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Abstract. In the face of mounting global urbanization and digitization trends, the need for 

advanced tools for city planners and system managers becomes increasingly paramount to ensure 

seamless infrastructure operations. Among the arsenal of available tools, queuing theory emerges 

as a standout, offering invaluable predictions and strategies for a broad spectrum of situations. 

This article delves into the nuanced applications of queuing theory, with a specific lens on 

network communications and urban space planning. Drawing from a rich tapestry of academic 

sources, the narrative weaves together core principles to shape models that mirror real-world 
situations. At the heart of this exploration lies a deep dive into solutions that tackle network delay 

challenges, fine-tuning techniques for 6TiSCH resource allocation, and the subtle art of queue 

design at railway ticket counters. These instances highlight the adaptability and immediate 

relevance of queuing theory across various sectors. Those in the fields of design, system 

architecture, and urban planning will find this read enlightening. By leveraging the insights 

offered, decision-makers can pave the way for optimized system functionalities and heightened 

user experiences, vital in an era dominated by urban sprawl and digital transformation. 
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1.  Introduction 
The origins of queuing theory can be traced back to analyses and studies related to the incoming call 
systems of telephone exchanges. Today, the application of queuing theory spans a diverse array of 

sectors, from telecommunications, computing, and transportation to logistics, warehouse management, 
and the layout of hospitals and factories. Urban planners harness queuing theory to refine public 
transportation systems—streamlining bus and train schedules, reducing wait times, and enhancing 
passenger throughput. 

While there's no shortage of literature dedicated to the practical applications of queuing theory, 
there's a noticeable gap in research that critically analyzes, evaluates, and addresses the challenges in 
these applications. This paper seeks to delve into the intricacies and challenges that arise when queuing 

theory intersects with real-world scenarios, and when it's combined with other theoretical frameworks. 
By providing such an analysis, the intention is to offer clarity and guidance for scholars venturing into 
similar realms of research. Drawing from real-world use cases of queuing theory, this paper 
amalgamates findings from prior studies, offering fresh perspectives and novel insights. 
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2.  Theoretical Foundations 

2.1.  Definition and Historical Evolution of Queuing Theory 

A.K. Erlang's seminal 1909 paper, "Probability and the Telephone," is widely regarded as the inaugural 
publication in the realm of queuing theory [1]. This discipline, a specialized subset of operations 
research, delves deep into the intricacies of analyzing and modeling queues, aiming to enhance and fine-
tune system performance. At its core, queuing theory seeks to pinpoint the ideal system configuration, 
encompassing factors like server count, system capacity, and the orchestration of arrivals and departures. 
Such a configuration would ideally curtail wait times, amplify throughput, and elevate overall efficacy. 

Several pivotal concepts underpin queuing theory: 

Arrival Rate: The frequency of work items entering the system. 
Serving Rate: The speed at which tasks are processed by the server. 
Queue Discipline: A guideline dictating the sequence in which tasks are addressed from the queue. 
System Capacity: The ceiling on the number of tasks the system can accommodate. 
Utilization: The proportion of time the server dedicates to task processing. 
Little's Law: An elemental equation elucidating the relationship between average wait duration, the 

count of tasks within the system, and server utilization. 

Queuing Model: An abstract, mathematical depiction of a queuing system's dynamics, examples 
being the M/D/1 and G/G/1 models. 

By meticulously dissecting these principles and harnessing mathematical simulations to mirror 
queuing system behaviors, queuing theory furnishes invaluable perspectives. These insights aid in 
crafting systems that adeptly cater to client requirements, concurrently slashing lags and bolstering 
output. 

2.2.  Other Theories Discussed in This Study 

Quality of Experience (QoE) represents the comprehensive assessment of customer satisfaction and 
interaction with a service or product, along with its respective provider, such as a webpage or television 
broadcast [2]. 

