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Abstract. This paper embarks on a meticulous comparative exploration of two venerable 

algorithms often invoked in multi-armed bandit problems: the Kullback-Leibler Upper 

Confidence Bound (KL-UCB) and the generic Upper Confidence Bound (UCB) algorithms. 

Initially, a comprehensive discourse is presented, elucidating the definition, evolution, and real-

world applications of both algorithms. The crux of the study then shifts to a side-by-side 

comparison, weighing the regret performance and time complexities when applied to a 

quintessential movie rating dataset. In the trenches of practical implementations, addressing 

multi-armed bandit problems invariably demands extensive training. Consequently, even 

seemingly minor variations in algorithmic complexity can usher in pronounced differences in 

computational durations and resource utilization. This inherent intricacy prompts introspection: 

Is the potency of a given algorithm in addressing diverse practical quandaries commensurate 

with its inherent complexity.  By juxtaposing the KL-UCB and UCB algorithms, this study not 

only highlights their relative merits and demerits but also furnishes insights that could serve as 

catalysts for further refinement and optimization. The overarching aim is to cultivate an informed 

perspective, guiding practitioners in choosing or fine-tuning algorithms tailored to specific 

applications without incurring undue computational overheads. 

Keywords: Multi-armed bandit, algorithm Comparison, algorithm complexity, regret 

performance, algorithm improvements. 

1.  Introduction 

With the rise of social media and an exponential growth in mobile app users, the volume of data 

generated today is staggering. In our increasingly digital world, when data is harnessed ethically and 

judiciously, it can be pivotal for predictive analytics and enabling tailored recommendations. Within the 

spheres of data analysis and utility, the multi-armed bandit problem stands out prominently. As a 

cornerstone of classical reinforcement learning, it fine-tunes decision-making in uncertain scenarios, 

playing a crucial role in recommendation systems, clinical trials, ad placements, and numerous other 

domains. This paper zeroes in on two quintessential algorithms associated with the multi-armed bandit 

problem: the Upper Confidence Bound algorithm and the Kullback-Leibler Upper Confidence Bound 

algorithm. 

Auer et al. (2002) were the pioneers behind the generic Upper Confidence Bound (UCB) algorithm 

[1], an optimistic approach crafted to minimize regret by favoring exploration of arms with potentially 
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high rewards. Seeking to refine the assumptions concerning the distribution of rewards, Garivier and 

Cappé (2011) subsequently introduced the Kullback-Leibler Upper Confidence Bound (KL-UCB) 

algorithm [2]. This algorithm enhances the UCB by embedding the Kullback-Leibler divergence in the 

calculation of the upper confidence bound, yielding a more precise estimation of the potential reward 

for each arm. Although both algorithms have been meticulously dissected in academia, there remains a 

conspicuous absence of a side-by-side evaluation of their regret performance and inherent complexities. 

More specifically, in practical applications, an abundance of training sessions can augment their 

variance, especially when this variance is inherently negligible. This observed lacuna fuels the current 

investigation, which seeks to juxtapose these two algorithms using a representative movie rating dataset 

sourced from the Movie Lens Dataset, encompassing user ratings for films. This inquiry endeavors to 

demystify the practical behavior of the regret performance and complexities inherent to these two 

algorithms. The revelations from this research endeavor to not only augment the extant understanding 

of reinforcement learning algorithms but also offer tangible insights for future algorithmic enhancements. 

2.  Overview of Basic Theory 

The field of reinforcement learning, particularly the multi-armed bandit problem, has seen the 

development and application of various algorithms, including the Upper Confidence Bound and 

Kullback-Leibler Upper Confidence Bound algorithms. This section provides an overview of the basic 

theory underlying these algorithms, including their definitions, development, typical applications, and 

comparative analysis [3]. 

2.1.  Definition and Development 
The multi-armed bandit problem is a foundational scenario in the field of reinforcement learning. The 

name of this problem originates from a hypothetical situation: a gambler comes to a casino where there 

is a slot machine with multiple same looking arms. The gambler has certain chances to pull these arms 

and does not know the probability of winning money from each pull. How should the gambler 

strategically choose which arms to pull in order to maximize their rewards? In this hypothesis, each 

"arm" represents a distinct action, and the challenge lies in determining which arms to pull for optimizing 

overall reward attainment [4]. This necessitates the agent's ability to effectively balance between 

exploring new options and exploiting existing knowledge, thereby minimizing any potential regrets. 

