
TabTranSELU: A transformer adaptation for solving tabular

data

Yuchen Mao

School of Mathematics, University of Edinburgh, Old College, South Bridge,

Edinburgh EH8 9YL. United Kingdom

s2045776@ed.ac.uk

Abstract. Tabular data are most prevalent datasets in real world, yet the integration of deep

learning algorithms in tabular data often garners less attention despite their widespread

utilization in other field. This phenomenon could be attributed to the dominance of the classical

algorithms in their simplicity and interpretability, and the superior performance of the gradient

boosting tree models in tabular data. In this paper, a simple yet affective adaptation of the

Transformer architecture tailored specifically for tabular data is presented, not only achieving

good performance but also retains a high degree of explain ability. The model encodes both

continuous and categorical features, alongside their respective names, and feed them into an

enhanced Transformer structure enriched with Scaled Exponential Linear Unit activation.

Through rigorous experimentation, our model not only outperforms classical algorithms and

similar Transformer-based counterparts, but also are comparable to the performance of gradient

boosting tree models.

Keywords: SELU, Tabular Data, Transformer, Deep Learning, Embedding.

1. Introduction

Tabular data is an essential foundation across diverse fields, prominently in critical domains like

healthcare, factory settings, advertising, and finance. Its inherent structure streamlines various benefits,

such as the efficient storage, retrieval, and analysis of multifaceted information. Often employed in

regression and classification tasks, tabular data predicts categorical or numerical outcomes based on

data rows. This seemingly straightforward process can yield valuable and critical insights for

professionals in various sectors, shaping informed decisions.

While for classification and regression tasks involving tabular data, the landscape has been

predominantly shaped by models rooted in gradient tree boosting techniques since 2016. This dominance

primarily stems from their robustness and efficient training times. Exemplified by well-known

implementations like XGBoost, LightGBM, and CatBoost, these models, derived from the gradient

boosting methodology, form a pivotal aspect of the machine learning field [1-4]. In machine learning

competitions, gradient boosting tree models are particularly prevalent due to their capability to achieve

exceptional performance when the hyper parameters are properly tuned.

Another facet of machine learning consists of those traditional algorithms, excelling in their

simplicity, speed, and resource efficiency. Notable examples include Logistic Regression, Support

Vector Machines (SVM), and k-nearest neighbours. excels at its simplicity, speed. They are frequently

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

81

employed in sectors such as manufacturing, healthcare, and settings where prediction accuracy is not

the goal, but the prediction speed is of paramount importance and computational resources are valued

assets.

As the tasks surrounding tabular data is dominate by the traditional and gradient boosting tree

machine learning algorithms, the realm of deep learning has striven to bridge the gap in performance

for tasks around tabular data, concurrently. To begin with, the Multilayer Perceptron (MLP) model was

served as a baseline. Then, various deep learning architectures tailored to tabular data have been

formulated, novel models have drawn inspiration from diverse fields; for instance, the adoption of

ResNet-like architectures from computer vision and the Transformer architectures from natural language

processing [5, 6].

In this paper, we introduce a model that attains prediction accuracy comparable to boosting tree

algorithms while maintaining feature interpretability. Achieving this synergy involves encoding

continuous features, embedding categorical names, and their respective features. These processed

features are then directed injected into a modified Transformer module for prediction. Our adapted

Transformer module is meticulously designed to cater to the nuances of tabular data. Given tabular

data’s inherent sparsity and the presence of negative values, specific modifications have been

implemented. Also, this customized Transformer module features a solitary layer of encoder and

decoder. Moreover, the combination of ReLU and layer normalization layers is replaced with an SELU

activation layer, effectively preserving the latent information [7].

Furthermore, the specially crafted embedding layer serves the dual purpose of encoding feature

names and category names, thereby revealing the intricate interconnections that exist between these

categories and features. With the growing emphasis on safeguarding the privacy of personal and

business data, approaches of withholding the disclosure of actual feature or category names and

replacing them with pseudo-labelled character representations are being applied, as demonstrated in the

recent Kaggle ICR competition. The interpretability provided by the embedding layer not only addresses

this challenge of anonymity but also contributes to a more thorough comprehension of the intricate

relationships between features and categories within specialized datasets, thereby enhancing their

overall interpretability.

Finally, in literature review section, related papers are researched and discussed. In the model section,

the structure and design of model has been explained. In experiment section, experiment on various

datasets is being conducted and the result of our model are being compared to various existing models.

In Feature interpretability section, the unique property of our model that allows feature and category

interpretability is introduced. Finally, in conclusion section, the result and conclusion of this paper is

presented.