3.  System Analysis and Empirical Research 

3.1.  Application of Queuing Theory in Network Communications 

3.1.1.  The Necessity for Queuing Theory in Contemporary Network Communications. Queuing theory 

plays a vital role in network communication performance as it provides a mathematical framework for 
analyzing and modeling the behavior of packets in communication networks. This allows network 
designers to optimize the network structure, reduce error rates [3], and improve resource utilization [4]. 
For example, network designers can use flow modeling to represent flow patterns in a network, which 
helps understand the dynamics of packet arrival and departure. This information is critical for designing 
efficient protocols and algorithms that can handle traffic efficiently. 

3.1.2.  Case Studies and Analysis: Queuing Theory in Network Communications 

3.1.2.1.  Use Queuing Theory to Calculate Appropriate Server Performance to Cope with Network 
Delays. In the process of network users obtaining services, users are always concerned about the waiting 
time of services, such as the loading of web pages and videos. For some services, even a pause event of 

just a few seconds can significantly degrade user-perceived quality of experience (QoE) [5]. Therefore, 
network designers need to reduce the possible waiting time for users. The process of the server 
processing requests issued by users can be modeled using queuing theory. 
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The waiting time of a job in the queue can be obtained by Little's law (Formula 3) 
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The average waiting time in Figure 2 is about 9 times that of Figure 1. This means that the average 
wait time for users in Figure 2 is ten times longer than that of users in Figure. 

 

Figure 1. Statistics on waiting time, 3000 jobs are simulated, equipment utilization 𝜌=
1

2
 

(Photo/Picture credit: Original). 

 

Figure 2. Statistics on waiting time, 3000 jobs are simulated, equipment utilization 𝜌=
9

10
, the average 

service rate μ of the server is the same as Figure 1 (Photo/Picture credit: Original). 
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When user requests to the network are close to the server's service capabilities, it means that users 
need to wait longer for their requests, which will greatly affect the user's mood. At the same time, in 
reality, the storage space of the server is limited. If there are too many jobs in the queue, data will 
overflow and cause failure [6]. Network designers need to reasonably plan server performance or add 

new servers based on user response to waiting time and the number of network requests to ensure that 
the network can run smoothly and stably. 

3.1.2.2.  Using Queuing Theory to Solve the Problem of Resource Quantity Calculation for Resource 
Scheduling in 6TiSCH Network. In 2013, the IETF initiated the 6TiSCH standards working group with 
the intent of integrating IPv6 into the realm of low-power, short-range wireless technology. This 

initiative aimed to address challenges associated with IP access for industrial field nodes and ensuring 
the reliability and predictability of communications within resource-constrained environments. The 
efficacy of the 6TiSCH network is significantly influenced by its scheduling methods. Consequently, 
academic circles have introduced autonomous resource scheduling algorithms, notably Orchestra and 
ALICE. The subsequent section will delve into a resource quantity computation solution, termed 
MY_SF, tailored for resource scheduling within the 6TiSCH network. This solution, rooted in queuing 
theory, was pioneered by the China University of Posts and Telecommunications [7]. Considering the 

volume of data packets and spatial dimensions, reference can be made to both formula 4 and formula 5. 
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Similarly, the entry and exit of data packets have Markov properties, so formula 6 can be obtained. 
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According to Equations 4, 5, and 6, the probability of state n (Formula 7) and the probability of state 
n when the amount of data inputs and outputs reaches a balanced state (Formula 8) can be obtained. 
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According to formulas 4, 5, 7, and 8, the probability that there is without any data packet in the buffer 

queue 𝑝0 can be obtained (formula 9). 
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The average cache queue length E (𝐿𝑎𝑣𝑔 ) can be also derived from Formula 8 (Formula 10). 
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The average amount of packets E(Lavg +Lq) in a node is as follows (Formula 11): 