To address this problem, people has developed many basic and improved strategies. The Upper 

Confidence Bound (UCB) algorithm and the Kullback-Leibler Upper Confidence Bound (KL-UCB) 

algorithm are two classic and typical algorithms of them. The UCB algorithm, introduced by Auer et al. 

(2002), is a widely recognized strategy for balancing the exploitation-exploration trade-off in the multi-

armed bandit problem. It prioritizes arms with high average rewards and high uncertainty, allowing for 

efficient exploration of the action space [5]. 

The KL-UCB algorithm, proposed by Garivier and Cappé (2011), enhances the UCB approach by 

incorporating the Kullback-Leibler divergence, a measure of the difference between two probability 

distributions. The KL-UCB algorithm has been shown to achieve better performance in terms of regret, 

a metric that quantifies the difference between the reward obtained by the algorithm and the best possible 

reward. 

2.2.  Typical Applications 
The multi-armed bandit problem and its solutions have found applications in a wide range of fields. In 

the field of machine learning, they are utilized in reinforcement learning algorithms to effectively 

manage the exploration-exploitation trade-off [6]. In computer science, they are employed in routing 

and load balancing algorithms for efficient task distribution among multiple servers. 

Specifically in the fields of 5G networks, multi-armed bandit models have demonstrated their utility 

in resource allocation, small cell planning, distributed resource management, as well as addressing 

uncertainty and competition [7]. For instance, regarding resource allocation, multi-armed bandit models 
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facilitate optimal utilization of limited spectrum and energy resources particularly under scenarios 

characterized by significant uncertainty and lack of information. 

When UCB and KL-UCB algorithms are applied to online recommendation systems aiming to 

suggest items (e.g., movies or books) based on users' past behavior, the items can be considered as arms 

of the bandit while user ratings serve as rewards. The ability of these algorithms to balance exploration 

and exploitation makes them highly suitable for this task since they can recommend both popular items 

(exploitation) and less well-known items (exploration) to discover new user preferences. 

2.3.  Introduction and Definition of UCB and KL-UCB Algorithms 
The UCB algorithm statistically estimates the average revenue of each handle through experimental 

observation. According to the central limit theorem, as the number of experiments increases, the 

statistical probability converges towards the true probability [8]. In other words, with a sufficient number 

of experiments, the average payoff approximates the true payoff. The UCB algorithm employs statistical 

averages instead of true payoffs for each arm. By considering upper bounds on confidence intervals for 

handle payoffs, arms are sorted and selected based on their highest upper bound value.    As more trials 

are conducted, the confidence interval narrows down and approaches closer to the true value. The 

following formula are utilized when setting the UCB index for arm 𝑖 at round 𝑡 − 1 . 

 UCB𝑖(𝑡 − 1) = μ̂𝑖
(𝑡 − 1) +

𝐵

2
(

4 𝑙𝑜𝑔 𝑛

𝑇𝑖(𝑡−1)
)

1/2
                              (1) 

Here, n defines the horizon, B is the difference between the maximum possible reward value and the 

minimum possible reward value. 

The statement "Choose the arm with the largest upper bound on the confidence interval" encompasses 

several implications: if an arm has a wide confidence interval (indicating uncertainty due to limited 

selection), it tends to be chosen multiple times, reflecting a riskier aspect of the algorithm.  Conversely, 

if a handle has a narrow confidence interval (suggesting frequent selection and greater certainty), arms 

with higher means are more likely to be repeatedly chosen, representing a conservative aspect of the 

algorithm [9]. 

The UCB algorithm is an optimistic algorithm, that prioritizes selecting arms based on their ranking 

according to upper bounds on confidence intervals.  Conversely, for those who adopt pessimistic and 

conservative approaches, choosing lower bounds from confidence intervals would be preferred.  

KL-UCB differs from UCB in the use of Chernoff's bound to define the confidence upper bound. 

𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑚𝑎𝑥 {μ̃ ∈ [0,1]: 𝑑(μ̂𝑖(𝑡 − 1), μ̃) ≤
𝑙𝑜𝑔 𝑓(𝑡)

𝑇𝑖(𝑡−1)
} , 

         𝑤ℎ𝑒𝑟𝑒 𝑓(𝑡) = 1 + 𝑡 𝑙𝑜𝑔2(𝑡)                 (2) 

The KL-UCB algorithm incorporated the Kullback-Leibler divergence in the calculation of the 

confidence bounds. This allows the algorithm to have a more refined measure of the uncertainty 

associated with each arm, thus potentially leading to better exploration-exploitation trade-off [10]. 

3.  Comparative Analysis of Algorithms 

The comparison will be in terms of the expected cumulative Regret an algorithm incurs until round 𝑡 , 

where𝑡 =  1, . . . , 𝑛.  Here, n defines the horizon, the total number of rounds the algorithm is used. Each 

movie genre is an arm, and user ratings are considered as the reward received when movie from a genre 

is rated by a user. 

3.1.  Time complexity of UCB algorithm and KL-UCB algorithm 

The time complexity of an algorithm refers to the computational resources needed to run it as a function 

of the size of the input. In the context of multi-armed bandit problems, this can be interpreted as the time 

required to select an arm to play based on past observations. 

The UCB algorithm's time complexity can be viewed as 𝑂(𝑛𝑇), where 𝑛 is the number of arms and 

𝑇 is the total number of rounds. This is because, in each round, the algorithm computes the upper 
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confidence bound for each arm, a process that takes 𝑂(𝑛) time. It then pulls the arm with the highest 

upper confidence bound. Since this process is repeated 'T' times, the overall time complexity becomes 

𝑂(𝑛𝑇). 

The time complexity of KL-UCB is not as straightforward as UCB's due to the computation of the 

KL-divergence. The calculation of the KL-divergence for two probability distributions involves a 

logarithmic function, which is more computationally intense than the linear calculations in UCB.  

Moreover, finding the KL-UCB index involves solving an equation that usually requires a numerical 

method such as binary search or Newton's method, each iteration taking 𝑂(𝑙𝑜𝑔 𝑇) time. Thus, for each 

arm and in each round, KL-UCB spends 𝑂(𝑙𝑜𝑔 𝑇)  time, leading to a total time complexity of 

𝑂(𝑛𝑇 𝑙𝑜𝑔 𝑇). 

3.2.  Performance comparison 

The performance of a bandit algorithm is typically evaluated by its cumulative regret, which represents 

the difference between the rewards obtained and those that would have been obtained if always choosing 

the optimal arm. Both UCB and KL-UCB demonstrate impressive performance in terms of regret, 

exhibiting sublinear growth rates that imply approaching zero average regret per round as the number 

of rounds increases. 

The regret values obtained are not the same for each experiment. As shown in Figure 1, that in most 

cases, the regret value of KL-UCB algorithm is less than the regret value of UCB algorithm. However, 

the variations of the regret value are about the same. 

  

Figure 1. Cumulative regret for 10 experiments (Photo/Picture credit: Original). 

The error bars in Figure 2 are the standard deviation of the average regret over 100 experiments for 

both the UCB and KL-UCB algorithms. It represents variability in the outcomes of our experiments. 

Although the average regret of KL-UCB is lower, indicating better performance on average, the similar 

sizes of the error bars suggest that both algorithms have comparable variability. 

 

Figure 2. Average cumulative regret for 100 experiments with error bars (Photo/Picture credit: Original). 
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Actually, both UCB and KL-UCB are designed to address the same problem and employ similar 

strategies for balancing exploitation and exploration. They both estimate the potential value of each 

action before selecting the one with the highest value. This similarity in approach could result in 

comparable variability in their performances. However, there exists a crucial distinction between them. 

The KL-UCB algorithm employs a more refined measure of uncertainty for exploration, rendering it 

more cautious and often more efficient in its exploratory actions. Consequently, this typically leads to 

lower average regret, as observed previously.  

Nevertheless, this caution does not necessarily translate into reduced performance variability since 

several factors can influence it including specific reward distributions within experiments, number of 

actions available, and total number of steps undertaken per experiment. As a result, similar levels of 

variability can be observed as indicated by comparable error bars on performance outcomes. Essentially 

speaking, although KL-UCB tends to outperform UCB on average measures, its range of performance 

outcomes remains akin to that exhibited by UCB. 

