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Abstract. Movie reviews have always been a popular and enduring subject of interest among 

researchers. Sentiment analysis plays a significant role in this domain. The utilization of machine 

learning and natural language processing techniques can provide valuable insights into the 

emotional responses of audiences towards movies, as well as facilitate the appraisal of their 

reputation and market potential. This is achieved through the analysis of sentiment expressed in 

movie reviews. Furthermore, this approach is highly valuable in various application domains 

such as data mining, web mining, and social media analysis. This paper aims to conduct a 

comparative analysis by utilizing typical models based on machine learning and neural networks, 

along with the integration of natural language processing techniques. The IMDB database, which 

contains 50,000 reviews, will be used, and data preprocessing will be performed before applying 

these models. By comparing the accuracy of each model, insights regarding movie reviews can 

be derived. 

Keywords: Machine learning, Encoder-Decoder, sentiment analysis, movies reviews, binary 

classification. 

1.  Introduction 

Consumers can now better articulate their viewpoints and feelings about films due to the spread of online 

reviews and the development of social media platforms. Nevertheless, when confronted with multiple 

ratings and perspectives, individuals need help promptly and accurately grasping a movie's overall 

reputation and caliber. Consequently, movie sentiment analysis has become increasingly advantageous 

in aiding people to categorize and select films. This offers moviegoers a convenient guide to selecting 

films while providing essential data on audience feedback and industry trends for film production 

companies, marketing teams, and movie critics. As technology advances and research deepens, 

sentiment analysis in film will become increasingly important. 

The examination of sentiment can be examined from various perspectives, including the document, 

sentence, and aspect levels [1]. This paper focuses specifically on the document view, classifying each 

review as positive or negative. Furthermore, the learning process can be supervised or unsupervised. 

Given that the IMDb review sentiment dataset chosen for this study is labeled, supervised machine 

learning is employed. 

Neural networks are a computational model that simulates the human neural system. They comprise 

numerous artificial neurons and acquire knowledge by transmitting and linking information between 
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neurons. Various problem-solving tasks, such as picture classification, audio recognition, and natural 

language processing, use neural networks. In recent years, the continuous improvement of computing 

power and the prevalence of big data have enabled neural networks to advance in various fields. They 

have become crucial tools in machine learning and artificial intelligence, offering robust modeling and 

predictive capacities for resolving intricate problems. 

This article constructs a text classification model for sentiment analysis, which integrates machine 

learning models such as naïve Bayes, logistic regression, random forests, support vector machines, and 

deep neural network models utilizing encoder-decoder architectures. While text classification can be 

performed at the character level, our proposed model focuses on word-level learning [2]. 

There are four key sections to the article. A thorough analysis of the pertinent text classification 

literature is provided in Part II. Part III introduces the method employed in this research. The model's 

precise structure and the results of the experiments are presented in Part IV. Finally, Part V evaluates 

the findings and identifies upcoming difficulties. 

2.  Related works 
This section of the manuscript provides a comprehensive assessment of the existing literature pertaining 

to the field of text classification. 

In the early stages of machine learning technology, researchers primarily focused on feature 

extraction methods in sentiment analysis. Several papers provided overviews and comparisons of feature 

extraction methods, including those based on part-of-speech, statistical models, and dictionaries [3, 4]. 

Koto and Adriani conducted a comparative examination of nine feature sets in order to ascertain the 

most effective characteristics for sentiment analysis specifically on the Twitter platform, and found that 

methods such as AFINN and Senti-Strength were particularly effective [5, 6, 7]. Additionally, research 

in this field also involved the study of linguistic features and comprehensive evaluations of sentiment 

analysis tools [8, 9, 10, 11]. 

