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Abstract. The rapid evolution of Artificial Intelligence (AI) technology has propelled image 

recognition to the forefront of computational advancements. Since the inception of 

Convolutional Neural Networks (CNNs), the field has expanded into a multitude of sophisticated 

models and their derivatives, each tailored to address specific challenges and applications. Image 

recognition's landscape encompasses foundational tasks such as object and face detection, 

extending to more specialized applications like emotion analysis, optical character recognition, 

and complex interpretation of biological imagery. This domain's historical perspectives trace 

back to models like AlexNet, which set benchmarks with accuracy rates of around 70%. Fast 

forward to contemporary times, and advanced algorithms consistently achieve accuracy figures 

beyond the 90% threshold on benchmark datasets like ImageNet. Moreover, the diversification 

of AI applications has led to the development of models like MobileNet, which are intricately 

designed for streamlined efficiency on mobile devices, balancing performance with resource 

constraints. This discourse will navigate the intricate maze of image recognition, primarily 

leveraging insights from the ImageNet dataset as a canonical reference. By the end of this 

exploration, this work will discuss several cost-efficient models. Finally, this work will also 

cover some complex algorithms with high accuracy. All these algorithms use different 

approaches and obtain good performance in either cost-efficiency or accuracy. This discourse 

will provide an overview of these algorithms, detailing their novelty, implementation, and 

experimental results for accuracy and cost-efficiency. 
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1.  Introduction 

Artificial intelligence technology is evolving rapidly, and its potential applications are vast. Image 

recognition is one of its most classic and prevalent domains. Beginning with CNNs, there are now 

various neural network models and even variants of the same model. The essential applications and 

technologies in image recognition encompass object detection, face recognition, handwriting detection, 

optical character recognition, emotion analysis, and scene identification. While this may seem broad, 

specific instances involve the recognition of traffic violations by vehicles and machine-aided analyses 

of intricate biological images. Image recognition research commenced quite early and has achieved 

significant results over the years. From the AlexNet with an accuracy rate of around 70% to 

contemporary models achieving over 90% accuracy on ImageNet [1]. Furthermore, these algorithms 
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possess diverse characteristics. For instance, algorithms like MobileNet are specifically designed for 

mobile devices, showcasing impressive efficiency and resource usage. Thus, discussing different image 

recognition algorithms is immensely meaningful. Here, we'll begin the discussion with the classic 

dataset, ImageNet, exploring the features and performance of various algorithms trained on it. 

Ultimately, we'll select and compare four representative algorithms from different eras. 

2.  AlexNet 

The first algorithm is AlexNet. This algorithm won the championship in the ImageNet Large Scale 

Visual Recognition Challenge in 2012. AlexNet also introduced ReLU, dropout, and dual-GPUs training, 

which are novelty and advanced in 2012. Devices with dual-GPUs will obtain excellent accuracy on 

OCR compared to other devices in 2012. This architecture contains five convolutional and three fully 

connected layers. The initial five layers are convolutional, whereas the subsequent three are fully 

connected. The output from the final fully-connected layer is directed to a 1000-class softmax, 

generating a distribution for the 1000-class labels. AlexNet aims to optimize the multinomial logistic 

regression target, which aligns with maximizing the average log probability of the accurate label within 

the predicted distribution across training samples [1].  

2.1.  Architectures 

AlexNet uses Rectified Linear Units (ReLU) as its activation function [1], also it was the first large-

scale model to utilize the ReLU function. Using the terminology of Nair and Hinton [2], neurons with 

the nonlinearity f(x) = max(0; x) are termed as ReLU. Compared to networks with tanh units, deep 

convolutional networks utilizing ReLUs accelerate their training by several multiples.  

After ReLU, Local Response Normalization (LRN) is applied. This is a technique that simulates a 

form of lateral inhibition, a concept borrowed from neuroscience [1]. Lateral inhibition is a process in 

the nervous system where activated neurons reduce the activity of their neighbors. By mimicking this, 

LRN will be able to enhance the model's generalization, making the activated neurons stand out more 

in their local neighborhood. In the network, when a particular kernel, or feature detector, responds 

strongly to a specific feature, its response will be normalized concerning the responses of neighboring 

kernels. This normalization helped in stabilizing the activations and reducing the chances of extreme 

response values. 

