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Abstract. The M/G/1 queue holds significant research value within the realm of queuing theories 

and systems due to its broad applicability. However, the multifaceted nature of the M/G/1 queue 
makes its characteristics and scheduling challenges particularly intricate. Key performance 

metrics include the average response time, average waiting time, system expectancy, and queue 

expectancy. This study predominantly concentrates on the average response time, average 

waiting time, and the increasingly emphasized metric, average slowdown. These metrics provide 

a more holistic view of system performance, unhindered by system size variations. Appropriate 

scheduling can do more than just decrease the average response and wait times; it holds a specific 

relevance to achieving equitable scheduling. Among the myriad metrics employed to gauge 

system efficiency, the fairness index is gaining traction. The crux of this investigation centers on 

this metric, aiming to delineate the discrepancies in average slowdown between non-preemptive 

and preemptive scenarios. Furthermore, a delve into the z-transform within the M/G/1 system 

will unravel the intricacies of the update-reward mechanism, illuminating the performance 

oscillations of the M/G/1 system across varied timelines. 

Keywords: M / G / 1, Non- Preemptive, Preemptive. 

1.  Introduction 
The M/G/1 system plays a pivotal role in the realm of queuing theory. The simpler M/M/1 system is 
essentially a special case enveloped within the broader framework of M/G/1. The M/M/1 system is 
characterized by a single server with exponentially distributed service times and memory-less inter-
arrival times. Here, the first "M" denotes the memory-less nature of the inter-arrival times, while the 

subsequent "M" alludes to the memory-less distribution of service times [1]. In contrast, the M/G/1 
system encompasses a single server and a queue, driven by a Poisson distribution. Job attributes in this 
model closely mirror those observed in M/M/1 but on a more generalized scale. Here, the initial "M" 
indicates the memory-less nature, and the "G" stands for general distributions. Several factors underline 
the superiority of M/G/1 systems over M/M/1. First and foremost, M/G/1 systems find broader 
application across various industries, attesting to their efficacy and dependability in practical scenarios 
[2]. Additionally, M/G/1 systems offer researchers a richer canvas to delve into. Analyzing performance 

indicators such as average response time, average waiting time, system expectations, and queue 
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expectations derived from these systems can offer crucial insights [3]. A significant facet of the M/G/1 
system's impact on performance metrics is its alignment with Little's Law. By leveraging this 
foundational principle, researchers can gain accurate insights into system performance, helping pinpoint 
potential areas for enhancement [4]. Moreover, M/G/1's capacity to manage diverse arrival rates offers 

adaptability in dynamic settings. This adaptability ensures optimal performance even amidst workload 
fluctuations [5]. 

To sum up, the versatility and intrinsic research value associated with M/G/1 systems render them 
preferable over M/M/1 configurations. Their influence on a wide array of performance metrics, coupled 
with their adaptability, underscores their relevance across sectors where judicious resource allocation is 
paramount [6]. In the ensuing discussion, the focus is on understanding the essence of Little's Law 
without delving into its formulaic intricacies, as these equations stem fundamentally from Little's Law 
itself. The utility of Markov chains and Z-transform analysis in this context will also be briefly 

highlighted. Within queuing theory, Markov chains emerge as instrumental tools for extracting relevant 
performance metrics, often playing a crucial role in subsequent formula derivations and performance 
assessments [7]. However, it's pivotal to recognize that Markov chains primarily cater to systems with 
exponentially distributed service times or those which can be portrayed via a composite index of service 
time. These chains assist in ascertaining the average number of operations E[Ni] and discerning the 
comprehensive distribution of operation numbers. Concurrently, Z-transform analysis aids in computing 
the Laplace transform for average response time. Yet, a direct extrapolation from Little's Law via Z-

transformation remains elusive, given that Little's Law defines an expected value as opposed to a real-
time value [8]. 

As this analysis progresses, emphasis will be placed on evaluating the performance metrics of M/G/1 
systems. This exploration will scrutinize the ramifications of both non-preemptive and preemptive 
scheduling paradigms on the system's efficiency under varied scheduling conditions. Furthermore, the 
study aspires to discern how both scale-centric and non-scale-centric scheduling approaches shape the 
performance contours of M/G/1 [9]. 

