input features to determine the final classification target. 

To tailor the Transformer architecture to the characteristics of Tabular data, this paper has embraced 

the principle of Occam’s Razor, advocating for minimal unnecessary multiplication of entities. As a 

result, we have streamlined the Transformer’s architecture to have only one encoder and one decoder 

layer. Furthermore, we have excluded the masked layer from the multi-head attention within the decoder 
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layer. While this masked layer is crucial for preventing the model from accessing future information in 

Natural Language Processing (NLP) tasks, its absence is justified for Tabular data, where there’s no 

inherent ordering. Also, in the context of training with tabular data, the presence of masked layer 

inadvertently restricts preceding data from accessing the subsequent data. Consequently, earlier data 

receive fewer contextual information, leading to potentially compromised learning outcomes. Hence, 

the masked layer is removed in the decoder module. Lastly, the combinations of ReLU and layer 

normalization have been replaced with a SELU activation layer. 

3.2.2.  SELU Here, we present the rationale behind the decision to substitute the combination of 

normalization layer and ReLU activation with SELU activation function in our proposed neural network 

architecture. The substitution is motivated by two key reasons. 

⚫ Addressing the “Dying ReLU” problem 

The Rectified Linear Unit (ReLU) activation function, mathematically defined as 

 𝒇(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙). (3) 

is commonly used due to its simplicity and effectiveness in many machine learning tasks. However, 

ReLU suffers from the “Dying ReLU” problem, where the problem arises when certain neurons become 

inactive, consistently producing zero outputs. Given that tabular data inherently differs from computer 

vision (CV) and natural language processing (NLP) tasks, where ReLU has found widespread adoption, 

tabular data often contains a substantial number of negative values. The abundance of negative values 

will inevitably worsen the dying ReLU problem. 

Additionally, the architecture proposed, condensed to a single layer of encoder and decoder, is 

particularly susceptible to the Dying ReLU problem, since there exists less neurons. The excessive 

presence of negative values in tabular data, coupled with the reduced model depth, would lead to a 

significant loss of latent information during training. To prevent this issue and retain the valuable 

information present in negative values, we opted to eliminate the use of ReLU activations. 

⚫ Leveraging SELU for Self-Normalization: 

The SELU activation function (Scaled Exponential Linear Units) are activation function that induces 

self-normalization. Mathematically expressed as: 

 𝒇(𝒙) = {
𝝀𝒙 𝒊𝒇 𝒙 > 𝟎

𝝀𝜶(𝒆𝒙 − 𝟏)𝒊𝒇𝒙 ≤ 𝟎
 𝒇𝒐𝒓 𝝀 ≈ 𝟏. 𝟎𝟓𝟎𝟕, 𝜶 ≈ 𝟏. 𝟔𝟕𝟑𝟑. (4) 

SELU activations are equipped with self-normalization property, where the input features are been 

pushed to zero mean and unit variance. Unlike ReLU, SELU retains both positive and negative values 

within the data, affectively avoiding the Dying ReLU problem. Furthermore, our decision to utilize 

SELU activations is bolstered by findings from the original SELU paper, which indicate that SELU 

outperforms layer normalization used in Transformer architecture and batch normalization, especially 

when dealing with small perturbations and high variances. 

3.3.  Final dense layer 

The final layer serves as an extractor, retrieving pertinent information from the latent output of the 

transformer like structure. For Regression tasks, a dense layer is used. For classification tasks, a SoftMax 

activation is employed after the dense layer, creating an output size that corresponds precisely to the 

dimensions of the target data. 
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4.  Experiments 

4.1.  Data 

We evaluate our model and baseline models on 2 publicly available classification datasets from UCI 

repository (Dua and Graff 2017) and Kaggle (Kaggle, Inc 2017). For each dataset, the data is divided 

into training and testing set, with a split of 80%/20%. The Categorical data is processed with Label 

encoding. For our model, the categorical column name and continuous column name are being extracted 

and Label encoded. For our model, the input data are continuous features, label encoded categorical 

features, continuous column names, and categorical column names.  The description of datasets are 

shown in table 1. 

Table 1. Datasets description. 

Dataset abbreviation Samples Features 

Adult Census Income AC 48842 14 

Bank Marketing BM 45211 17 

4.2.  Model Setup 

For each dataset, our model and five baseline model are trained and evaluated. Including Logistic 

Regression, Random Forest Classifier, MLP Classifier, XGBoost Classifier, and tab transformer. The 

tab transformer is built with TensorFlow, XGBoost Classifier is obtained from XGBoost package, and 

all other models are taken from Sklearn module. The hyper parameters are not tuned. For our model, we 

set a batch size of 64, learning rate of 0.005, with an exponential decay of learning rate with a decay 

step of 20 and decay rate of 0.9. The model is then trained for 3 epochs for each dataset. Then, each 

model has been trained and evaluated for 10 times, the subsequent predicted results are being evaluated 

against the testing target by accuracy rating for classification task. The resulting evaluations are shown 

in table 2, where the datasets are been mentioned with their abbreviations. The model proposed in this 

paper is highlighted in grey, and the datasets with the best accuracy score has been coloured with red. 

