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Abstract. In the present benchmark study, a novel strategy is unveiled for the optimization of 

molecular design by integrating Multi-Armed Bandits (MAB) with cutting-edge adaptive 

discretization techniques. Central to this approach is the employment of the Ultrafast Shape 

Recognition (USR) method – a proven technique for assessing molecular similarity. Moreover, 

the integration of the Zooming Algorithm is noteworthy. This innovative algorithm 

demonstrates dynamism, adjusting in real-time to adeptly navigate the vast expanse of 

chemical space. One of the standout revelations from this investigation is the significant 

influence of a scaling factor. It serves as the fulcrum for striking an optimal balance between 

computational agility and peak performance. Such insights profoundly challenge the 

limitations inherent in conventional discrete MAB methodologies, especially when operating 

within the bounds of finite computational bandwidth. Beyond merely delineating a blueprint 

for future interdisciplinary endeavors, this research illuminates the intricacies of molecular 

design optimization. Additionally, it suggests that a marriage between network and cluster 

analysis could be the key to enhancing and fine-tuning the reinforcement learning journey. 

Keywords: Multi-Armed Bandits, Adaptive Discretisation, Molecular Design Optimisation, 

Reinforcement Learning, Chemical Space Exploration. 

1.  Introduction 

In the realms of science and technology, professionals continuously grapple with optimizing intricate 

decision-making mechanisms, striving to achieve the delicate equilibrium between exploration and 

exploitation. This quandary is encapsulated by the Multi-Armed Bandit (MAB) problem, a cornerstone 

in the domain of sequential decision-making [1]. It’s essential to understand that while the MAB 

problem finds its roots in the reinforcement learning domain, it exhibits distinct characteristics when 

juxtaposed against other prevalent methods, such as supervised machine learning. 

The research terrain surrounding the MAB problem and its associated algorithms is rich and 

expansive, with a particular focus on the non-structured discrete variant. As we venture into 

augmentations like the introduction of adversaries or the correlation between arms, we unearth layers 

of nuance and intricacy within the MAB problem. These augmentations, while adding complexity, are 

often indispensable in molding the foundational understanding of the problem to align with real-world 

scenarios. Venturing into this intricate labyrinth, this investigation delves deep into the continuum-
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armed iteration of the MAB challenge. The spotlight is cast upon the Lipschitz Bandits and the 

trailblazing Zooming Algorithm, setting the stage for a comprehensive exploration of the quantum-

chemistry dataset, QM9. 

2.  Problem Formulation and Regret for the Discrete MAB Problem 

2.1.  Problem Formulation 

A player employs an algorithm that offers a selection of 𝐾 different choices, known as ‘arms’, to make 

during a total of 𝑇 rounds/turns (known as the horizon). Each round involves the algorithm making a 

decision on one of these arms to ‘play’ and subsequently observing a reward associated with that 

particular choice. The overarching objective of the algorithm is to maximise the cumulative reward it 

obtains throughout the 𝑇 rounds. 

This study assumes the following about the discrete MAB problem which future sections build 

upon [2]: 

The Partial Information Game: the algorithm possesses knowledge solely of the reward obtained 

from the very arm it chooses at each round. It does not gain access to the reward information 

corresponding to the other unchosen arms (full information). 

The rewards associated with each arm selection are drawn from probability distributions. For each 

arm, there exists a distinct reward distribution over the real numbers. Whenever an arm is chosen, the 

reward observed is sampled independently from the distribution specific to that arm. The algorithm 

begins with no prior knowledge of these distributions.  

The rewards fall within a bounded range. In controlled experiments this is usually restricted to 

[0, 1] for simplicity. 

2.2.  Regret and Expected Regret 

The primary concern lies with the mean reward vector denoted as μ ∈ [0, 1]𝐾 where μ(a) represents 

the average reward for a particular arm. The way one formally assesses an algorithm’s performance is 

through the ‘regret’. Use μ∗  to represent the expected reward of the best arm. Probabilistically 

speaking the best ‘strategy’ is therefore to play that best arm for all rounds. To measure this against the 

cumulative reward generated by the algorithm, introduce the concept of regret at round 𝑇: 

 𝑅(𝑇) = μ∗ ⋅ 𝑇 − ∑ μ(𝑎𝑡)𝑇
𝑡=1                                                    (1) 

Since 𝑎𝑡 , the arm selected at round 𝑡, yields a value realised through sampling from a random 

distribution, 𝑅(𝑡) is inherently a random variable. Hence the focus revolves around the ‘expected 

regret’, often denoted as 𝐸[𝑅(𝑇)]. 