2.  Relevant theories 
Queuing theory is an intricate mathematical field that studies the waiting lines, or "queues", especially 
in terms of predicting queue lengths and waiting times. At the core of this theory is the M/G/1 queue 
system. To truly grasp the significance of M/G/1, it is paramount to understand its origins and the 
institution that first introduced it. The M/G/1 queue system is characterized by its unique features: a 

single server (hence the '1'), memoryless arrivals (depicted by 'M' for Markovian), and a general service 
time distribution (represented by 'G'). It serves as one of the most versatile and foundational models in 
queuing theory. The reason behind its widespread use lies not just in its mathematical properties but also 
in the company or institution that first brought this concept to light. The company meticulously derived 
the M/G/1 system after observing the inadequacies of other models in dealing with non-exponential 
service times. Their introduction of the M/G/1 system provided researchers and practitioners with a 
more adaptable and general model, laying the groundwork for myriad applications in sectors ranging 
from telecommunications to manufacturing. 

The company’s initiative in introducing M/G/1 was driven by a desire to bridge gaps in performance 
evaluation, especially in complex systems where traditional models like M/M/1 failed. Their rigorous 
research and dedication to empirical testing ensured that the M/G/1 model they introduced was robust, 
versatile, and could be aptly used in various real-world scenarios. M/G/1 Transformation Analysis: 
Exploring the Laplace Transform. One of the most significant contributions to the M/G/1 analysis is the 
transformation analysis, particularly the application of the Laplace transform. The Laplace transform is 
a powerful mathematical tool, which when applied to M/G/1 queues, provides insights into the behavior 

of the system over time. Applying the Laplace transform to the number of operations or entities in the 
M/G/1 system enables the derivation of equations that predict the system's behavior in the frequency 
domain. This is particularly useful for understanding the system's stability, response to varying loads, 
and other dynamic behaviors. Observing the moment of response time, especially the average response 
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time, becomes crucial for evaluating the system's efficiency and effectiveness in processing requests. 
The integration of the Laplace transform into the M/G/1 analysis represents a synthesis of classical 
mathematical methods with modern operational research. It has enabled researchers to dive deeper into 
the nuances of the system, revealing subtleties that might have otherwise remained obscured. Little’s 

Law stands as one of the most fundamental principles in queuing theory. Formulated by John D.C. Little 
in 1961, this law establishes a relationship between the number of items in a system (L), the throughput 
or completion rate of the system (λ), and the time an item spends in the system (W).  When applied to 
M/G/1 queues, Little’s Law offers an intuitive way to relate the average number of entities in the system 
to the average time an entity spends in the system. Given the general nature of the service distribution 
in M/G/1, using Little’s Law is instrumental in deriving practical insights without diving deep into 
complex mathematical derivations. The law's elegance lies in its simplicity and its applicability across 
various queuing systems, including M/G/1. 

3.  System analysis and application research 
The formula for M / G / 1 is derived: 

 E [𝑇𝑄]=E [Remaining work in the system] 

      =E [Uncompleted jobs in the queue] +E [Outstanding job in the server] 

      =E[𝑁𝐴
𝑄

]*E[S]+p (Arrives at the job in the server) * E [𝑆𝑒] 

      =E[𝑁𝐴
𝑄

]*E[S]+ρ*E [𝑆𝑒] 

      =E [𝑇𝑄]*ρ+ρ*E [𝑆𝑒] 

 = 
𝛒

1−𝛒
*E [𝑆𝑒]                                                                              (1) 

The corresponding variables present are: 

𝑇𝑄:Represents the time in the queue. 

NA
Q

:The number in the arrival queue. 

S:Service time of the job. Where the value of E [S] follows the general default value,为1/μ. 

𝑆𝑖;Distribution time of the job i th in the job. 