2.2.  Dual-GPU Training 

AlexNet is designed to be trained in parallel on two NVIDIA GeForce GTX 580 GPUs [1]. This parallel 

computation approach allowed the model to train on a significantly large dataset and complete the 

training in a reasonable amount of time. Moreover, the use of GPUs enabled the training process to 

handle the large-scale matrix and vector operations efficiently, which were prevalent in the 

convolutional layers and fully connected layers. This strategic use of GPUs not only made the training 

of such a deep network feasible but also set a precedent for the widespread adoption of GPUs in the 

training of deep learning models. 

2.3.  Avoid Overfitting 

In reducing overfitting, AlexNet also has 2 excellent solutions.  

Data Augmentation is a technique that amplifies the training dataset and bolsters the generalization 

capability of a model. This technique will artificially create new training examples by making minor 

transformations to the original images, such as rotation, scaling, flipping, etc. This will infuse diversity 

into the training data so that the model is more likely to grasp the genuine underlying structure of data 

rather than specific, potentially noisy patterns. This is similar to studying the process of a student. Most 

of the time, students who finish more practice of the same chapter (all of these questions have made 

minor modifications) will have better scores than other students who only finish one practice of the same 

chapter. 
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Dropout is a very efficient version of the model combination. It is a technique of randomly “shutting 

off” a subset of neurons during the training process, in order to prevent the model from overly relying 

on any singular neurons during the training process [1]. 

3.  MobileNet 

MobileNets is an architecture, which focuses on designing models for mobile devices. It has 70.6% of 

accuracy. This model is developed by Google, many ARM-base chip such as Qualcomm Snapdragon 

devices can run this model. This is very amazing since a lot of models on that time requires strong GPUs 

and CPU. This is a successful and widely used model [2]. 

3.1.  Depthwise Separable Convolution 

This will separate a standard convolution into a depthwise convolution and a 1*1 convolution, and this 

combination can be considered as a pointwise convolution. In MobileNet, this design applies an 

individual filter to each input channel, then pointwise convolution utilizes a 1*1 convolution to combine 

the outputs of the depthwise convolution. Differing from traditional standard convolutions, depthwise 

separable convolution divides this proof into 2 separate layers, one for filtering and another one for 

combining. This factorization will decrease computational requirements and overall model size [2]. 

3.2.  Width Multiplier and Resolution Multiplier 

These two are a feature for making this architecture smaller and using fewer resources of computation. 

A width multiplier is a hyperparameter, which will shrink or expand the model’s size and cost of 

computation by scaling the number of channels. This will reduce the model’s size and requirement of 

computation. Interestingly, this can be used in any other models, in order to make the model size trade-

off. Resolution multiplier is another hyperparameter that adjusts the input image’s resolution. This will 

make the internal representation of each layer in the network proportionally scaled down [2]. Within 

these two hyperparameters, the computational cost will be reduced significantly. 

4.  ShuffleNet 

ShuffleNet is a neuron network that requires lower device configuration, which means it is also suitable 

for mobile devices. This has 70.9% accuracy in the ImageNet dataset. Compared to other algorithms 

designed for mobile devices such as MobileNet which has been discussed previously, ShuffleNet is 

more efficient with slightly higher accuracy. 

4.1.  Channel Shuffle 

This is one of the key features of ShuffleNet. Channel Shuffle enhances the interplay between input and 

output channels in group convolution. By drawing data from varied groups, a prior group layer's 

channels can be divided into distinct clusters. In a setup with "g" groups resulting in g × n channels, the 

output channels are modified to a (g; n) format, then transposed and flattened for the subsequent layer. 

The technique is adaptable across varying group counts, and the differentiability of Channel Shuffle 

supports its integration into holistic network training, enabling the design of intricate architectures with 

multiple group convolution layers [3]. 