As artificial intelligence develops, deep learning techniques are being applied to sentiment analysis 

more and more. Various deep learning techniques have been utilized by researchers to tackle issues such 

as sentence-level sentiment analysis and aspect/object level analysis. These techniques include 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory 

(LSTM) networks, Deep Neural Networks (DNN), and Deep Belief Networks (DBN) [12, 13]. They 

have also examined the merits, drawbacks, and performance metrics associated with each of these 

methods. Various applications of deep learning and machine learning methodologies have been explored, 

including aspect extraction and classification, opinion expression extraction, opinion holder extraction, 

irony analysis, and multi-modal data analysis [14]. Several researches suggest utilizing models such as 

sentiment-specific word embedding models, BERT, common sense knowledge, and cognition-based 

attention models to improve the effectiveness of sentiment analysis [15]. 

3.  Proposed Methodology 
In this part, a workflow of natural language processing (NLP) is proposed. Before the data is trained and 

fitted, the focus is on preparing the dataset, eliminating redundancies such as punctuation and stop words, 

and estimating the meaningfulness of the data. 

All the steps are shown in Figure 1 as: 
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Figure 1. Global architecture of our classification system. 

3.1.  IMDB dataset 

The Internet Movie Database (IMDB) offers a substantial dataset comprising 50,000 movie reviews for 

the purpose of binary sentiment analysis. This dataset is evenly divided into two categories, with 25,000 

reviews classified as positive and the remaining 25,000 reviews classified as negative. The regularly 

updated IMDB dataset can be viewed using the provided link. The Kaggle platform. 

3.2.  Exploratory data analysis 
In this section, the conclusions presented are derived from the application of data visualization tools and 

syntactic analysis. 

3.2.1.  Conclusion 1. The dataset is balanced and contains equal number of semantics for reviews of 

both polarities. 

3.2.2.  Conclusion 2. The dataset contains redundant words and html syntaxes, punctuations and stop 

words are present in an equal distribution in the dataset. 

3.2.3.  Conclusion 3. This provides an outline as to the frequency of the conjunction of words which are 

occurring at the highest frequency. Another important aspect is that, there is a presence of certain html 

tags and punctuations which have to be removed as these are adding noise to the review corpus. 

3.3.  Data Preprocessing 

3.3.1.  Data cleaning. It removes unimportant words and elements (such as HTML tags, URLs, emojis, 

stop words, punctuations, expanding abbreviations, etc.) to retain only the most relevant words and 

ensure reliable results. And converting the labels to binary numeric which 1 for a positive rating, 0 for 

a negative rating. 

3.3.2.  Lemmatization. It makes the words be reduced to their root semantic word. Morphological 

transformations, such as converting "watched" and "watching" to their root form "watch", are performed 
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through this technique. While stemming can be utilized, it is not recommended since it does not consider 

the semantics of the sentence or surrounding context. Stemming can also generate words not present in 

the vocabulary. 

3.3.3.  Tokenizing. The text is segmented into smaller entities or tokens in order to facilitate the 

quantification of word count and analysis of word frequency. 

3.3.4.  Vectorization. This enables conversion of the data into higher dimensional representations 

(matrices). These vectorization techniques transform the word corpus into a format amenable to more 

advanced semantic analysis. The implementation of vectorization without considering semantics 

involved the utilization of the TF-IDF approach. 
TF-IDF: For the word 𝑖 in 𝑗 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × log(
𝑁

𝑑𝑓𝑖
) 

𝑡𝑓𝑖,𝑗 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ 𝑤ℎ𝑖𝑐ℎ 𝑖 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑗 

𝑑𝑓𝑖 = 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 𝑖 
 𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 (1) 

For retention of semantic importance, embedding is used instead. 

3.3.5.  Embeddings. The system employs pre-trained word vectors, assigning a probabilistic score to 

each word in the corpus. These probabilities are plotted in a low-dimensional space and word meanings 

are inferred from the vectors. Cosine distance is generally used as the primary metric to measure 

similarity between word and sentence vectors for inferring semantic similarity. Word Embeddings can 

either by static and dynamic. 
Static word embeddings: These embeddings are pre-trained on large corpora such as Wikipedia, news 

corpora, etc. 

Dynamic word embeddings: Deep contextual embeddings and sentence/word vectors are considered 

dynamic embeddings. These embeddings are deep contextual embeddings, meaning robust neural 

network models are needed for these architectures. 