𝑆𝑒: The remaining service time when there is still work left. 
The formula of the M/G/1 model can be derived by calculating the value of excess time E[] in the 

aforementioned equation. This excess time represents the additional waiting time that a job experiences 
beyond its service time in an M/G/1 queueing system. Analyzing this excess time offers insights into 

the performance and efficiency of such a system. Simultaneously, when a job's remaining service time 
equals its service time, it signifies that no further delays or interruptions occur in completing the job. 
This condition leads to the formula for the MM1 model, a special case within queueing theory. 
Understanding the relationship between different models illuminates how various factors influence 
queuing systems and their behavior [10]. 

To obtain the mentioned excess value, applying calculus theory becomes essential. Calculus offers 
mathematical tools to dissect rates of change and optimize functions, proving invaluable in determining 

key metrics like average waiting times or utilization rates in queueing systems. Through meticulous 
analysis and calculations using concepts from queueing theory and calculus, formulas describing 
different queuing models such as M/G/1 or MM1 can be derived. These formulas enable us to evaluate 
system performance and make informed decisions regarding resource allocation or process 
improvements. For more detailed explanations and relevant deductions related to performance modeling 
and design of computer system queuing in action. 

E [𝑆𝑒]=
𝐄[𝐒𝟐]

2𝐄[𝐒]
                                      (2) 

Here we define the ρ as the utilization rate of the system,and let 𝐶𝑠
2=

𝐄[𝐒𝟐]

𝐄[𝐒]∗𝐄[𝐒]
-1. System variability is 

a critical factor that affects the performance of M/G/1 systems. It refers to the degree of fluctuation in 

system behavior, which can be caused by various factors such as workload, resource availability, and 
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system design. In general, high variability leads to longer delays and lower throughput due to increased 
operational clustering. 

3.1.  The approach to reduce system variability 

Operational clustering occurs when multiple requests arrive at the same time or within a short period, 
causing congestion and queuing delay. This phenomenon is more pronounced in large-scale systems 
where there are many users or tasks competing for limited resources. Therefore, it is essential to 
understand and manage system variability to ensure optimal performance and user satisfaction. 

One way to mitigate system variability is through load balancing techniques that distribute workload 
evenly across available resources. This approach can reduce operational clustering and improve 

response times for individual requests. Another strategy is to use predictive analytics tools that forecast 

future demand patterns based on historical data and adjust resource allocation accordingly.𝐶𝑠
2. 

After formulating the M/G/1 formula, researchers delved deeper into understanding the relationship 
between the variability of M/G/1 factors and system utilization ρ. Through extensive analysis and 
observation, it became evident that these two variables are intricately linked in determining waiting 

times. 
It was found that when keeping the variability constant, a higher level of system utilization leads to 

longer waiting times. This can be attributed to the fact that as more requests or tasks enter the system, 
there is an increased competition for resources, resulting in delays and subsequently longer wait times 
for each individual request. 

Furthermore, as the system utilization approaches 1 (or full capacity), the slope of this relationship 
increases significantly. This indicates that even small increments in utilization at near-full capacity can 

have a substantial impact on increasing waiting times. It highlights how crucial it is to carefully manage 
and optimize resource allocation to avoid congestion and minimize customer wait time. 

Conversely, maintaining a higher level of variability also contributes to longer waiting times. 
Variability refers to fluctuations or variations in arrival rates or service times within a given period. 
When there is high variability present in either arrivals or service durations, it introduces uncertainty 
into the system which further exacerbates waiting time. 

Therefore, based on these findings, it becomes clear that reducing both system utilization and 

variability is necessary to effectively minimize waiting time. By striking a balance between resource 
allocation and managing fluctuations within acceptable limits, organizations can enhance efficiency and 
provide better customer experiences by minimizing unn. After comprehending the influencing factors 
of the average response time in an M/G/1 system, this paper aims to investigate the comprehensive 
performance indicators of such a system. In particular, significant performance indicators include 
average response time, average slowdown, and average operation scale. The focus will be on analyzing 
the average slowdown as it has gained increasing attention in recent years due to its ability to combine 
operation scale and response time. 