2. Literature Review

The primary attention for related paper resides on the models which originated from the Transformer

architecture, as it serves as the foundational architecture underlying our work.

Originating as a solution for NLP translation tasks, the Transformer’s core structure encompasses

encoder and decoder layers comprising self-attention mechanisms and feedforward neural networks

(FFNNs). After the introduction of Transformer, it quickly gains it’s popularity, and the swift

proliferation of the Transformer’s popularity in the NLP domain has permeated the broader landscape

of deep learning. Notably, computer vision tasks have given rise to variations of Transformer structure,

such as the Vision Transformer (ViT) [8]. In alignment with this trend, the field of tabular data analysis

has witnessed the emergence of various adaptations of the Transformer.

When Transformer first emerges, model with simple adaptation that only involves modification of

input data that allows the input data to be fed into transformer architecture is introduced. The FT-

Transformer employs a straightforward yet effective approach [9]. It starts by tokenizing and embedding

the categorical features. These embeddings are then combined with the continuous features, which have

been processed through a dense layer. This approach enables smooth integration of input features into

the Transformer architecture. On the other hand, the Tab-Transformer adopts an approach reminiscent

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

82

of wide and deep models [10]. It utilizes embeddings to process categorical features, which are

subsequently fed into a Transformer layer. At the final dense layer, these embedded representations are

combined with the continuous features to form a prediction. These adaptations represent instances of

simplistic yet impactful integration of the Transformer model within the tabular data context.

Notably, a subset of models further augments the fundamental Transformer architecture, yielding

considerable enhancements in tabular data tasks. For instance, the SAINT model incorporates self-

attention mechanisms from Transformers while introducing inter-sample attention, effectively capturing

row-wise relationships and used neighbour-based classification for final prediction [11]. ExcelFormer

amalgamates Transformer attention mechanisms with FFNNs, proposing AiuM and DiaM modules that

facilitate feature representation updates and interactions [12]. TransTab, which shares its lineage with

the Transformer architecture, accommodates variable column tables, thus accommodating pre training

and transfer learning [13]. Finally, TabPFN, gaining traction in recent Kaggle competitions, harnesses

the power of synthetic data and prior data fitting to pre train Transformer-like models, showcasing

prowess particularly on small datasets [14].

While the aforementioned models manifest commendable utility, our research endeavours unveil yet

another innovative adaptation of the Transformer model tailored to tasks in the tabular domain. Our

model is meticulously crafted to address the intricacies and challenges inherent in this context. By

modifying the input features to a more favoured representation and feeding it into the modified

transformer architecture, where ReLU and layer norm are replaced with SELU activation, for better

handling of tabular data.

3. The Model

The model is constructed upon the Transformer architecture, and we have adapted this architecture to

make it more suitable for addressing classification and regression problems involving tabular data. The

overall model architecture is structured as follows: (1) Input processing layers, (2) Transformer-like

layers, and (3) Dense layer. A detailed model architecture is shown in Figure 1.

Figure 1. The detailed model’s architecture.

3.1. Input Processing Layers

The first layer before the transformer like structures are the input processing layer. Our model treats any

tabular data as decomposition of two elements: categorical element and numerical element. The

separation of categorical element and numerical element is driven by its inherent differences. The

numerical element encapsulates a continuous range of values, while the categorical element is discrete

in natural and lack of mathematical meanings. Additionally, in this paper, categorical elements undergo

a direct tokenization and processing through an embedding layer, which is similar to natural language

processing tasks, where a unique vector dimension of 64 has been trained to represent each category. In

contrast, to align the numerical element to the categorical vector dimension of 64, a modified positional

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

83

encoding is used, wherein the numerical value itself is adopted as the positional parameter. This

approach ensures that each encoded value preserves the same numerical meaning from the input, while

simultaneously exhibiting variations across different instances.

3.1.1. Categorical elements. A categorical element can be categorical features, binary features, and

column names. An embedding matrix is created with size of categorical elements×64. Each categorical

element is tokenized and matched to a corresponding row of the embedding matrix to generate a

categorical feature embedding vector of size 64.

