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Abstract. Autonomous driving depends on reliable perception systems that involve various 

perception modules and advanced computer vision techniques. One crucial component of these 

systems is lane detection, which traditional methods often rely on basic features like color or 

edges that are sensitive to lighting and perspective changes. Recently, convolutional neural 

networks (CNNs), have revolutionized lane detection. Nevertheless, existing methods still have 

some limitations, such as the need for pixel-level labeling and computational inefficiency for 

real-time applications. To address these challenges, this work leverages PP-LiteSeg for real-time 

semantic segmentation. PP-LiteSeg’s key elements are its Simple Pyramid Pooling Module 

(SPPM), Unified Attention Fusion Module (UAFM), and Flexible and Lightweight Decoder 

(FLD), which optimize lane detection efficiency. The FLD flexibly adjusts computational costs 

between the encoder and decoder, balancing efficiency and accuracy. The UAFM enhances 

feature representations using attention mechanisms, increasing segmentation accuracy. The 

SPPM efficiently aggregates contextual information while reducing computational complexity. 

The comprehensive method for lane segmentation achieves competitive results on popular lane 

detection datasets. The proposed model can adapt to different computational capabilities and 

significantly enhances lane detection efficiency for real-time applications. 
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1.  Introduction 

Fully achieving autonomous driving requires a comprehensive understanding of the surrounding 

environment, involving the integration of various perception modules and the application of numerous 

pattern recognition and computer vision techniques, with lane detection being a critical component [1]. 

Conventional traffic line detection methods typically rely on extracting elementary features such as 

color, or edges. These features are combined using techniques like the Hough transform, or Kalman 

filter to provide information about traffic line segments [2]. While these methods are adaptable to 

different environments with minimal adjustments, their performance is sensitive to factors like lighting, 

occlusion, and the image perspective, including high-angle aerial views or an in-car driver's perspective 

[3]. 

In recent times, image segmentation has been revolutionized Convolutional Neural Networks 

(CNNs).  Semantic segmentation methods have shown outstanding performance in traffic line detection, 

allowing for inferences about shapes and locations [4,5]. However, existing methods have limitations. 

Semantic segmentation methods require pixel-level labeling or preprocessing, which can be 
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cumbersome. They often predict many unnecessary points because the output size matches the input 

size, even when only a few points are needed for traffic line recognition. Moreover, these methods are 

not adaptable to varying computational capabilities, requiring significant architectural modifications for 

lightweight systems like embedded boards [6]. 

In order to overcome these constraints and improve the effectiveness of lane recognition, this study 

presents an innovative approach utilizing PaddleSeg's PP-LiteSeg for real-time semantic segmentation 

[7]. PaddleSeg is a comprehensive and efficient toolkit designed for picture segmentation tasks. It 

encompasses the whole development process, encompassing model construction, training, performance 

optimization, speed enhancement, and deployment [8]. The selected model, PP-LiteSeg, has an encoder-

decoder architecture. It is made up of three components, the Simple Pyramid Pooling Module (SPPM), 

Unified Attention Fusion Module (UAFM), and Flexible and Lightweight Decoder (FLD) [9]. The 

encoder-decoder architecture is typical. An encoder usually extracts multi-level features and the decoder 

maps them to the lable space. Recent decoder designs maintain a consistent number of channels while 

increasing spatial size [10].  

FLD, which progressively reduces channels while expanding spatial dimensions, with adaptable 

volume to align with the encoder. This flexible design balances computational complexity, enhancing 

overall model efficiency. Improving feature representations is pivotal for segmentation accuracy. The 

solution introduces the UAFM to efficiently strengthen feature representations. UAFM employs 

attention modules to generate weights, which are then used to fuse input features. UAFM includes spatial 

and channel attention modules to capture relationships within the features effectively. Contextual 

aggregation is another critical aspect of enhancing segmentation accuracy, but previous methods are 

computationally intensive for real-time applications. Leveraging the PPM framework, this work presents 

the SPPM which automatically learns multi-level embeddings from feature maps. Experimental results 

demonstrate that SPPM significantly contributes to segmentation accuracy with minimal additional 

computational cost. 

2.  Method 

This section introduces three crucial components that collectively constitute the innovative approach of 

PP-LiteSeg for optimizing the encoder-decoder architecture in semantic segmentation. These 

components aim to resolve the issue of computational inefficiency in lightweight decoder models, which 

maintain a consistent number of feature channels across all levels, resulting in increased computational 

costs in shallower stages. These three key components are: FLD, UAFM, and SPPM. Subsequently, we 

provide an overview of the real-time semantic segmentation architecture known as PP-LiteSeg. 