 E(Lavg + 𝑁𝑡𝑥) = E(𝐿𝑎𝑣𝑔 ) + 𝑁𝑡𝑥 + 𝑝0 ∑
(𝑛−𝑁𝑡𝑥)𝜌𝑛

𝑛

𝑁𝑜𝑥−1
𝑛=0      (8) 

The average amount of occupied units 𝑠̅ is as follows (Formula 12): 
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Through the above formula, network designers can predict many attributes of the system. This 
attributes can guide network designers to better design network. By modeling queues and analyzing their 
behavior, network administrators can guarantee a certain level of quality of service for various 
applications. Simultaneously, queuing theory can be used to determine whether new calls should be 

accepted into the network. By analyzing the current state of the network and the expected load on the 
network, queuing models can help network administrators make decisions about call acceptance control 
to ensure that the network does not become overloaded and provide poor service to existing calls. 
However, network administrators must also pay attention to the actual situation when applying queuing 
theory. Network administrators must apply queuing theory correctly based on specific needs. 

3.2.  Application of Queuing Theory in Public Place Planning 

The Imperative of Queuing Theory in Urban Planning. Queuing theory stands as a crucial instrument in 
urban planning, adept at streamlining and optimizing pedestrian flow across various public domains 
such as transport hubs, retail centers, medical facilities, and amusement parks. This mathematical 
approach empowers urban designers to capitalize on spatial efficiency, guiding them toward optimal 
designs that not only host maximal foot traffic but also circumvent potential overcrowding or lag. 
Furthermore, queuing theory plays a pivotal role in curtailing wait times by spotlighting congestion 

points and fine-tuning the operational capacity of structures such as ticket booths, security checks, and 
attraction lines. Real-world Insights: The Role of Queuing Theory in Urban Spaces. An imperative for 
railway station architects and administrators is the judicious design of ticket booths to avert undue delays 
for patrons. Consequently, a nuanced model becomes indispensable for a holistic grasp of the dynamics 
at play during the conceptualization and governance of such ticket counters. Research conducted at the 
NSG-3 railway stations over a seven-day span [8] facilitated data accumulation, which upon analysis, 
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aligned seamlessly with a single-server queuing paradigm. This indicates that railway design teams and 
overseers could potentially harness the M/G/1 model as a planning foundation. Nonetheless, the scope 
of this study was confined to a select few regions in Southern India, necessitating a more expansive on-
site evaluation before embracing this model universally. Harmonizing Queuing Theory with 

Complementary Schemas in Urban Design. Strategies for Incorporating Queuing Theory into Urban 
Spaces. Prior to deploying any design solution, urban planners should possess a comprehensive 
understanding of the specific ecosystem they're dealing with. This entails a thorough examination of 
factors like patron influx rates, service intervals, and overall capacity to pinpoint the primary 
contributors to gridlocks and lags [9]. Distinct regions, and even varying timeframes within them, will 
exhibit disparate patterns of arrivals and service distributions. This necessitates a tailored approach 
where designers actively engage in field assessments to ascertain the most apt model and the associated 
parameters for their unique situation [10]. 

4.  Conclusion 
This article introduces a series of modeling optimization strategies rooted in queuing theory tailored to 
specific real-world scenarios. While designers can select models that seem to best match their current 
conditions, it's imperative to recognize that disparities often exist between theoretical models and the 

intricacies of real-life situations. Thus, it falls upon the designer to refine these models, ensuring they 
are more congruent with the multifaceted realities they encounter. Additionally, owing to the constraints 
in the scope of this article, the exploration into the specific applications of queuing theory might not 
sufficiently address the myriad challenges present in everyday production and living conditions. Such 
constraints shouldn't be viewed as limitations but rather as starting points. There exists a vast expanse 
of opportunities for future researchers and scholars to delve deeper into this domain. By further 
investigating and encapsulating the myriad directions and nuances of queuing theory, they can bring 
forth more comprehensive solutions and insights that can bridge the gap between theoretical ideals and 

the ever-evolving dynamics of real-world scenarios. 
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