3.  Continuum-armed Bandits 

This section focuses on the continuous-case extension of the MAB problem. In particular the concept 

of Lipschitz Bandits is introduced. The motivation comes from the intuition that similar initiatives 

should result in similar rewards. For example, the similarity between two actions can be quantified by 

the distance between a pair of feature vectors. The mathematics behind metric spaces makes this 

consistent throughout the action set, thereby allowing the use of similar actions to guarantee similar 

rewards [3]. To tackle the MAB problem in a Lipschitz context, this study employs what is called a 

‘zooming algorithm’ – which is a class of algorithms that share the same philosophy. 

In the continuum-armed framework, the ‘action set’ refers to the collection of possible actions 

(arms) an algorithm can make in a continuous action space. 

3.1.  Lipschitz Bandits 

3.1.1.  Definition. Consider an action set denoted as 𝑋, along with an unknown mean reward function 

𝑢: 𝑋 → [0,1] subject to the condition: 
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 |Μ(𝑥) − μ(𝑦)| ≤ δ(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋, where δ(𝑥, 𝑦) > 0                            (2) 

Now define 𝐷(𝑥, 𝑦)  as the infimum of the sum ∑ δ(𝑥𝑡 , 𝑥𝑡+1)𝑡  over all finite such paths (𝑥 =
𝑥0, 𝑥1, … , 𝑥𝑘 = 𝑦) within the action set 𝑋. This defines a metric. 

Consequently, express the Lipschitz inequality as: 

 |Μ(𝑥) − μ(𝑦)| ≤ 𝐷(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋                            (3) 

Here, μ represents a Lipschitz function with a Lipschitz constant of 1 concerning the metric space 

(𝑋, 𝐷). Going forwards this study will denote an instance of the Lipschitz bandit problem as (𝑋, 𝐷, μ) 

[4]. 

Without loss of generality, one may assume the diameter of (𝑋, 𝐷) to be at most 1 since for any 

bounded non-negative reward interval it is possible to transform it into the [0,1] interval. 

3.1.2.  Definition. In the context of the Lipschitz bandits problem, introduce the term ‘discretisation’ 

for any predetermined subset 𝑆 within the action set 𝑋. Such subset 𝑆 may be discrete or uniform and 

is called a discretisation of 𝑋. 

In practice, it is a common practice to utilise the discretisation as an approximation for the action 

set. Such approximation comes with a discretisation error. 

3.1.3.  Definition. Define 𝜇∗(𝑆)  as the highest expected (optimal) reward in 𝑆  so that 𝜇∗(𝑆) =
sup

𝑥∈𝑆
𝜇(𝑥) . It follows that the discretisation error 𝐷𝐸(𝑆) (with respect to 𝑋) is: 

 𝐷𝐸(𝑆) = μ∗(𝑋) − μ∗(𝑆)                                (4) 

It is important to note that, from the definition, the discretisation error is inherently bounded by the 

smallest distance between any point in 𝑆 to the optimal arm 𝑥∗ (from 3.1.1): 

 𝐷𝐸(𝑆) ≤ 𝐷(𝑆, 𝑥∗) ≔ min
𝑥∈𝑆

𝐷 (𝑥, 𝑥∗)                                      (5) 

3.2.  Zooming Algorithm 

3.2.1.  Definition. One can consider arms chosen in the discretisation subset 𝑆 as probes strategically 

positioned within the metric space. The objective of an algorithm is to gradually approximate the mean 

rewards and dynamically adjust the placement of these probes. Such adaptation ensures a greater 

concentration of probes in regions of the metric space deemed more ‘promising’. This is called 

adaptive discretisation. 