2.1.  Flexible and Lightweight Decoder (FLD) 

Benefits from the advancement of encoder-decoder architecture, the accuracy of image segmentation 

has been boosted. The encoder extracts hierarchical features by using a series of layers organized into 

stages. During the progression, when characteristics shift from lower to higher levels, there is an 

augmentation in the quantity of channels while the spatial dimensions diminish. Efficient encoding is 

achieved by properly distributing the computational load across multiple phases. On the contrary, 

contemporary decoder models that are designed to be lightweight exhibit a uniform distribution of 

feature channels across all levels. This design choice, however, results in noticeably increased 

computational expenses in shallower stages as compared to deeper stages, hence introducing redundancy. 

For the purpose of optimizing the efficiency of the decoder, FLD module is leveraged. It gradually 

decreases the quantity of channels in features as they progress from higher to lower levels. This enables 

the adjustment of computational costs in a dynamic manner, promoting a more balanced collaboration 

among the encoder and decoder components. 

2.2.  Unified Attention Fusion Module (UAFM) 

Furthermore, alongside the utilization of element-wise summation and concatenation techniques, 

scholars have introduced UAFM. It could complementarily leverage channel and spatial representations, 
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for boosting performance, leveraging attention mechanism. In general, the UAFM model initially 

employs two attention modules to generate the weight 𝛼. Subsequently, the input features are combined 

by the multiplication (Mul) and addition (Add) operations. The following sections will introduce the 

other two modules. The utilization of an attention module by UAFM enables the generation of a weight 

𝛼, which is subsequently used to combine the input features through the operations of Mul and Add. 

The input features are represented as 𝐹ℎ𝑖𝑔ℎ and 𝐹𝑙𝑜𝑤, with a comprehensive level of description. The 

output of the deeper module is referred to as 𝐹ℎ𝑖𝑔ℎ, whereas the equivalent from the encoder is denoted 

as Flow. It should be noted that these entities possess identical channels. The UAFM algorithm initially 

employs the bilinear interpolation operation to increase the resolution of 𝐹ℎ𝑖𝑔ℎ , resulting in an 

upsampled feature marked as Fup, which matches the size of 𝐹𝑙𝑜𝑤. Next, the attention module receives 

𝐹𝑢𝑝 and 𝐹𝑙𝑜𝑤 as its input and generates the weight 𝛼. The attention module has the potential to function 

as a plugin, taking the form of other modules such as spatial attention or channel attention modules. 

Subsequently, attention-weighted features are obtained by applying the element-wise multiplication 

operation to 𝐹𝑢𝑝  and 𝐹𝑙𝑜𝑤 , respectively. Ultimately, the Unified Attention Fusion Module (UAFM) 

conducts element-wise summation of the attention-weighted features, resulting in the production of the 

fused feature. The aforementioned technique can be expressed as 

𝐹𝑢𝑝 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹ℎ𝑖𝑔ℎ)                                                          (1) 

𝛼 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐹𝑢𝑝, 𝐹𝑙𝑜𝑤)                                                         (2) 

𝐹𝑜𝑢𝑡 = 𝐹𝑢𝑝 ∙ 𝛼 + 𝐹𝑙𝑜𝑤 ∙ (1 − 𝛼)                                                    (3) 

weight 𝛼 is generated by UAFM, leveraging either two attention modules, followed by fusing the input 

features using multiplication (Mul) and addition (Add) operations.  

2.3.  Spatial Attention Module 

The fundamental reason for incorporating a spatial attention module is to leverage spatial associations 

in order to compute a weight that signifies the importance of individual pixels within the input data. 

Based on the provided input features, represented as Fup ∈ RC×H×W and Flow ∈ RC×H×W, this methodology 

first performs operations on channel dimension, including mean and max. As a consequence, four 

features are produced, each having dimensions R1×H×W. Following this, the aforementioned four features 

are merged into a unified feature, denoted as Fcat ∈ R4×H×W. The concatenated feature is obtained by using 

convolution and sigmoid processes, resulting in α ∈  R1×H×W, as described in Equations 4 and 5. 

Significantly, the spatial attention module provides a level of adaptability, including the ability to 

eliminate the max operation in order to enhance computing efficiency. 

𝐹𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝑒𝑎𝑛(𝐹𝑢𝑝),𝑀𝑎𝑥(𝐹𝑢𝑝),𝑀𝑒𝑎𝑛(𝐹𝑙𝑜𝑤),𝑀𝑎𝑥(𝐹𝑙𝑜𝑤))                 (4) 

𝛼 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣(𝐹𝑐𝑎𝑡))                                                        (5) 

2.4.  Channel Attention Module 

The primary principle underlying this module is utilizing the inter-channel interaction to produce a 

weight that signifies the significance of each channel within the input features. The channel attention 

module presented in this study compresses feature maps leveraging average- and max-pooling. This 

process produces four features of RC×1×1. Subsequently, the system combines these four characteristics 

by concatenating them along the channel axis. It then achieved a weight  𝛼 ∈  RC×1×1, leveraging 

convolution and sigmoid. Finally, the processes can be expressed mathematically as equations 6 and 7. 