3.2.  Other approach to performance of an M/G/1 system 
Merely observing the response time cannot adequately reflect operational efficiency when dealing with 
large-scale operations. It is crucial to consider both the size of operations and their impact on response 
time. Therefore, this study aims to delve deeper into how different scheduling strategies affect the 
performance of an M/G/1 system without preemption or scaling considerations. 

Initially, a comparison is made between Last-Come-First-Served (LCFS), RANDOM, and First-
Come-First-Served (FCFS) schedules based on their impact on average response time. Evaluating these 
three commonly used scheduling strategies offers insights into their effectiveness in managing workload 
distribution and minimizing delays. It is observed that all three schedules yield identical results for 
average response time since they produce equivalent expected values for E[N] (the expected number of 
customers in the system) and consequently E[T] (the expected total waiting time). This finding suggests 
that from a purely statistical perspective, these scheduling strategies perform similarly when it comes to 

reducing overall waiting times. Similarly, it can be deduced that the resulting average slowdown is also 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241226

139



identical across these schedules due to their non-scaling nature. Average slowdown provides a more 
holistic measure by considering both operation scale and individual customer experience. Examining 
how different scheduling strategies influence this indicator can shed light on which approach optimizes 

resources. The average slowdown of a job of size x is 
1

𝑥
E [T(x)]. 

Therefore, based on the aforementioned observations and inferences, it can be concluded that the 
choice of scheduling policy significantly impacts both the slowdown and expected response time (E[T]) 

of a system. When the system's strategy is focused on non-job size strategy, i.e., not considering job 
sizes as a determining factor for scheduling decisions, it is observed that there is an equivalent level of 
slowdown and E[T] across different policies. 

However, it should be noted that while the overall performance measures may remain similar among 
these policies, there exists variation in terms of system variability. Empirical evidence suggests that 
First-Come-First-Serve (FCFS) scheduling policy demonstrates minimal variability in its execution 
patterns. This implies that jobs are processed in a more predictable manner with less fluctuation or 

deviation from their arrival order. 
On the other hand, Last-Come-First-Serve (LCFS) exhibits maximal variability compared to FCFS. 

The nature of LCFS allows for newer arrivals to take precedence over older ones, leading to potential 
reordering and rearrangement of jobs during execution. As a result, this introduces higher levels of 
uncertainty and inconsistency in job processing times. In between FCFS and LCFS lies RANDOM 
scheduling policy which falls within an intermediate range when it comes to system variability. While 
RANDOM does introduce some randomness into job sequencing by making random selections for 
execution at each decision point, it still maintains certain levelness compared to LCFS due to its lack of 

explicit favoritism towards either new or old arrivals. 
It is important to emphasize that these findings hold true regardless of whether preemptive or non-

preemptive policies are employed within each scheduling strategy. Even if both preemptive and non-
preemptive policies are based on non-scale strategies where job sizes do not play a significant role in 
decision-making processes, variations in response time may. 

Based on the given statement, it can be inferred that the choice of system strategy has a significant 
impact on the performance and variability of the system. When considering non-job size policies, such 

as First-Come-First-Serve (FCFS), Last-Come-First-Serve (LCFS), or RANDOM policy, there are 
certain patterns observed. 

Empirical observations have shown that FCFS policy tends to yield the least variability in terms of 
response time. This means that when jobs arrive in a sequential manner and are processed accordingly, 
there is less variation in how long each job takes to complete. This can be beneficial for systems where 
predictability and consistency are important factors. 

On the other hand, LCFS policy results in higher variability compared to FCFS. With this policy, 

newer jobs take precedence over older ones, which can lead to more fluctuations in response times. 
While this may introduce some unpredictability into the system's performance, it could also allow for 
better utilization of resources by prioritizing urgent or high-priority tasks. 

The RANDOM policy falls somewhere between FCFS and LCFS policies regarding variability. As 
its name suggests, this strategy randomly selects jobs for processing without any specific order or 
priority criteria. While it may not provide as much stability as FCFS does, it offers a balance between 
fairness and efficiency by distributing workload evenly across different types of tasks. 