Adaptive discretisation is implemented via the Zooming Algorithm. The algorithm actively 

maintains a set 𝑆 ⊂ 𝑋 of active arms. During each round, a selection of arms may be activated based 

on a predefined activation rule. Subsequently, the algorithm chooses one active arm to play based on a 

selection rule. 

It is worth noting that an active arm stays activated. There is no deactivation rule unless stated 

otherwise. 

3.2.2.  Confidence Ball. Assume at round 𝑡 an arm 𝑥 is active. Define 𝑛𝑡(𝑥) to be the number of times 

𝑥 was played up to round 𝑡. Then let 𝜇𝑡(𝑥) be the sample mean reward of arm 𝑥  at round 𝑡, and 

𝜇𝑡(𝑥) = 0 when 𝑛𝑡(𝑥) = 0. 

3.2.3.  Definition. Given the value of the horizon 𝑇 the confidence radius of 𝑥 at round 𝑡 is: 

 𝑟𝑡(𝑥) = √
2𝑙𝑜𝑔𝑇

1+𝑛𝑡(𝑥)
                             (6) 
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This is similar to the UCB1 (Upper Confidence Bound) index used for discrete bandits. The 

confidence radius ensures that, with high probability, it bounds the difference between the sample 

mean reward μ𝑡(𝑥) and arm 𝑥’s true excepted reward for all arms 𝑥 and round 𝑡: 

 |μ𝑡(𝑥) − μ(𝑥)| ≤ 𝑟𝑡(𝑥)                       (7) 

3.2.4.  Definition. At round 𝑡, the confidence ball around arm 𝑥 is defined as follows: 

 𝐵(𝑥, 𝑟𝑡(𝑥)) = {𝑥 ∈ 𝑋: 𝐷(𝑥, 𝑥) ≤ 𝑟𝑡(𝑥)}                  (8) 

The information provided by the sample observed rewards from arm 𝑥 up to round 𝑡 enables one to 

estimate the value of μ(𝑥)  up to an accuracy of ±𝑟𝑡(𝑥)  (from 3.2.3). There is also not enough 

information to distinguish arm 𝑥 from other arms within the confidence ball. 

3.2.5.  Activation Rule. Say that if arm 𝑥  is contained in some active arm’s confidence ball, it is 

‘covered’. Take an inactive arm 𝑦 at round 𝑡 which is covered in arm 𝑥’s confidence ball such that 

𝐷(𝑥, 𝑦) ≪ 𝑟𝑡(𝑥). There is no need to activate arm 𝑦 because there is insufficient information (samples 

of 𝑥) to distinguish 𝑦 from 𝑥. Still, the following must be maintained throughout: at any round 𝑡, all 

arms are covered. 

Note that an active arm is trivially covered in its own confidence ball, and since the confidence 

radius of any arm that is being activated for the first time is defined to be greater than 1, all arms are 

covered by that particular arm. The confidence radii decrease as more information is gathered, so an 

arm 𝑦 can become uncovered after play at round 𝑡. Any uncovered arm is then to be activated.  

To summarise the steps, one can think of the Zooming Algorithm as self-adjusting: it zooms in on 

part of the metric iff the arms within are played often iff these arms have promising returns (large 

sample mean rewards). This is essentially the exploration-exploitation trade-off adapted in a 

continuous setting. 

3.2.6.  Selection Rule. To select an arm to play, it must be active at round 𝑡 with the largest confidence 

index value defined as: 

 𝐶𝐼𝑡(𝑥) = μ𝑡(𝑥) + 2𝑟𝑡(𝑥)                        (9) 

For 𝐶𝐼𝑡(𝑥) to be large, it is necessary that either μ𝑡(𝑥) is large i.e. arm 𝑥 is likely a good arm, or 

𝑟𝑡(𝑥) is large i.e. there is not enough information on arm 𝑥 and the algorithm will more likely actively 

explore this arm. 

3.2.7.  Algorithm Overview 

Table 1. Algorithm flow. 