𝐹𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹𝑢𝑝),𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹𝑢𝑝), 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹𝑙𝑜𝑤),𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹𝑙𝑜𝑤))        (6) 

𝛼 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣(𝐹𝑐𝑎𝑡))                                                        (7) 
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2.5.  Simple Pyramid Pooling Module (SPPM) 

As depicted in Figure 1, the utilization of SPPM is employed. The initial step is utilizing this module to 

integrate the input functionality. It consists of three convolution processes, with bin sizes of 1 × 1, 2 × 

2, and 4 × 4, respectively. Subsequently, the convolution and upsampling processes are applied to the 

resulting features. In the context of the convolution process, it is seen that the kernel size is 1×1, and 

furthermore, the output channel is comparatively smaller in magnitude than the input one. In conclusion, 

this study incorporates the upsampled features and applies a convolution operation to generate the 

refined feature. In contrast to the original Patch Permutation Model (PPM), the Simplified Patch 

Permutation Model (SPPM) decreases intermediate and output channel amounts, eliminates the use of 

a simpler connection, and substitutes the concatenate operation with an addition operation. As a result, 

it can be argued that this design is appropriate for real-time models. 

 

Figure 1. Architecture of SPPM module [9]. 

 

Figure 2. Architecture of PP-LiteSeg [7]. 

2.6.  PP-LiteSeg 

Figure 2 illustrates the architectural design of the envisaged PP-LiteSeg. The system is primarily 

composed of three distinct modules, namely the encoder, aggregation, and decoder. To begin with, when 
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presented with an input image, PP-Lite employs a lightweight network as an encoder to extract 

hierarchical features. The encoder consists of five stages, with a stride of 2 for each stage. As a result, 

the final feature size is reduced to 1/32 of the input image. Additionally, PP-LiteSeg utilizes the 

Sequential Point Process Model (SPPM) to effectively capture and represent the long-range 

dependencies. The Spatial Pyramid Pooling Module (SPPM) incorporates global information by 

employing the output feature of the encoder. The suggested PP-LiteSeg algorithm effectively employs 

the FLD technique to progressively integrate multi-level information and generate the final image output. 

The FLD model is composed of two UAFM units and a segmentation head. The high-level characteristic 

of the envisaged PP-LiteSeg is generated either by the SPPM or the deeper fusion module. The 

Unsupervised Attention-based Feature Fusion Model (UAFM) generates fused features by employing a 

down-sample ratio at 1/8. The head reduces the channel count in the 1/8 down-sampled feature in order 

to align it with the total amount of classes. Following the process of upsampling the feature size to align 

with the input image size, the label for each individual pixel is determined through the utilization of an 

argmax.  

3.  Result and Discussion 

3.1.  Dataset 

The dataset contains 4000 lane images with 15 distinct labels. This research focuses on the preprocessing 

and optimization of a dataset comprising. An initial observation reveals a common characteristic in the 

dataset: approximately one-third of the image's upper portion represents the sky, devoid of any lane 

markings. Leveraging this insight, a cropping process is implemented, resulting in substantial memory 

savings by removing the top 690 pixels. 

Furthermore, to enhance the lane detection capabilities of the model, image sharpening and Canny 

edge detection techniques are applied. The Canny edge detection technique utilized here is also 

implemented based on the PaddlePaddle framework. After reading the color images, the lane images are 

converted to grayscale, preparing them for Canny edge detection. For a more refined Canny edge 

detection process using PaddlePaddle, the workflow involves several steps. Firstly, the image channels 

are split, and Gaussian filtering is applied to each channel to achieve blur reduction and noise mitigation. 

Subsequently, the Sobel operator is employed to compute the intensity gradients of the image, thereby 

determining edge gradients and directions and refining the edges. Finally, the batch dimension is 

removed, and additional image processing steps are performed, resulting in the post-edge detection 

image. 

 

Figure 3. Original and augmented images (Figure Credits: Original) 
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This approach serves to enhance the accuracy and precision of the Canny edge detection process, 

contributing to the model's improved lane detection capabilities as shown in Figure 3. 