4.2.  Grouped Convolution 

Pointwise Group Convolutions are crucial in assessing ShuffleNet models. Models were compared 

across group numbers from 1 to 8. With a group number of 1, the model lacks pointwise group 

convolution, mirroring the "Xception-like" structure [4]. According to Table 2, models with group 

convolutions (g > 1) consistently outshine those without (g = 1), especially in smaller models like 

ShuffleNet 0.5× and 0.25×. However, some models, like ShuffleNet 0.5×, experience performance 

saturation or decline with larger group numbers (e.g., g = 8). While larger group numbers offer broader 

feature maps, the decrease in input channels for each convolution might reduce representation capability. 

Interestingly, smaller models, e.g., ShuffleNet 0.25×, consistently improve with larger group numbers. 
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4.3.  Pointwise Grouped Convolution 

Evaluating pointwise group convolutions, ShuffleNet models with varied group numbers (1 to 8) were 

compared. A group number of 1 makes ShuffleNet resemble an "Xception-like" structure [4]. Models 

with group convolutions (g > 1) consistently outperform those without (g = 1). Notably, smaller models 

gain more from groups, with performance differences widening as the model size decreases. For some 

models, like ShuffleNet 0.5×, larger group numbers, e.g., g=8, could lead to stagnating or even declining 

classification scores. This is potentially due to reduced input channels for each convolution filter 

impacting representational capacity. However, for smaller models like ShuffleNet 0.25×, larger group 

numbers consistently improve results, indicating wider feature maps are particularly beneficial for these 

[4]. 

5.  EfficientNet 

EfficientNet introduced a new way of scaling deep learning models. EfficientNet-B7 is the most 

advanced model and it has 84.4% accuracy in the ImageNet dataset. Scaling dimensions are not 

independent in neuron networks. For high-resolution images, both network depth and width are 

supposed to increase in order to capture more detailed information. This will avoid saturated accuracy. 

This is a new method. φ is the user-specified coefficient, which indicates available resources for model 

scaling. α, β, and γ are constants determined by grid search. The expressions of depth, width, and 

resolution are: 𝑑(𝑑𝑒𝑝𝑡ℎ) = 𝛼𝜙 ; 𝑤(𝑤𝑖𝑑𝑡ℎ) = 𝛽𝜙 ; 𝑟(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) = 𝑟𝜙 . Furthermore, because this 

architecture constrains 𝛼 ∙ 𝛽2 ∙ 𝛾2 ≈ 2, so that the total Floating-Point Operations Per Second (FLOPS) 

will only increase about 2𝜙 for all 𝜙. Thus, the computation is still efficient with this method. This 

model has 8 generations. It starts in EfficientNet-B0, which is considered as baseline model. 

EfficientNet-B7 is the latest generation [5]. 

6.  MultiGrain 

MultiGrain algorithm is designed for both image classification and instance retrieval. A typical approach 

for image classification involves training networks to predict class labels, while instance-level 

recognition or retrieval typically employs embeddings to distinguish between individual images or items. 

But in MultiGrain, the approach is to bridge these two tasks, thus benefiting both [6].  

6.1.  Spatial Pooling Operator 

Typically, convolutional networks employ local pooling methods, such as max-pooling, to maintain 

stability against minor image shifts. Global spatial pooling, however, aims to simplify a 3D activation 

tensor into a singular vector [6]. Early models, taking AlexNet for example, making them sensitive to 

positional shifts. In contrast, modern architectures, e.g., ResNet, use average pooling for better positional 

invariance. However, image retrieval tasks demand more precise spatial information, leading to the 

development of the Generalized Mean Pooling operator (GeM) [6]. GeM is a tunable pooling approach 

focusing on an image's salient features. It's a broader representation of average and max-pooling. This 

paper pioneers the application of GeM in image classification, underscoring its efficacy, especially for 

high-resolution images [7]. 

6.2.  Training Objective 

To holistically address classification and retrieval, a joint objective function is necessary to discuss. This 

function bifurcates into a classification loss and a retrieval loss. For classification, the widely-used cross-

entropy loss is employed [6]. However, retrieval is more nuanced. Two methods dominate: the 

contrastive loss, which distinguishes positive from negative image pairs using a set threshold, and the 

triplet loss, emphasizing the relational attributes of image triplets [8]. However, adjusting parameters 

for these methods can be cumbersome. To combat this, Wu et al. introduced a method that re-normalizes 

image embeddings and uses a modified contrastive loss, termed the margin loss [9]. Computation of this 

loss utilizes distance-weighted sampling, ensuring efficiency in the joint training environment. Notably, 
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this method's adaptability enables work with smaller batch sizes, alleviating the need for intricate 

parameter tuning [6]. 