Algorithm 1. Zooming Algorithm [2] 

1: Initialise:  

2:      active arm set 𝑆 ← ∅  

3: for t = 1, 2, …, 𝑇 do  

4:      if there exists uncovered arm 𝑦 then // activation rule 

5:           activate any such arm 𝑦: 𝑆 ← 𝑆 ∩ {𝐵(𝑦, 𝑟𝑡(𝑦))}  

6:      end if  

7:      play arm 𝑥 with the largest confidence index 𝐶𝐼𝑡(𝑥) // selection rule 

8: end for  
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4.  Application to QM9 

The QM9 dataset provides detailed information on 134,000 stable small organic molecules [5], 

covering essential properties like geometry, energy, electronic structure, and thermodynamics [6]. It 

has gained prominence in the field of computational chemistry due to its exceptional utility in 

exploring the chemical compound space. As the scientific field move on to using computational 

methods to design new drugs and materials with desired properties, understanding and navigating this 

space is of paramount importance. This dataset can be adapted to create, train and assess models based 

on inductive statistical data analysis [7]. Furthermore, it has the potential to aid in the exploration of 

previously undiscovered patterns, the identification of relationships between molecular structures and 

properties, and the design of new molecular materials. 

The quest to design novel molecules with tailored properties remains a rather challenging topic. 

High-throughput screening approaches, although powerful, assume that modelling techniques apply 

uniformly across chemical space [8]. Due to the exponential growth of the chemical space this 

assumption often falls short. This limitation underscores the need for innovative strategies to navigate 

and explore this vast territory. 

One such approach involves the application of MAB with adaptive discretisation introduced in 

earlier sections. In the context of QM9, the MAB implementations in this study can serve as a 

benchmark for future reinforcement learning studies to pave the way for the development of novel 

methods. This study aims to systematically navigate the chemical space and adaptively select desirable 

molecular configurations to maximise the understanding of structure-property relationships. 

4.1.  Problem Design 

The data simulations in this study utilises a subset of the QM9 dataset that contains 6095 isomers of 

C7O2H10 with orbital energies calculated at G4MP2 level [9]. The Zooming Algorithm will utilise 

molecular structural similarity information for adaptive discretisation to optimise ‘reward’ over time. 

The ‘reward’ here is chosen to be the energy gap between LUMO and HOMO (highest/lowest 

occupied molecular orbital) normalised to [0, 1]. To make the arm pulling a stochastic process a zero-

mean Gaussian noise is added to the gap value, so a noisy value is observed each time an arm is 

chosen. A key assumption made in the simulations is that the horizon i.e. total number of rounds to 

play is predetermined and in fact, less than the total number of arms available. Discrete MAB 

algorithms that assume no discretisation in this case are therefore not applicable. Even if the horizon is 

extended to accommodate methods such as UCB1 and Thompson Sampling with no discretisation, the 

optimisation process would still be massively inefficient. 

Working with limited resources is a very prevalent issue in practice so this study is interested in 

gauging whether the Zooming Algorithm can effectively utilise the proposed similarity information to 

make decisions that optimise reward over a short period of time. This is to be combined with a brief 

investigation on the algorithm’s ability to adapt to different levels of noise.  

4.2.  Ultrafast Shape Recognition (USR) 

Ultrafast Shape Recognition (USR) is a very popular molecular shape similarity method based on 

atomic distances [10]. It was developed to address alignment and speed challenges encountered with 

other shape similarity techniques, therefore suitable for this investigation. USR computes to the 

distribution of atomic distances from four reference points: the molecular centroid, the nearest atom to 

the centroid, the farthest atom from the centroid and the atom furthest from the last one. Then it 

calculates the first three statistical moments for each of these distributions. As a result, each molecule 

is represented by a 12-value descriptor vector that captures its three-dimensional shape. The assess the 

similarity between the shapes of two molecules, USR uses the inverse of the Manhattan distances 

computed from the descriptor vectors [11]. Note the distance is equivalent to the dissimilarity between 

molecules.  

 𝑆𝑖𝑗 =
1

1+
1

12
∑ |𝑀𝑘

𝑖 −𝑀𝑘
𝑗

|𝑘=1
12

                (10) 
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Figure 1 and Figure 2 reveal some information on the distribution of USR similarities within the 

data (~6000 isomers). There appears to be no inherent issue/anomalies and the dataset is not structured 

according to similarity by default. 