3.4.  Classifiers 

3.4.1.  Machine Learning. 1). Logistic Regression (LR). The classifier known as logistic regression 

utilizes a sigmoid kernel throughout the training process. In supervised learning, Logistic Regression is 

a standardized model under generalized linear models that performs convex optimization by passing the 

cost function through the sigmoid kernel. The sigmoid function is defined by the following formulation: 

 𝑆(𝑥) =
1

1+𝑒−𝑥 (2) 

Because of its convergence properties and differentiability, the sigmoid kernel allows clamping of 

predicted values to binary labels. 

2). Support Vector Machine (SVM). A popular supervised learning approach for classification and 

regression issues is the Support Vector Machine (SVM). Its core idea is to classify data by finding the 

optimal hyperplane in the feature space, which maximizes the distance between the closest samples from 

each class to the hyperplane. These closest samples are known as "support vectors" and are crucial 

elements of the decision boundary for an SVM classifier. 
3). Naïve Bayes (NB). The Multinomial Naïve Bayes (MNB) model is a probabilistic classifier that 

use conditional probability to assign samples into categories or classes. It performs well with discrete 

integer-valued features like count vectors but can also be used with TF-IDF vectors. To determine 

conditional probability based on prior and posterior probabilities, MNB specifically employs Bayes' 

theorem. 
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P(𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑒𝑣𝑒𝑛𝑡|𝑏𝑎𝑐𝑘𝑤𝑜𝑟𝑑 𝑒𝑣𝑒𝑛𝑡) =
P(𝑏𝑎𝑐𝑘𝑤𝑜𝑟𝑑 𝑒𝑣𝑒𝑛𝑡|𝑓𝑜𝑟𝑤𝑜𝑟𝑑 𝑒𝑣𝑒𝑛𝑡)P(𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑒𝑣𝑒𝑛𝑡)

P(𝑏𝑎𝑐𝑘𝑤𝑜𝑟𝑑 𝑒𝑣𝑒𝑛𝑡)
 (3)  

4). Random Forest (RF). The majority vote of the classes produced by the various trees is used to 

determine the predicted class in a random forest, which is a classifier made up of many decision trees. 
5). Adaptive Boosting (AdaBoost). Adaboost, also known as Adaptive Boosting, is a widely utilized 

ensemble learning technique employed to improve the efficacy of weak classifiers. The fundamental 

concept of this approach is the iterative training of a sequence of weak classifiers, commonly referred 

to as base classifiers. Additionally, the sample weights are dynamically adjusted based on the 

performance of each individual base classifier. This ensures that in the subsequent training, more 

attention is given to the samples that were misclassified in the previous round, gradually improving the 

overall classifier performance. 

3.4.2.  Neural Network 
1). Long Short-Term Memory (LSTM). The LSTM (Long Short-Term Memory) architecture is a 

type of recurrent neural network that is specifically designed to effectively address challenges 

associated with sequence data analysis. The utilization of this technique efficiently addresses the issue 

of long-term dependency in conventional Recurrent Neural Networks (RNNs), hence mitigating the 

problems of gradient vanishing or exploding. Consequently, it has found extensive applications in 

various domains such as speech recognition, natural language processing, machine translation, 

handwriting identification and other related subjects. 

2). Encoder-Decoder (ED). Encoder-Decoder is a commonly used neural network architecture for 

handling sequence-to-sequence tasks such as machine translation and text summarization. The system 

comprises two primary elements: an encoder and a decoder, facilitating the transformation of input 

sequences with varying lengths into output sequences with varying lengths. This capability empowers 

the model to effectively process inputs and outputs of diverse durations. 

3.4.3.  Advanced Architecture 
The Transformer model employs a self-attention method to effectively capture the interdependencies 

across various points within the input sequence, eliminating the necessity for recurrent or convolutional 

procedures. This allows Transformer to handle long sequences and perform parallel computations, 

leading to faster training speed and improved performance. 

Due to hardware limitations of the experimental equipment, dynamic embedding and the use of 

transformer models were not implemented in this study. 