3.1.2. Numerical elements. The numerical element is any continuous features. A Gaussian noise with

standard deviation of 0.2 is first been applied to each numerical element mimicking noise in the datasets

and provide more augmentation, so that the model is more robust. Then, to allow continuous features

match the shape of categorical feature embedding, the disturbed numerical element has been feed to

positional encoding. Since numerical element itself have an underlying aspect of position and we need

to expand the numerical element to the same shape of categorical feature embedding, with each position

still holds the information of the original data but varies for different position of the vector. The modified

positional encoding is as follows:

 𝑷𝒆(𝒗𝒂𝒍𝒖𝒆, 𝟐𝒊) = 𝑺𝒊𝒏 (
𝒗𝒂𝒍𝒖𝒆

𝟏𝟎𝟎𝟎

𝟐𝒊
𝒅𝒎𝒐𝒅𝒆𝒍

) 𝒂𝒏𝒅 𝑷𝒆(𝒗𝒂𝒍𝒖𝒆, 𝟐𝒊 + 𝟏) = 𝑺𝒊𝒏 (
𝒗𝒂𝒍𝒖𝒆

𝟏𝟎𝟎𝟎

𝟐𝒊+ 𝟏
𝒅𝒎𝒐𝒅𝒆𝒍

) (1)

Finally, the embedded categorical column names and numerical column names are being added to

the corresponding categorical or numerical vectors. The categorical or numerical vectors are

concatenated to form the final input to the transformer-like layers.

3.2. Transformer-like Layers

To tailor the Transformer architecture to the characteristics of Tabular data, several modifications are

applied to the architecture.

3.2.1. Transformers The original implementation of Transformer [13] consists of an encoder and

decoder, each composed of several identical layers. Each layer consists of a multi-head self-attention

layer followed by a feed-forward layer. Additionally, layer normalization and residual connections are

used to stabilize training.

Self-attention is a mechanism in the Transformer architecture that enables each position in a sequence

to attend to other positions, capturing dependencies between different elements in the sequence.

Specifically, a self-attention layer consists of three components: Key 𝐊  ∈ 𝐑𝐦 ×𝐤, Query 𝐐 ∈ 𝐑𝐦×𝐤,

and Value 𝐕 ∈ 𝐑𝐦×𝐯. Each component is being applied to the input. Query and Key are multiplied to

produce attention scores, which are used to compute a weighted sum of Values. Mathematically, for a

sequence of input vectors X, the self-attention operation can be expressed as:

 Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

(𝑑𝑘)
1
2

) 𝑉 (2)

Here, Q, K, and V are the transformed Query, Key, and Value matrices, and 𝐝𝐤 is the dimension of

the Key vectors. The softmax function normalizes the attention scores, determining how much each

position contributes to the final output.

In practice, when we implement this structure on tabular data, the attention between features can then

be captured and applied to the input features to determine the final classification target.

To tailor the Transformer architecture to the characteristics of Tabular data, this paper has embraced

the principle of Occam’s Razor, advocating for minimal unnecessary multiplication of entities. As a

result, we have streamlined the Transformer’s architecture to have only one encoder and one decoder

layer. Furthermore, we have excluded the masked layer from the multi-head attention within the decoder

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

84

layer. While this masked layer is crucial for preventing the model from accessing future information in

Natural Language Processing (NLP) tasks, its absence is justified for Tabular data, where there’s no

inherent ordering. Also, in the context of training with tabular data, the presence of masked layer

inadvertently restricts preceding data from accessing the subsequent data. Consequently, earlier data

receive fewer contextual information, leading to potentially compromised learning outcomes. Hence,

the masked layer is removed in the decoder module. Lastly, the combinations of ReLU and layer

normalization have been replaced with a SELU activation layer.

3.2.2. SELU Here, we present the rationale behind the decision to substitute the combination of

normalization layer and ReLU activation with SELU activation function in our proposed neural network

architecture. The substitution is motivated by two key reasons.

⚫ Addressing the “Dying ReLU” problem

The Rectified Linear Unit (ReLU) activation function, mathematically defined as

 𝒇(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙). (3)

is commonly used due to its simplicity and effectiveness in many machine learning tasks. However,

ReLU suffers from the “Dying ReLU” problem, where the problem arises when certain neurons become

inactive, consistently producing zero outputs. Given that tabular data inherently differs from computer

vision (CV) and natural language processing (NLP) tasks, where ReLU has found widespread adoption,

tabular data often contains a substantial number of negative values. The abundance of negative values

will inevitably worsen the dying ReLU problem.

Additionally, the architecture proposed, condensed to a single layer of encoder and decoder, is

particularly susceptible to the Dying ReLU problem, since there exists less neurons. The excessive

presence of negative values in tabular data, coupled with the reduced model depth, would lead to a

significant loss of latent information during training. To prevent this issue and retain the valuable

information present in negative values, we opted to eliminate the use of ReLU activations.