Table 2. Model Performance Comparison 

Model AC BM 

Our Model 0.867 ± 0.004 0.831 ± 0.006 

Logistic Regression 0.807 ± 0.005 0.790 ± 0.007 

Random Forest 0.857 ± 0.005 0.847 ± 0.005 

XGBoost 0.869 ± 0.004 0.853 ± 0.007 

Multi-layer Perception 0.730 ± 0.119 0.753 ± 0.041 

Tab-Transformer 0.845 ± 0.002 0.815 ± 0.007 

 

In table 2, when compared with traditional machine learning models, our model consistently 

outperforms their score. While compared to the similar Neural Network models, our model surpasses 

the baseline Multi-layer Perception model by a drastic 10%. Comparing to the Tab-transformer model, 

which is similar to ours’s as it inherent it’s structure from Transformer, our model still consistently 

outperforms Tab-transformer by an average of 2% for classification tasks. Even when compared with 

GBDT boosting tree models, such as XGBoost, we only lose merely by 0.2% of accuracy, and the gap 

is narrowing as the dataset’s size increasing. 

4.3.  Ablation Experiments 

The performance comparison of our model in the cases of with and without SELU activation are 

presented in table 3. 
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Table 3. Model Performance Comparison between our model with and without SELU 

Model AC BM 

Our Model with SELU 0.867 ± 0.004 0.831 ± 0.006 

Our Model without SELU 0.862 ± 0.004 0.827 ± 0.006 

 

As anticipated, the incorporation of the SELU activation function effectively tackled the issue of 

dying ReLU units, thereby retaining a greater amount of latent information and consistently enhancing 

the final prediction by 0.4%. 

In summary, aligning all aspects of the SELU activation layer shows a clear advantage over the 

combination of layer normalization and ReLU layers, which also further simplified our overall 

architecture. This strategic choice aims to enhance training effectiveness and information retention, 

thereby improving the model performance on Tabular data. 

5.  Feature Interpretability 

To visually see the Interpretability of the trained embedding layer, a PCA analysis is applied to the 

embedding layer of the model trained on the adult capital income dataset. In this analysis, the embedding 

vectors of dimension 64 are condensed into x and y positions. 

 

 

 

Figure 2. The PCA analysis of embedding vector 

of category under education column. 

 Figure 3. The PCA analysis of 

embedding vector of columns. 

Figure 2 illustrates the PCA analysis of embedding of education categories, revealing a distinct trend 

between the label position and the level of education. The labels range from preschool, the lowest 

education level (upper left), to Doctorate, the highest level of education (lower right). Other categories 

also exist similar relationships between its position and its underlying meaning. 

Figure 3 showcases another PCA analysis of embedding of feature names. This analysis provides 

clear indications of relationships, such as the connection between “education-num” and education, as 

well as the relationship between “capital gain” and education, race, and marital status. 

Indeed, the trained model’s embeddings unveil hidden relationships between features. Even when 

the feature and category names are concealed, these results can offer the user an intuitive understanding 

of the datasets. 

6.  Conclusion 

In this paper, a novel model rooting from transformer model adapted specifically to tabular data is 

presented. The model consists of three parts, input processing part, Transformer-like part, and a final 

dense layer. For the transformer-like part of the model, all combination of ReLU and layer normalization 

are being replaced with SELU activation, and the attention mask are being removed to supply the model 

with more latent information. Additionally, a specially designed input processing layer are used to 

handle the tabular data. Empirical experiments have consistently demonstrated that the model 

outperforms traditional machine learning algorithms. Even when compared to similar Transformer-
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based networks, our model exhibits superior performance. Notably, the model also showcases 

performance comparable to the state-of-the-art gradient boosting tree models. To further validate our 

approach, an ablation experiments is conducted. In the experiments, our model consistently 

outperformed other cases where SELU activation was not used, thus affirming the correctness and 

effectiveness of our modifications in the Transformer part. Furthermore, one distinctive feature of our 

model is its ability to offer enhanced interpretability for any given data. The embedding layer within the 

trained model unveils underlying relationships within categorical features, and continuous and category 

feature names. This capability proves valuable when categorical and feature names are anonymized or 

when users are unfamiliar with the domain from which the data originates. Finally, for future work, 

further adaptation or modification of the model to accommodate small-sized datasets could be explored. 
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