 

Figure 1. USR Similarity Matrix (Photo/Picture credit: Original). 

 

Figure 2. USR Similarity Distribution (Photo/Picture credit: Original). 

4.3.  Confidence Radius Scaling 

The simulations that follow will incorporate a scaling factor to the confidence radius detailed earlier: 

 𝑟𝑡(𝑥) = √(
2𝑙𝑜𝑔𝑇

(1+𝑛𝑡(𝑥))
) × 𝑠 if 𝑛𝑡(𝑥) > 0                     (11) 

Where 𝑠 ∈ [0,1] acts as a hyperparameter that adjusts the level of confidence for the Zooming 

Algorithm and consequently how aggressively it zooms in with the same amount of information 

gained on the arms (expect the scaling factor to have an effect on the number of active arms). The full 

distribution of the arm rewards i.e. normalised gap values is shown in Figure 3. By definition the 

optimal reward value is 1 and upon inspection the gap values seem to form two peaks at different 

values. An algorithm will need to at least consistently identify arms around the higher-valued peak that 

leads to smaller regret buildups and outperform random guessing (equivalent to systematically 
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‘exploring’ in this unordered dataset). With limited rounds to play, it is harder to identify arms closer 

to the most optimal one. 

  

Figure 3. Distribution of Gap Values (Photo/Picture credit: Original). 

4.4.  Results and Regret Analysis 

For the horizon 𝑇 = 5000, the following plots of cumulative regret curves use the mean values of 100 

simulations and the ~95% confidence regions by taking ±2σ at each timestep. The Gaussian noise 

variance values are 0.05  (moderate, less than 10%  perturbation on average), 0.1  (high) and 0.2 

(higher, such that observed rewards from arms of different peaks in Figure 3 are at times 

indistinguishable). In practice, when working with chemical datasets one can often be able to assume 

very reliable and accurate approximations of molecular energies. This is the case with this dataset 

which is calculated at G4MP2 level for less than 10 non-hydrogen atoms [12], although the 

simulations ran would still try to push the algorithms to make sure they do act predictably and do not 

break down when faced with more noise than expected in practice. The scaling factors chosen for 

visualisation are 0.04, 0.08, 0.1, 0.5, 0.9, 1. Note that the initial confidence radii of arms that contain 

no information is not affected by the scaling, so that the assumptions in 3.2.5 still hold. A random arm 

is chosen at the start of each simulation. 

See Figure 4, Figure 5, and Figure 6 for the simulation results. 

 

Figure 4. Regret Curves for 𝜎2 = 0.05 (Photo/Picture credit: Original). 
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Figure 5. Regret Curves for 𝜎2 = 0.1 (Photo/Picture credit: Original). 

 

Figure 6. Regret Curves for 𝜎2 = 0.2 (Photo/Picture credit: Original). 

Changing the value of the scaling factor is significant to the overall performance of the Zooming 

Algorithm on the dataset, therefore it is necessary to tune the value of the scaling factor as a 

hyperparameter in future studies to optimise the outcome. 

Examining the regret curves for σ2 = 0.05 in Figure 4 reveals that the algorithm tends to do worse 

for higher scaling factors. For larger values of the scaling factor, arms become uncovered very 

infrequently therefore the algorithm is not fully capable of making use of the abundancy of the 
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information available and instead limits its vision on too few arms. This does also cause the 

inconsistency issue as illustrated by the enlarged confidence regions. Nevertheless, they are extremely 

quick to compute for that reason, and the algorithm still makes use of the similarity information to an 

extent that it outperforms a naïve purely explorative approach from the get-go. There are signs of the 

regret curves flattening, so one could speculate that for a longer period of time beyond the current 

horizon the algorithms using higher scaling factors could be favourable since they eventually will 

optimise. In the case that computational resource restraint is more significant than the restraint on the 

horizon (the latter being one of this study’s simulation assumption), they are possibly more favourable. 