3.2.  Performance 

In the initial phase of the workflow, this work systematically traverses through all mask image files and 

execute the following operations while reading them: utilizing 'cv2.imread' to load the mask images, 

representing them as grayscale (single-channel) images, computing the size of these mask images 

(denoted as 'size,' which signifies the total pixel count), and iteratively looping through 16 distinct 

categories (ranging from 0 to 15). For each category, the following sequence of actions is undertaken: 

the creation of a Boolean mask 'a' to identify the presence of pixels within the mask image having values 

corresponding to the current category, the calculation of the pixel ratio 'ratio_i' pertaining to the current 

category (indicating the proportion of pixels associated with that category relative to the total pixel 

count), and the accumulation of 'ratio_i' within 'count[i]' to maintain a comprehensive record of 

cumulative pixel ratios. After acquiring the collection of pixel ratios, this work proceed to compute the 

relative proportions for each category by dividing the pixel ratio of each category by the total pixel ratio. 

This computation results in the relative representation of each category within the overall pixel 

distribution. 

 

Figure 4. Class distribution (Figure Credits: Original) 

The observation has been made that the dataset has an imbalance in the distribution of classes, as 

depicted in Figure 4. In the subsequent step of dataset optimization, this study undertakes a 

comprehensive investigation of the dataset with the objective of resolving the challenges posed by class 

imbalance. Image segmentation tasks often include encountering instances of non-uniform class 

distribution. This phenomenon is often found in several settings, including defect detection in industrial 

items, road extraction, and pathological area delineation. 

Data augmentation is utilized as a strategy to mitigate the problem of data imbalance, hence achieving 

a more balanced dataset. Specifically, image processing functions are defined for the classes that require 

data augmentation. The first function involves introducing random noise into the input image, with a 

parameter set to control the noise intensity (threshold set at 32). The second function performs gamma 

correction on the input image to adjust its brightness. The gamma parameter is used to control the 
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correction factor, and it is set to 0.7. Finally, the random_aug(img) function is applied to randomly 

augment the input image based on random probabilities. The augmentation operations include median 

blur, noise addition, and gamma correction with different gamma values. Random augmentation is 

employed to introduce variations in the images, which is particularly useful for enhancing the dataset, 

especially for tasks like image classification. 

For each mask image file, they are read as a grayscale image (single-channel image) and calculate 

the size of the image (total number of pixels). Subsequently, for each class (with pixel values 2 and 6), 

this work calculates their pixel ratios within the image, denoted as ratio_a and ratio_b. If the sum of the 

pixel ratios for both classes is less than 0.003, indicating that these two classes have very few pixels in 

the image, this work takes the following steps: 

Copy the original color image to the augmented directory. Apply data augmentation to the image 

using the random_aug function, generating four different augmented versions of the color image. Write 

these augmented images to the new target paths in the augmented directory. Results are shown in Figure 

5. This process serves to balance the dataset by addressing the data imbalance issue. Finally, this work 

recomputes the pixel ratios for the labels and visualize the data. Compared to the previous state of the 

dataset, the data classes have been notably balanced. 

 

Figure 5. Class distribution after augmentation (Figure Credits: Original) 

Upon completing all preparations, the model can be successfully trained by running the built-in 

'train.py' script in the PaddleSeg framework.  

the performance of a semantic segmentation model is applied to urban scene images. The dataset 

comprises 500 real urban road scene images, and this work employs a learning rate of 0.005 with a 

polynomial decay strategy across 40 training epochs, encompassing a total of 35,000 iterations, with 

each training batch containing 4 images. This comprehensive evaluation employs pivotal metrics such 

as mean Intersection over Union (mIoU), Accuracy (Acc), and Cohen's Kappa (Kappa), along with a 

granular examination of class-wise metrics, offering insights into the model's performance across 

distinct object categories. 
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Table 1. Result of segmentation. 

Metrics Values 

mIoU 0.1979 

Acc 0.9857 

Kappa 0.5681 

 

The findings are demonstrated in Table 1. Results indicate that the model attains an average mean 

Intersection over Union (mIoU) score of 0.1979, suggesting a moderate level of performance. This 

performance is mostly attributed to the limited availability of data for particular object classes. However, 

a noteworthy exception is the exceptional mIoU of 0.9872 for the first class, underscoring the model's 

proficiency in predicting this specific category. Pixel-level accuracy, represented as Acc, reaches 0.9857, 

signifying a high proportion of correct pixel-level classifications, affirming the model's proficiency at a 

fine-grained level. Cohen's Kappa attains a value of 0.5681, indicating substantial agreement between 

model predictions and ground truth labels. 

Further, class-wise evaluation elucidates disparities in model performance across different object 

categories, with certain classes exhibiting notably higher IoU and Acc values than others, thus offering 

valuable insights into the model's performance variations. 

4.  Conclusion 

This study presents a thorough performance evaluation of a semantic segmentation model when applied 

to urban scene images. While the model's overall performance is moderate, specific object categories 

exhibit exceptional performance. The model's high pixel-level accuracy and substantial Kappa 

coefficient underscore its potential for urban scene semantic segmentation tasks. Addressing class 

imbalance and augmenting dataset diversity represent avenues for further enhancing model performance. 
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