Also, when comparing the appropriately of horizon n, two algorithms show different logarithmic 

regret behavior. The figures 3, 4 and 5 represent the average cumulative regret for 1000 experiments 

with different horizons (1500, 3000, 7500). 

 

Figure 3. Average cumulative regret for 1000 experiments with horizon 3000 (Photo/Picture credit: 

Original). 

 

Figure 4. Average cumulative regret for 1000 experiments with horizon 5000 (Photo/Picture credit: 

Original). 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241221

43



 

Figure 5. Average cumulative regret for 1000 experiments with horizon 7500(Photo/Picture credit: 

Original). 

When the horizon is set to 1000, the difference between the two algorithms becomes evident. At 

horizons of 1000 and 7500, the logarithmic regret behavior is apparent for the KL-UCB Algorithm, but 

only marginally so for the UCB Algorithm. 

The KL-UCB algorithm, employing the Kullback-Leibler divergence as its exploration term, takes a 

more cautious approach to exploration and offers greater precision in estimating the true reward for each 

action. As a result, KL-UCB showcases superior learning efficiency compared to UCB. With an increase 

in horizon, KL-UCB's heightened efficiency becomes more pronounced. The cumulative regret starts to 

exhibit logarithmic growth, signifying rapid identification and exploitation of optimal actions. This 

logarithmic trend underscores its highly effective learning. 

Conversely, the UCB algorithm, which uses a simpler exploration term based solely on the frequency 

of action trials, provides a balance between exploration and exploitation but often lags in efficiency, 

especially over extended horizons. In an experiment with a horizon of 5000 steps, UCB's relative 

inefficiency leads to continued exploration and a more gradual recognition of optimal actions compared 

to KL-UCB. This difference in cumulative regret growth can be attributed to KL-UCB's sophisticated 

approach to exploration, enabling faster identification of optimal actions and, consequently, more 

effective reduction in regret over longer periods. 

3.3.  Time complexity comparison 
The theoretical complexity of both algorithms was previously estimated that the UCB algorithm’s 

complexity is𝑂(𝑛𝑇)   and the KL-UCB algorithm’s complexity is𝑂(𝑛𝑇 𝑙𝑜𝑔 𝑇)  . However, in real 

applications, the elapsed time of the two runs may be more different. In this experiment, Python was 

used as the programming language, and the joblib library was used to operate on multiple cores of the 

CPU to increase the efficiency, and finally a larger difference was obtained. The time taken by the KL-

UCB algorithm is huge compared with the time taken by the UCB algorithm and cannot be ignored as 

well.  

To simulate real-world conditions, experiments were run 30 times in parallel on a virtual machine 

that was allocated 32 CPU cores from one of the highest-performing AMD EPYC™ 9004 Series CPUs, 

which has a total of 96 CPU cores, under different horizons. Figure 6 shows the relationship between 

the two in the simulation experiment as a function of the time taken to expand the horizon. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241221

44



 

Figure 6. Time taken for 30 experiments at different horizons (Photo/Picture credit: Original). 

4.  Improvements and Challenges 

4.1.  Overview of possible improvements 
In the comparison between KL-UCB and UCB algorithms, it's evident that the KL-UCB algorithm often 

surpasses the UCB algorithm in various aspects, such as cumulative regret. However, this enhanced 

performance comes with the trade-off of increased algorithmic complexity, highlighting potential areas 

for further refinement of KL-UCB and related algorithms. 

One potential improvement lies in optimizing the comparison algorithm within KL-UCB. An 

accuracy comparison experiment, as evidenced by results in Figure 7, indicates that elevating the 

precision level in the binary search component of the KL-UCB algorithm leads to greater time 

complexity. Interestingly, the variation and the value of the corresponding cumulative regret don't 

diminish in tandem. This underlines the importance of identifying a precision level that harmonizes time 

complexity with the objective of minimizing cumulative regret. Enhancing the algorithm might entail 

identifying a suitable precision level, possibly by dynamically adjusting the precision based on the 

algorithm's current state. While this adjustment might primarily lower the time complexity in the 

algorithm's earlier iterations and potentially increase as the algorithm converges, introducing 

mechanisms to modify the initiation and cessation of dynamic adjustment could be beneficial. Moreover, 

in lieu of solely relying on binary search for solving index equations, alternative methods such as 

interpolation search or exponential search might offer improvements in efficiency, meriting exploration 

in subsequent research. 