4.  Experimental Results 
In the context of binary classification, the assessment of model performance entails the computation of 

performance measures derived from the confusion matrix, as presented in Table 1. In order to assess and 

compare the two models under consideration, the accuracy, which represents the percentage of correct 

predictions, is measured. 

Table 1. Confusion matrix. 

Result 
Actual class 

+ - 

Predicted 
+ True Positive (TP) False Positive (FP) 

- False Negative (FN) True Negative (TN) 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

The distribution of the IMDB dataset movie reviews is displayed in figure 2. 
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Figure 2. Word Distribution of Movie Reviews 

The dataset was randomly divided into two parts with an 8 to 2 ratio, and the test set was employed 

as a validation set during model training. 

Table 2. The split of dataset. 

Dataset Type Data volume 

Training 40000 

Validation 10000 

 

Figure 3(a) shows the vectorized reviews with TF-IDF, and figure 3(b) shows several words after 

embedding. 

  

Figure 3. Vector space visualization. 

4.1.  Machine learning models results 
K-fold cross-validation was used for statistical models during training to improve result accuracy. The 

training set was segmented into 10 subsamples, with one subsample reserved for validation and the 

remaining 9 subsamples employed for training. K-fold cross-validation was repeated for each subsample, 

taking an average of the results across the 10 iterations or using alternative combinations, leading to an 

average training accuracy. The resulting trained model was applied to the validation set for category 

prediction, resulting in the accuracy of the validation set. Table 3 and Table 4 show the results of the 

training. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241305

118



 

 

Table 3. Results of TF-IDF vectorized machine learning models. 

Model (TF-IDF Vectorized) Training Acc Validation Acc 

LogisticRegression(max_iter=500) 89.54% 86.74% 

SVC(kernel='sigmoid') 90.31% 87.87% 

MultinomialNB() / 88.49% 

RandomForestClassifier() 86.13% 84.40% 

AdaBoostClassifier(learning_rate=0.01, n_estimators=100) 67.15% 68% 

Table 4. Results of Word2Vec embedded machine learning models. 

Model (Word2Vec Embedded) Training Acc Validation Acc 

LogisticRegression(max_iter=500) 62.79% 61.81% 

SVC(kernel='sigmoid') 57.60% 56.68% 

MultinomialNB() / / 

RandomForestClassifier() 60.22% 60.25% 

AdaBoostClassifier(learning_rate=0.01, n_estimators=100) 57.71% 57.98% 

 

After testing, it was discovered that the accuracy of the statistical model decreased when lexical 

embedding was utilized. This implies a requirement for hyper-parameter tuning, and as such, we need 

to identify more suitable parameters to improve the model's performance. 

4.2.  Neural Network Results 
For the training of the neural network, 40,000 data points were utilized from the dataset, while the 

remaining 10,000 data points were reserved for testing. The hyperparameters were set according to the 

following table. 

Table 5. Hyperparameters of neural network structure. 

Hyper Parameter Definition 

maxlen maximum allowed length of input text string (in this case, 1000) 

max_features a maximum of 5000 words for the dictionary 

embed_size dimensions (fixed at 300) of word embedding vectors 

4.2.1.  LSTM. Figure 4 shows the baseline model structure to compare with other neural networks. 
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Figure 4. Diagram of basic structure of LSTM network [1]. 

1). Embedding. The Embedding layer encodes the input integer sequences into dense vector 

representations, where each integer corresponds to a unique word. This layer transforms the input 

sequences into vector form. 
2). LSTM. The LSTM layer specifies that it has 60 neurons. The LSTM layer takes the vector 

sequences obtained from the Embedding layer as input and extracts features by learning patterns and 

relationships within the sequences. 
3). Dense. The fully connected layer (Dense) has 16 neurons and uses the ReLU activation function. 

This layer aids the model's acquisition of more complex feature representations. The output layer (Dense) 

has only one neuron and uses the sigmoid activation function. Since this text classification model is for 

a binary classification task, the output layer has one neuron, and the sigmoid function is used to convert 

the output value into a probability value between 0 and 1. 
4). Loss function & Optimizer. It sets the loss function to binary cross-entropy, the optimizer to 

Adam, and specifies accuracy as the metric for evaluation. 