6.3.  Preprocessing 

PCA whitening is a step applied in this model for transferring features learned from data argumentation 

to standard retrieval datasets. The effect of PCA whitening could be erased in the parameters of the 

classification layers, which means the whitened embeddings can be used not only for classification but 

also for instance retrieval. In this model, standard 224*224 resolution will be trained in this architecture 

because of p*, for proxy task for cross-validation [6]. 

7.  Meta Pseudo Labels 

This is a semi-supervised learning algorithm. Pseudo-label or self-training methods now have been 

successfully applied in the improvement of state-of-the-art models in many computer vision tasks [10]. 

However, meta pseudo labels are a more advanced technology to discuss. Meta pseudo labels have a 

systematic mechanism in which the teacher observes how its pseudo labels would affect the student, and 

then corrects the bias. In meta pseudo labels, the student and teacher learn parallelly [11]. The difference 

between pseudo labels and meta pseudo labels can be presented in Figure 1. 

 

Figure 1. Pseudo label is presented on the left and meta pseudo label is presented on the right [11]. 

7.1.  Pseudo Labels as an Optimization Problem 

Two networks will be discussed here: teacher(T) and student(S). T has a parameter 𝜃𝑇  and S has 

parameter 𝜃𝑆. Labeled data is represented as (xl; yl), which includes images and their corresponding 

labels. Unlabeled images are represented as xu. T(xu; 𝜃𝑇) represents the soft predictions of the teacher 

network on the batch xu of unlabeled images, with a similar representation for the student. The cross-

entropy loss between 2 distributions q, p will be given by CE(q;p) [11]. 

Pseudo-labels train the student model in order to minimize the cross-entropy loss on unlabeled data. 

However, this method teaches the “student” network using images without any labels. The goal is to get 

the student to make predictions that are as close as possible to predictions made by a well-trained 

“teacher” network. The performance of the student is strongly related to the guidance from teacher. The 

most unique part of this part is trying to adjust the teacher’s guidance based on how well the student 

performs, aiming to fine-tune the learning [11]. 

7.2.  Practical Approximation 

To make Meta Pseudo Labels manageable, techniques from prior meta-learning research are adopted 

[12]. Instead of a multi-step approach, a one-step gradient update simplifies the student's optimization. 

This leads to a more hands-on objective for the teacher's role. While soft pseudo labels allow for 

traditional back-propagation, this study opts for hard pseudo labels for computational benefits in large-

scale experiments. Both label types perform similarly, but hard labels require an adjusted gradient 

approximation approach. As a twist, the teacher's parameters evolve based on the student's optimization, 

fostering an iterative update process between the two [11]. 
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7.3.  Teacher’s Auxiliary Losses 

Meta Pseudo Labels show significant standalone efficacy. However, its performance is enhanced when 

the teacher is trained with added auxiliary objectives. In methodology, the teacher undergoes training 

with both supervised and semi-supervised objectives. While the former involves labeled data training, 

the latter incorporates the UDA objective [13]. A comprehensive pseudo code, detailing the integration 

of supervised and UDA objectives with Meta Pseudo Labels, is provided in Appendix B, Algorithm 1. 

Further, the student model, initially trained with unlabeled data and the teacher's pseudo labels, can be 

refined with labeled data for heightened accuracy, as showcased in the experimental section [11]. 

8.  Results 

ImagaNet is a large-scale visual database. This is designed for use in visual object recognition research. 

It contains over 14 million annotated images and has over 20000 categories. One of the primary goals 

of ImageNet was to advance the field of computer vision, particularly in large-scale image recognition. 

To this end, ImageNet launched an annual competition [14]. This challenge has drawn global attention 

from researchers in the field. In 2012, a deep learning model called AlexNet achieved a breakthrough 

performance in this competition, marking the rise of deep learning in the field of computer vision. 