  

Figure 7. Cumulative regret performance and running time across different algorithms and levels of 

dichotomy accuracy (Photo/Picture credit: Original). 
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In addition, the calculation of KL-divergence in the KL-UCB algorithm involves logarithmic and 

other functions, which requires a large amount of computation, is another area that can be optimized. 

Approximation techniques such as Taylor series expansion or other types of polynomial approximation 

can be used to simplify the calculation of KL-divergence. If the reward distribution of arms changes 

over time, recent rewards can be considered while ignoring outdated rewards through methods like 

sliding windows. 

We can see that in solving large-scale problems such as multi-armed bandits, the performance and 

computational efficiency of balancing algorithms are particularly important. In these problems, even 

small efficiency improvements can save a lot of time. While striving to improve performance indicators 

such as cumulative regret, algorithm design should also aim for computational efficiency. This principle 

should be given more attention in future improvements and developments of multi-armed bandit 

problems and similar challenges. 

4.2.  Discussion in Practice 
In practice, artificial intelligence and reinforcement learning are permeating into our lives. However, in 

most cases, especially when cloud computing cannot be relied upon, the computing power of small 

terminals is extremely precious and limited. At this point, the complexity of reinforcement learning 

algorithm is very important. Although some of the algorithms perform poorly on results, their 

complexity is very low. This allows the terminal to quickly find useful information from a large amount 

of data with less computing power in a faster time. 

For example, in the field of intelligent driving that requires offline operation, sensors can often easily 

detect a large amount of information data, but the shortcoming is that the processor cannot process all 

of this information in time, so as to make accurate perception of the farther and wider environment.   

However, the reality is often that there are a lot of useless data in the information data detected by 

sensors, and the computing power of the processor is occupied by processing these useless data. This is 

where less complex algorithms are useful: they may not be accurate, but they can quickly filter out the 

useful information and feed it back to a more accurate algorithm for processing, thus improving its 

perception. Better performance may be obtained in practice when the two algorithms with higher and 

lower complexity are combined into one strategy. 

5.  Conclusion 

This study offers a comprehensive comparison of two hallmark algorithms in the multi-armed bandit 

landscape: the Upper Confidence Bound and the Kullback-Leibler Upper Confidence Bound algorithms. 

Emphasis is placed on juxtaposing their theoretical constructs alongside their empirical performance 

using a movie rating dataset. Both KL-UCB and UCB are tasked with the delicate act of balancing 

exploration with exploitation. The UCB algorithm boasts linear time complexity, offering efficient 

computation, consistent performance, and a broad application spectrum. Conversely, the KL-UCB 

algorithm harnesses the power of Kullback-Leibler divergence, leading to a more nuanced exploration 

paradigm, which subsequently results in elevated learning efficacy. More often than not, particularly 

during diverse performance explorations, the KL-UCB outperforms its UCB counterpart. Nonetheless, 

this superior performance is accompanied by a steeper computational demand. In real-world applications, 

an array of factors could potentially amplify the time and computational intensity inherent to these 

algorithms. 

These findings unearth invaluable insights for the tangible deployment of these algorithms. While 

KL-UCB surpasses UCB in areas like regret accumulation, practical implementation calls for a 

discerning evaluation of the computational demand versus regret performance, contingent on the task at 

hand. In environments with limited computational resources or those demanding promptness, a 

synergized approach leveraging streamlined algorithms like UCB could be more advantageous. 

Although they might not be top performers, their modest computational appetite ensures they remain 

functional and effective within the system. This exposition also illuminates promising avenues for 

subsequent research endeavors. The UCB algorithm, for instance, could be enhanced by integrating 
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variance estimation. In parallel, the KL-UCB could either minimize its complexity or elevate its 

performance by refining its upper confidence bound computation or by implementing a sliding window 

approach. Future inquiries might also delve into strategies melding both high and low complexity 

algorithms to optimize real-world outcomes. Ultimately, this analytical exercise underscores the 

criticality of appreciating the unique merits and demerits of diverse algorithms within the reinforcement 

learning spectrum. It emphasizes the necessity to judiciously select or refine a pertinent algorithm, 

tailored to the inherent challenges and demands of a given problem, thus fortifying the performance 

efficacy of the reinforcement learning algorithm. 
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