⚫ Leveraging SELU for Self-Normalization:

The SELU activation function (Scaled Exponential Linear Units) are activation function that induces

self-normalization. Mathematically expressed as:

 𝒇(𝒙) = {
𝝀𝒙 𝒊𝒇 𝒙 > 𝟎

𝝀𝜶(𝒆𝒙 − 𝟏)𝒊𝒇𝒙 ≤ 𝟎
 𝒇𝒐𝒓 𝝀 ≈ 𝟏. 𝟎𝟓𝟎𝟕, 𝜶 ≈ 𝟏. 𝟔𝟕𝟑𝟑. (4)

SELU activations are equipped with self-normalization property, where the input features are been

pushed to zero mean and unit variance. Unlike ReLU, SELU retains both positive and negative values

within the data, affectively avoiding the Dying ReLU problem. Furthermore, our decision to utilize

SELU activations is bolstered by findings from the original SELU paper, which indicate that SELU

outperforms layer normalization used in Transformer architecture and batch normalization, especially

when dealing with small perturbations and high variances.

3.3. Final dense layer

The final layer serves as an extractor, retrieving pertinent information from the latent output of the

transformer like structure. For Regression tasks, a dense layer is used. For classification tasks, a SoftMax

activation is employed after the dense layer, creating an output size that corresponds precisely to the

dimensions of the target data.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

85

4. Experiments

4.1. Data

We evaluate our model and baseline models on 2 publicly available classification datasets from UCI

repository (Dua and Graff 2017) and Kaggle (Kaggle, Inc 2017). For each dataset, the data is divided

into training and testing set, with a split of 80%/20%. The Categorical data is processed with Label

encoding. For our model, the categorical column name and continuous column name are being extracted

and Label encoded. For our model, the input data are continuous features, label encoded categorical

features, continuous column names, and categorical column names. The description of datasets are

shown in table 1.

Table 1. Datasets description.

Dataset abbreviation Samples Features

Adult Census Income AC 48842 14

Bank Marketing BM 45211 17

4.2. Model Setup

For each dataset, our model and five baseline model are trained and evaluated. Including Logistic

Regression, Random Forest Classifier, MLP Classifier, XGBoost Classifier, and tab transformer. The

tab transformer is built with TensorFlow, XGBoost Classifier is obtained from XGBoost package, and

all other models are taken from Sklearn module. The hyper parameters are not tuned. For our model, we

set a batch size of 64, learning rate of 0.005, with an exponential decay of learning rate with a decay

step of 20 and decay rate of 0.9. The model is then trained for 3 epochs for each dataset. Then, each

model has been trained and evaluated for 10 times, the subsequent predicted results are being evaluated

against the testing target by accuracy rating for classification task. The resulting evaluations are shown

in table 2, where the datasets are been mentioned with their abbreviations. The model proposed in this

paper is highlighted in grey, and the datasets with the best accuracy score has been coloured with red.

Table 2. Model Performance Comparison

Model AC BM

Our Model 0.867 ± 0.004 0.831 ± 0.006

Logistic Regression 0.807 ± 0.005 0.790 ± 0.007

Random Forest 0.857 ± 0.005 0.847 ± 0.005

XGBoost 0.869 ± 0.004 0.853 ± 0.007

Multi-layer Perception 0.730 ± 0.119 0.753 ± 0.041

Tab-Transformer 0.845 ± 0.002 0.815 ± 0.007

In table 2, when compared with traditional machine learning models, our model consistently

outperforms their score. While compared to the similar Neural Network models, our model surpasses

the baseline Multi-layer Perception model by a drastic 10%. Comparing to the Tab-transformer model,

which is similar to ours’s as it inherent it’s structure from Transformer, our model still consistently

outperforms Tab-transformer by an average of 2% for classification tasks. Even when compared with

GBDT boosting tree models, such as XGBoost, we only lose merely by 0.2% of accuracy, and the gap

is narrowing as the dataset’s size increasing.

4.3. Ablation Experiments

The performance comparison of our model in the cases of with and without SELU activation are

presented in table 3.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

86

Table 3. Model Performance Comparison between our model with and without SELU

Model AC BM

Our Model with SELU 0.867 ± 0.004 0.831 ± 0.006

Our Model without SELU 0.862 ± 0.004 0.827 ± 0.006

As anticipated, the incorporation of the SELU activation function effectively tackled the issue of

dying ReLU units, thereby retaining a greater amount of latent information and consistently enhancing

the final prediction by 0.4%.

In summary, aligning all aspects of the SELU activation layer shows a clear advantage over the

combination of layer normalization and ReLU layers, which also further simplified our overall

architecture. This strategic choice aims to enhance training effectiveness and information retention,

thereby improving the model performance on Tabular data.