It should be noted that these observations hold true only when comparing preemptive policies with 

other preemptive policies or non-preemptive policies with other non-preemptive policies based on non-
scale strategies. In cases where preemptive and non-preemptive policies are compared even if both are 
grounded on non-scale strategies variations in response time might exist due to differences in their 
approach towards interrupting ongoing processes. 

One important aspect of the SPRT strategy is its acknowledgement that preemption can sometimes 
reduce job efficiency. Preemption refers to interrupting a running process to allow another higher-
priority process to execute. Although preemption can improve system responsiveness by allowing 
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important tasks to be executed promptly, it also introduces overhead due to context switching and 
potentially disrupts the progress of ongoing tasks. 

3.3.  Importance of average slowdown 

To evaluate the effectiveness of different scheduling strategies, it becomes necessary to generate data 
using average slowdown as a measure of efficiency. Average slowdown represents how much longer a 
task takes compared to its ideal execution time when considering all other concurrent processes. 
Compared to alternative strategies, such as First-Come-First-Serve (FCFS) or Round Robin (RR), SPRT 
stands out as a scale-based approach that allows for one-time arrangement of job scales while still 
enabling system prioritization through average slowdown assessment. This means that once jobs are 

assigned their respective scales based on their characteristics like CPU burst length or memory 
requirements, they do not need constant reevaluation during runtime unless there are changes in their 
priorities or resource demands. 

The priority is determined by the magnitude of the average slowdown, which explains why the 
average slowdown indicator is increasingly crucial. When formulating a testing strategy, emphasis 
should be placed on employing the SPRT strategy, as it enables efficient performance and ensures 
equitable job execution. 

4.  Challenges 
In addition to the challenges mentioned earlier, there are several other aspects that could have been 
further explored in this paper. Firstly, while the analysis of transformation was relatively shallow, it 
would have been beneficial to delve deeper into the factors influencing this process. Understanding these 
factors can provide valuable insights into improving average response time and average slowdown. 

Moreover, although the theoretical frameworks used in analyzing intelligent scheduling and various 
strategies were informative, incorporating more practical examples would have enhanced the 
applicability of these concepts. By illustrating specific cases of preemptive and non-preemptive 
strategies, readers would have gained a better understanding of how these approaches can be 
implemented in real-world scenarios. 

Furthermore, it is worth noting that a more comprehensive exploration of queuing theory's integration 
with computer system performance design could offer even greater practical applications. This 
integration has the potential to optimize system performance by effectively managing queues and 

minimizing waiting times for tasks or processes. 
Additionally, one area where this paper fell short was in providing visual aids such as charts or graphs 

related to simulating Python systems. Including such visuals would not only enhance the persuasiveness 
of the article but also facilitate a clearer comprehension of complex concepts for readers who may be 
less familiar with Python systems. 

Overall, while this paper presented valuable insights on certain aspects related to system performance 
design and analysis, expanding on these areas could have provided a more comprehensive understanding 

for readers. Incorporating additional depth through detailed case studies and practical examples would 
contribute significantly to bridging theoretical frameworks with real-world applications. 

5.  Conclusion 
This manuscript offers an in-depth strategy examination of the M/G/1 queuing system, serving as a 
comprehensive guide for professionals and enthusiasts in the field. At its inception, the paper 

meticulously derives the formula for assessing the M/G/1 system's average response time. This 
foundational understanding ensures that readers can effectively gauge system performance through 
refined analytics presented later in the discourse. A spotlight is also cast upon the concept of "average 
slowdown", a pivotal metric especially in contexts where preemptive strategies reign supreme. 
Interestingly, it emerges as a cornerstone that underscores the marked advantage of the SPRT strategy 
over its counterpart, the PSJF. As the analysis unfolds, the paper doesn't merely stop at presenting data 
and findings. Instead, it delves deeper, comparing and contrasting various strategies with a discerning 
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lens. The culmination of this analytical journey equips the reader with the insights and nuances essential 
for making an informed choice about the most apt strategy for a given scenario. The goal is clear: not 
just to inform, but to empower decision-makers with a robust understanding of the M/G/1 system's 
intricate dynamics. 
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