The interest of fine-tuning the scaling factor mainly lies in the smaller values around 0.1. Here the 

regret curves are much more desirable as the algorithms quickly adjust to playing the better arms and 

optimise the decision-making process over time. The adaptive discretisation here encourages 

activating more arms for exploration at the expense of higher computational costs and is more 

effective at using similarity information to identify optimal arms compared to using higher scaling 

factors. The decreasing regret gradient over rounds is another evidence that supports this. The trends 

suggest possible logarithmic asymptotic behaviour, which fits with the theoretical results from 

Introduction to multi-armed bandits (Slivkins, A., 2022) under the regret analysis and upper bound of 

Lipschitz bandits. It is worth noting that setting the scaling factor too low drives the algorithm towards 

random exploration which is inconsistent and heavily computationally costly. It is important to take 

into account all the abovementioned points when designing an implementation and the ‘optimal’ 

hyperparameter value is totally dependent on the context of the problem one has at hand. 

Moving on to performances on noisier data (Figure 5, Figure 6) the general trends across scaling 

factors to be about the same as above as expected since there are no inherent differences that would 

cause the same reasoning approach to breakdown. The algorithms do on average tend to perform 

slightly poorer with increased noise, but it is their inconsistency (illustrated by large confidence 

regions) that increases more significantly even for cases where they perform well. Still there are no 

signs of major malfunctions and the Zooming Algorithm remains a reasonably robust method to 

approach the MAB problem designed for this dataset, since the similarity information between arms 

proved to be enough to overcome the noise added to obscure the true rewards. 

4.5.  Active Arms and Scaling Factor 

It was remarked earlier that changing the scaling factor affects the number of active arms, which is a 

trade-off between computational efficiency and gathering information on the full set of arms. Table 1 

outlines the average number of active arms at the end of the simulations for each noise and scaling 

factor simulated in 4.4. 

Table 2. Average num. of active arms at the end of the simulation. 

𝑠 \ 𝜎2 0.05 0.1 0.2 

0.04 464 466 476 

0.08 180 179 178 

0.1 137 132 133 

0.5 43 44 39 

0.9 28 28 27 

1 26 26 26 

 

The active number of arms at end of the simulations show no correlation with the noise introduced 

to the arms’ rewards. See Figure 7 for the exponential-like behaviour of arm activation as scaling 

factor changes. Note that the number of active arms is directly proportional to computation cost since a 

finer discretisation/definition requires more calculations to be done. As shown in Table 2. 
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Figure 7. Active arms at end against scaling factors, 𝜎2 = 0.05 (Photo/Picture credit: Original). 

5.  Conclusion 

In this rigorous computational benchmark study, we tackled the intricate challenge of refining 

molecular design through the lens of Multi-Armed Bandits (MAB) coupled with adaptive 

discretisation. We delved into the pioneering concepts of Lipschitz Bandits and the Zooming 

Algorithm, which provided a dynamic framework to proficiently traverse the vast chemical realm. Our 

discoveries underscore the prowess of the Ultrafast Shape Recognition (USR) method in gauging 

molecular similarity. Furthermore, the adept application of the Zooming Algorithm yielded 

encouraging outcomes, harnessing similarity data to fine-tune molecular blueprints. A pivotal insight 

emerged regarding the subtle art of modulating a hyperparameter—the scaling factor. This factor was 

instrumental in orchestrating a harmony between computational prowess and optimal outcomes. It 

became evident that leaner scaling factors expedited adaptability, resulting in diminished regret, 

thereby spotlighting the paramountcy of meticulous parameter calibration. It’s worth noting that this 

exploration shed light on the constraints tied to conventional discrete MAB techniques, especially 

when operating within constricted resource boundaries—be it rounds or otherwise. Yet, the adaptive 

discretisation paradigm showcased its merit by sidestepping these very constraints, emerging as a 

beacon of hope in the quest for molecular design perfection. 

This study, while setting a robust platform for future synergistic endeavors straddling mathematics 

and chemistry, also offers invaluable insights for scholars. They are equipped with a refined 

understanding of the nuanced equilibrium between computational agility and performance, especially 

while leveraging the Zooming Algorithm. Furthermore, this exploration paves the way for delving 

deeper into ancillary avenues, like network and cluster analysis, enhancing the nuances of the 

reinforcement learning journey. Given the versatility of MAB coupled with adaptive discretisation, the 

horizon looks promising for surmounting multifaceted optimization quandaries in molecular design. 
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