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Abstract. Style transfer aims to alter the visual aesthetic of images by giving them a different 

artistic style. With the rapid advancement of deep learning, style transfer tasks have made 

significant progress, introducing new perspectives and innovative potentials within the realm of 

image processing. This study seeks to explore style transfer methods based on Cycle-Consistent 

Adversarial Networks (CycleGAN), enabling contemporary landscape photographs to take on 

the form of ancient Chinese paintings. This endeavor opens up fresh possibilities for artistic 

creation, image editing and design applications. The research encompasses an exposition of the 

process involved in constructing the CycleGAN model, alongside presenting research findings. 

Furthermore, it delves into the discussion of crucial techniques employed during the model 

training process, specifically the utilization of cycle consistency loss in configuring the loss 

functions. Lastly, this study ventures into future research directions, including strategies for 

further enhancing the performance and expanding the application scope of this style transfer 

model. 
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1.  Introduction 

For millennia, individuals have been captivated by the realm of visual arts, wherein artists have crafted 

numerous awe-inspiring creations that have endured through time [1]. Historically, the process of 

reimagining images in specific artistic styles demanded profound artistic skills and consumed extensive 

periods. However, since the mid-1990s, the theoretical underpinnings of these remarkable artistic 

endeavors have not only engrossed the attention of artists but also garnered the interest of numerous 

computer science researchers. This has catalyzed an abundance of research and technological 

exploration focused on the automated transformation of real images into works of art [2]. 

In the early stages of style transfer, the prevalent approach involved the creation of dedicated models 

tailored to specific stylistic images. However, this method had a substantial limitation in that a single 

program could only perform style transfer for a particular style or scene, resulting in significant 

constraints in practical applications [3]. 

In recent years, the advancements in deep learning have opened up numerous novel possibilities in 

the realm of style transfer. Gatys and his colleagues achieved successful style transfer by employing 

convolutional neural networks to extract features related to image content and style [4]. Subsequently, 

methods based on Generative Adversarial Networks (GANs) not only achieved remarkable success in 

tasks like image generation and transformation but also began to find applications in style transfer tasks 
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[5]. A pivotal milestone came with the emergence of Cycle-Consistent Adversarial Networks 

(CycleGAN), which not only expanded the scope of GANs applications but also triggered a 

revolutionary transformation within the field of style transfer [6]. 

The primary objective of this study is to transform contemporary landscape photographs into the 

style of ancient Chinese paintings. However, traditional style transfer methods face substantial 

challenges in achieving this goal due to the stark disparity in content between ancient Chinese paintings, 

which often depict Chinese landscapes and figures, and modern landscape photographs, which 

predominantly feature global natural scenery and urban streetscapes. Traditional methods necessitate 

strict content matching, adding complexity to the data preparation process [7]. 

In contrast, the CycleGAN model presents a notable advantage in that it does not require content 

matching during the data preparation stage. This means it can utilize modern photos and ancient 

paintings with varying scenes and themes without the need for manually creating paired datasets. This 

significantly reduces the complexity of data preparation and diminishes the reliance on content matching, 

thereby broadening the spectrum of style transfer possibilities. 

CycleGAN, being founded on GANs, possesses the capability to generate high-quality stylized 

images, resulting in transformation outcomes that are more lifelike and visually appealing. In this study, 

the achievement of style transfer between modern photographs and ancient Chinese paintings will be 

realized through the training of the CycleGAN model. 

2.  Method 

2.1.  Dataset 

The dataset used in this project was acquired from the Kaggle website, consisting of modern images 

(train: test = 6287: 751) and ancient images (train: test = 562: 263), all in jpg format [8]. The modern-

style images predominantly comprise landscape photographs captured with cameras, encompassing 

various natural sceneries and urban landscapes. In contrast, the ancient-style images basically 

encompass a wide range of common ancient Chinese paintings, including diverse forms such as ink 

painting, gongbi painting, freehand painting, border painting, and printmaking. The primary subjects 

within the paintings encompass figures, animals, landscapes, etc. Representative images are 

demonstrated in Figure 1. 

The diversity of image styles within the dataset is crucial for training the model to adapt to various 

themes and scenes, which enhances the model's generalization capabilities, enabling it to excel in the 

task of style transformation for modern photos. 

 

Figure 1. Examples of modern pictures (upper) and ancient Chinese paintings (lower) [8]. 
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In the data preprocessing phase, the initial step comprised resizing all images to dimensions of 

256x256 pixels. Subsequently, data augmentation was applied with a 50% probability of random 

flipping to enhance dataset diversity. Following this, the images underwent normalization to ensure 

uniformity in input data, thereby enhancing the stability of the model training process. Lastly, the image 

data was converted into tensor format. 

2.2.  Architecture of CycleGAN 

CycleGAN is an unsupervised deep learning model, with its fundamental concept revolving around the 

utilization of two sets of neural networks: two Generators and two Discriminators, to facilitate style 

transformation between images [6,9]. The primary role of the Generator is to transfer the style of one 

image into another, while the Discriminator's objective is to discern between generated images and 

authentic ones. 