5. Feature Interpretability

To visually see the Interpretability of the trained embedding layer, a PCA analysis is applied to the

embedding layer of the model trained on the adult capital income dataset. In this analysis, the embedding

vectors of dimension 64 are condensed into x and y positions.

Figure 2. The PCA analysis of embedding vector

of category under education column.

 Figure 3. The PCA analysis of

embedding vector of columns.

Figure 2 illustrates the PCA analysis of embedding of education categories, revealing a distinct trend

between the label position and the level of education. The labels range from preschool, the lowest

education level (upper left), to Doctorate, the highest level of education (lower right). Other categories

also exist similar relationships between its position and its underlying meaning.

Figure 3 showcases another PCA analysis of embedding of feature names. This analysis provides

clear indications of relationships, such as the connection between “education-num” and education, as

well as the relationship between “capital gain” and education, race, and marital status.

Indeed, the trained model’s embeddings unveil hidden relationships between features. Even when

the feature and category names are concealed, these results can offer the user an intuitive understanding

of the datasets.

6. Conclusion

In this paper, a novel model rooting from transformer model adapted specifically to tabular data is

presented. The model consists of three parts, input processing part, Transformer-like part, and a final

dense layer. For the transformer-like part of the model, all combination of ReLU and layer normalization

are being replaced with SELU activation, and the attention mask are being removed to supply the model

with more latent information. Additionally, a specially designed input processing layer are used to

handle the tabular data. Empirical experiments have consistently demonstrated that the model

outperforms traditional machine learning algorithms. Even when compared to similar Transformer-

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

87

based networks, our model exhibits superior performance. Notably, the model also showcases

performance comparable to the state-of-the-art gradient boosting tree models. To further validate our

approach, an ablation experiments is conducted. In the experiments, our model consistently

outperformed other cases where SELU activation was not used, thus affirming the correctness and

effectiveness of our modifications in the Transformer part. Furthermore, one distinctive feature of our

model is its ability to offer enhanced interpretability for any given data. The embedding layer within the

trained model unveils underlying relationships within categorical features, and continuous and category

feature names. This capability proves valuable when categorical and feature names are anonymized or

when users are unfamiliar with the domain from which the data originates. Finally, for future work,

further adaptation or modification of the model to accommodate small-sized datasets could be explored.

References

[1] Chen T and Guestrin C 2016 XGBoost: A scalable tree boosting system Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining 785-94

[2] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu TY 2017 Lightgbm: A highly

efficient gradient boosting decision tree Advances in neural information processing systems,

30

[3] Prokhorenkova L, Gusev G, Vorobev A, Dorogush A and Gulin A 2018 CatBoost: unbiased

boosting with categorical features Advances in neural information processing systems 31

[4] Friedman J H 2001 Greedy function approximation: a gradient boosting machine Annals of

statistics 1189-232

[5] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition Proceedings

of the IEEE conference on computer vision and pattern recognition 770-8.

[6] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł and Polosukhin I

2017 Attention is all you need Advances in neural information processing systems 30

[7] Klambauer G, Unterthiner T, Mayr A and Hochreiter S 2017 Self-normalizing neural networks

Advances in neural information processing systems 30

[8] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M,

Minderer M, Heigold G, Gelly S et al 2020 An image is worth 16x16 words: Transformers for

image recognition at scale arXiv preprint arXiv:2010.11929

[9] Gorishniy Y, Rubachev I, Khrulkov V and Babenko A 2021 Revisiting deep learning models for

tabular data Advances in Neural Information Processing Systems 34 18932-43

[10] Huang X, Khetan A, Cvitkovic M and Karnin Z 2020 Tabtransformer: Tabular data modeling

using contextual embeddings arXiv preprint arXiv:2012.06678

[11] Somepalli G, Goldblum M, Schwarzschild A, Bruss CB and Goldstein T 2021 Saint: Improved

neural networks for tabular data via row attention and contrastive pre-training arXiv preprint

arXiv:2106.01342

[12] Chen J, Yan J, Chen DZ and Wu J 2023 ExcelFormer: A Neural Network Surpassing GBDTs on

Tabular Data arXiv preprint arXiv:2301.02819

[13] Wang Z and Sun J 2022 Transtab: Learning transferable tabular transformers across table

Advances in Neural Information Processing Systems 35 2902-15

[14] Hollmann N, Müller S, Eggensperger K and Hutter F 2022 Tabpfn: A transformer that solves

small tabular classification problems in a second arXiv preprint arXiv:2207.01848

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241174

88