In this paper, the performance of each model will be discussed particularly on how they performed 

in the ImageNet database. 

Table 1. Performance comparison on ImageNet dataset. 

Model 
Top 1 

Accuracy 

Top 5 

Accuracy 

AlexNet (Using ImageNet REAL dataset) 62.88% - 

MobileNet 70.6% - 

ShuffleNet 70.9% 91.5% 

EfficientNet (FixEfficientNet- B0) 80.2% 95.4% 

MultiGrain (NASNet-A-Mobile (350px)) 75.1% 92.5% 

MetaPsudo Label (EfficientNet-L2) 90.2% 98.8% 

9.  Discussion 

Based on the different model design, these models are varying not only in performance but also at the 

cost of computation. In this section, the author will first discuss the difference in computation cost 

between AlexNet and MobileNet, and why the MobileNet have higher efficiency while obtaining even 

more accurate result. The model differences are compared. 

9.1.  Difference in Efficiency – AlexNet and MobileNet 

This section will provide examples of AlexNet and MobileNet. These 2 are typical examples of CNNs, 

which makes 2 of them are worth to discuss. AlexNet contains many convolutional layers, maximum 

pooling layers, and full connect layer. Also, this model uses ReLU as its activation function. But about 

the MobileNet, this uses depthwise separable convolution, which can significantly reduce the 

computational cost [2]. Also, this might be a minor factor for that AlexNet runs slowly, LRN [1]. This 

technology wasn’t widely applied in other models. 

9.2.  Difference in Approaching – EfficientNet and MultiGrain 

It’s hard to say which algorithm has higher performance, but these 2 algorithms have quite different 

approaches, which is worth discussing. Firstly, the design philosophy is quite different. EfficientNet is 

featured by its compound scaling method, where the network’s depth, width, and input resolution are 

scaled in a balanced manner. This was based on the observation that scaling only one dimension of a 

network (depth, width, or resolution) can lead to suboptimal performance. Through its compound scaling 
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approach, EfficientNet aims to strike a balance between accuracy and efficiency, especially for large 

datasets. Due to its strategy, EfficientNet can be widely used, from mobile devices to cloud servers [5].  

The primary strategy behind MultiGrain focuses on learning image features corresponding to 

multiple resolutions. By training a single model to handle images of varied resolutions, it seeks to 

improve the model’s generalization capability and accuracy. Due to its operations at multiple resolutions, 

MultiGrain might have slightly higher computational costs while aiming to increase accuracy. 

MultiGrain might excel in tasks where strong model generalization is required, like when test data 

resolution varies from training data [6]. 

In general, EfficientNet emphasizes scaling the network in a balanced manner to improve both 

efficiency and accuracy, MultiGrain stresses enhancing the model's generalization capability by 

handling images of different resolutions. Both approaches have their strengths, and the choice between 

them would depend on the specific application and requirements. 

10.  Conclusion 

This paper has delineated six distinct and representative image classification models, shedding light on 

their underlying principles and unique attributes. The first is AlexNet, which is one of the earliest 

networks with significant improvement in accuracy. Then two cost-efficient networks, MobileNet and 

ShuffleNet, are discussed. Eventually, three complicated networks EfficientNet, MultiGrain, and Pseudo 

Labels are discussed. A noticeable segment of these models evolves from the foundational constructs of 

CNNs, while others break the meld with inventive and novel approaches. An evident trend underscores 

that more recently published algorithms tend to either elevate accuracy levels or significantly optimize 

computational costs. This progression illustrates the dynamism of the field and offers a gamut of choices 

tailored to varied application scenarios. As the horizons of current computational paradigms, like CNNs, 

are continuously pushed, it paves the way for inspiration from alternative domains. Such cross-

disciplinary integration holds the promise of unveiling groundbreaking approaches that achieve 

simultaneous leaps in both accuracy and computational efficiency. The evolving landscape of image 

recognition, thus, stands testament to the unending quest for excellence, hinting at a future where current 

boundaries are transcended in pursuit of more holistic and effective solutions. 
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