The functionality implemented involves taking an input image into the Generator, where the 

Generator strives to create a new image that visually aligns with the target style. Through training, the 

goal is to generate images of sufficient realism, making it as challenging as possible for the 

Discriminator to distinguish them from real images. The Discriminator, through its training, becomes 

more adept at distinguishing between generated images and original ones, thereby encouraging the 

Generator to produce higher-quality images. Throughout the training process, these two components 

collaborate to achieve images’ style transfer goal [10]. 

2.2.1.  Architecture of Discriminator 

In the construction of the Discriminator, a five-layer convolutional neural network architecture was 

employed to determine whether an input image was generated by the Generator or originated from real 

images. The input image dimension was set at 3x256x256 pixels. The first four convolutional layers 

were dedicated to feature extraction, with each layer progressively increasing the number of channels, 

following a pattern of features = [64, 128, 256, 512]. This augmentation in network depth aimed to 

enhance the receptive field and feature extraction capacity of the model. With each added layer, the 

network could learn higher-level abstract features, facilitating its ability to better discern input images. 

The final convolutional layer served as the output layer, producing a single-channel result. During 

the forward propagation process of the model, the resulting feature values were mapped to the range 

[0,1] using a Sigmoid function, rendering the final output of the discriminator in the form of a probability 

distribution, allowing for binary classification. 

Within the construction of the convolutional layers, Instance Normalization was incorporated. Its 

purpose lies in ensuring that the mean and variance within each channel closely approximate the desired 

normalized values. This normalization process fosters greater consistency in feature distributions across 

different channels, thereby enhancing network training stability and generalization capability. 

Simultaneously, the LeakyReLU activation function was employed to mitigate gradient vanishing 

issues. Given that the Discriminator plays a role in providing information to aid the Generator's 

improvement, LeakyReLU activation was set to ensure that gradients do not vanish even when the input 

values are negative. This, in turn, bolsters the stability of model training. 

2.2.2.  Architecture of Generator 

The Generator's primary structure comprises convolutional layers for downsampling, residual layers, 

and convolutional layers for upsampling, facilitating the transformation of an input image with 

dimensions of 3x256x256 pixels into an image with an altered style. 

Beginning with the upsampling layers, feature extraction is initiated by progressively increasing the 

number of channels to capture higher-level features. The construction of the convolutional layers in this 

phase also integrates Instance Normalization and ReLU activation functions. Subsequently, the 

network's depth is augmented through the incorporation of residual blocks, aiding the model in learning 

more intricate feature representations and generating more realistic images. 
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The inclusion of residual blocks is essential to mitigate potential gradient vanishing issues that can 

arise as the network's depth increases, thereby facilitating smoother convergence. Each residual layer is 

comprised of two convolutional layers, which serve to perform nonlinear feature transformations and 

identity mapping. This design preserves and enhances fine-grained image details, alleviating 

information loss associated with deep networks. 

Following this, the upsampling phase employs symmetrically designed transposed convolutions, 

mirroring the structure of the downsampling section. This gradually increases the spatial dimensions of 

the feature maps, enabling the generation of higher-resolution images. The final convolutional layer 

configuration is tasked with mapping the features back to the original image channel count, thus 

restoring the spatial dimensions of the generated image to ensure it matches the resolution of the original 

image. 

2.2.3.  Loss Function and Hyperparameter Setting 

During the backward propagation process in model training, distinct loss functions were assigned to the 

Discriminator and Generator. 

For the Discriminator's loss function configuration, the process begins by generating images using 

the Generator. Subsequently, both the original and generated images are individually assessed by the 

Discriminator to produce classification outcomes. The desired Discriminator performance is centered 

on accurate classification, aiming for a classification result as close to 1 as possible for input original 

images and as close to 0 as possible for input generated images. In this study, Mean Squared Error (MSE) 

is employed to quantify the loss, and the Discriminator's evaluations for both images are combined to 

derive the loss value for that specific Discriminator. 

As for the configuration of the Generator's loss function, it involves placing the images generated by 

the Generator into the Discriminator for assessment. The goal is to ensure that the images generated by 

the Generator (i.e., those subjected to style transformation) closely resemble the original images from 

the target style dataset. In other words, it aims for the Discriminator's evaluation of generated images to 

be as close to 1 as possible, indicating similarity to the target style. Similarly, Mean Squared Error (MSE) 

is employed to quantify the loss in this context. 

As the model undergoes training, the loss values progressively decrease. This can lead the Generator 

to prioritize generating images that confuse the Discriminator, potentially resulting in the loss of the 

content from the input images. However, in the context of style transfer tasks, the expectation is for the 

Generator to preserve the original image content while only altering the image style. To achieve this, 

additional loss measures are introduced to assess the effectiveness of the Generator, specifically the 

cycle-consistency loss [6]. 

The cycle-consistency loss evaluates the difference between the image transformed in terms of style 

and then transformed back to the original style, measuring the gap between the resulting image after two 

style transformations and the original image [6]. The objective for the Generator is to focus on style 

transformation, aiming for the generated image to closely resemble the original image after this dual 

transformation. 

Based on the measurement of cycle-consistency loss, another set of Generator and Discriminator 

models is employed to perform style transformation for another style. The evaluation approach for this 

set of models aligns with the previous set's evaluation method. In this study, L1 loss is employed to 

quantify the cycle-consistency loss. 

Ultimately, for assessing the loss of the Discriminator, the average value of the two Discriminators 

is utilized. Regarding the loss of the two Generators, due to the inclusion of cycle-consistency loss, a 

parameter named LAMBDA_CYCLE is introduced to balance the proportions of the two types of losses 

[6]. In this study, LAMBDA_CYCLE is set to 10, defining the weight of the cycle-consistency loss in 

relation to other losses. 

During the model optimization process, Adam optimizers are employed for both the Discriminator 

and Generator to enhance model performance. Through iterative experimentation, the learning rate is 
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fine-tuned and eventually set at 3e-4, aiming to achieve improved training outcomes and style transfer 

results. 

3.  Result 

In this chapter, graphs illustrating the loss values for the Discriminator and Generator are plotted. The 

iterative outputs of target images at each epoch during the training process are showcased. Additionally, 

the results of the test images are presented, featuring a side-by-side comparison between the original 

image and the generated image for visual evaluation. All experiments are conducted on Google Colab 

with V100 GPU, using PyTorch framework. 

3.1.  Performance 

Figure 2 illustrates the variation in Generator loss values during the training process. The losses are 

computed on an epoch-by-epoch basis, with the average loss value per epoch being plotted. 

 

Figure 2. Loss curve of the generator (Figure Credits: Original). 

Figure 3 illustrates the variation in Discriminator loss values during the training process. The losses 

are computed on an epoch-by-epoch basis, with the average loss value per epoch being plotted. 

 

Figure 3. Loss curve of the discriminator (Figure Credits: Original). 
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The variation in model loss values reveals several insights. In the early stages of training, the 

Generator loss (G_loss), which assesses the effectiveness of style transfer by the generator, starts 

relatively high. By the 10th epoch, G_loss decreases from its initial value of 10.53 to 3.53. 

On the other hand, the Discriminator loss (D_loss), which measures its ability to distinguish between 

original and generated images, exhibits an overall decreasing trend during training, with occasional 

fluctuations and temporary increases. This behavior is primarily attributed to the growing capability of 

the Generator to create images that confound the Discriminator, making it difficult to differentiate 

between original and generated images. 

However, as training progresses, the Discriminator continues to enhance its capacity to recognize 

generated images, leading to a later decrease in D_loss. Simultaneously, the reduction in D_loss 

encourages the Generator to produce higher-quality and more detailed images, resulting in improved 

training outcomes. 

3.2.  Visualization 

Figure 4 displays the output of style transfer results on target images at each epoch during the training 

process, serving as a means to monitor the effectiveness of the model's training. 

 

Figure 4. Intermediate result of transferred images (Figure Credit: Original). 

It can be observed that at epoch = 1, the image lacks discernible content, showing only basic contour 

information, and the ancient style exhibits primarily basic colors. At epoch = 2, the basic shape of the 

mountains in the image starts to emerge, and there is more diversity in the colors associated with the 

ancient style, although clarity remains limited. As the model continues training, both the colors and 

details of the mountain image undergo changes. At epoch = 7, the essential features of the mountain 

landscape become more apparent, and it becomes discernible that the image depicts mountains and a 

seascape, with the ancient style also becoming more evident. In the subsequent training process, details 

become increasingly clear, and the integration with elements of the ancient style improves. 

Figure 5 displays the style transfer results, showcasing the model's final performance by comparing 

the original images with the test output images. 

The generated images effectively maintain the content of the original images, ensuring that the 

intended content remains unchanged. The generator excels in performing style transfers, whether applied 

to natural landscape photos or urban street scenes. In conclusion, the generated images exhibit the artistic 

style of ancient Chinese artworks. 
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Figure 5. Visualization result (Figure Credit: Original). 

4.  Conclusion 

Through a comprehensive analysis of intermediate model outputs, an observation of model loss curve 

variations, and multiple parameter adjustments, favorable model performance was achieved in this 

experiment. Different learning rates were experimented with, and the one resulting in the best model 

performance was selected. Additionally, the LAMBDA_CYCLE parameter was fine-tuned multiple 

times, ultimately settling on a value of 10, which produced the most desirable image results while 

preserving the content of the original images. During the experimental process, real-time monitoring of 

the model training output guided the selection of an appropriate number of epochs to stop the model 

training, ultimately settling on 10 epochs. 

This study has demonstrated style transfer between modern photographs and Chinese ancient 

paintings using CycleGAN, yielding promising results. The creativity and potential applications of this 

approach warrant further exploration. There is room for further improvement in model performance, 

which can be achieved by experimenting with different loss functions and altering network architectures. 

Additionally, continued exploration of other style transfer tasks can enhance the model's generalization 

capabilities. 
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