 

 

 

Figure 5. Results of baseline LSTM model 

As illustrated above, Figure 5(a) and 5(b) display the model's error and accuracy distribution with 

the increase in the number of training sessions. 

If pre-trained word sense embeddings are used, the model architecture is shown below. 
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Figure 6. Structure of bidirectional LSTM model [1]. 

5). Bidirectional LSTM. Compared to a regular LSTM layer, the bidirectional layer has the property 

of considering contextual information from both past and future states, leading to more accurate 

predictions. 
6). Global Max Pooling 1D. The GlobalMaxPool1D layer is a pooling layer used for dimensionality 

reduction. It performs element-wise maximum pooling along the time dimension of a sequence, 

converting a variable-length sequence into a fixed-length vector representation. The primary objective 

of this layer is to extract the crucial information from the sequence, without considering the specific 

time steps. Consequently, its impact is consistent across the whole sequence. The utilization of this 

particular layer is commonly observed in tasks involving sequence classification. Its purpose is to 

mitigate the computational difficulty of the model by diminishing the dimensionality of the output 

derived by LSTM or CNN layers. 

 

 

 

Figure 7. Results of bidirectional LSTM model 

Figures 7(a) and 7(b), which are shown in the figure above, indicate how the distribution of the 

model's error and accuracy changes as the quantity of training sessions rises. 
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The pre-trained word vectors embedding_matrix from Word2Vec [16] is passed as weights in the 

Embedding layer of this model. 

4.2.2.  Encoder-Decoder (ED). Figure 8 shows the baseline model structure to compare with other 

encoder-decoders. 

 

Figure 8. Structure of baseline ED architecture [1]. 

In order to provide the input sequence to the encoder, an input layer must first be built. The input 

sequence is then transformed into dense embedding vectors by the addition of an embedding layer. The 

embeddings will be updated during training because the trainable parameter is set to True. 

The embedded input sequence is then processed by an LSTM layer with 60 LSTM units. This layer 

also returns the final hidden states (encoder_state_lstm_h) and cell states (encoder_state_lstm_c) of the 

LSTM in addition to the outputs. 

For the decoder component, the same procedure is done. To process the target sequence, two layers 

are made: an input layer and an embedding layer. The max_features and embed_size used by the encoder 

are also used by the embedding layer. 

The embedded target sequence is then processed after the addition of an LSTM layer. The initial 

state for the decoder LSTM is the initial state of the encoder LSTM, which consists of the final hidden 

state and cell state. This enables the decoder to consider the context that the encoder learned. 

To transform the LSTM outputs, a dense layer with 16 hidden units and ReLU activation is applied. 

The final prediction is included as a dense layer with a single hidden unit and sigmoid activation. 

Finally, utilizing the Model function and the encoder, decoder, and decoder output as inputs and 

outputs, the model is produced. An overview of the model's architecture is printed before it is returned. 

Figure 9(a) and 9(b) display the model's error and accuracy distribution with the increase in the 

number of training sessions. 
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Figure 9. Results of baseline ED architecture. 

For the case of pre-trained word sense embeddings, the model architecture is shown below. 

 

Figure 10. Structure of bidirectional LSTM ED architecture [1]. 

As opposed to before, the encoder has a bi-directional LSTM layer defined, which contains 60 LSTM 

cells and returns the output of the LSTM, as well as the final hidden state and cell state of the forward 

LSTM and the reverse LSTM. Utilizing the 'sum' operation, the outputs of the forward and reverse 

LSTMs are combined. 
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Figure 11. Results of bidirectional LSTM ED architecture. 

5.  Conclusion 
Based on experiments, it was discovered that machine learning models show less adaptability to word 

sense embedding compared to neural networks. By repetitively and iteratively training the neural 

network model, a relatively high accuracy rate of 88% or above can be maintained. 

However, it should be observed that the neural network model's error rate gradually rises with the 

number of training cycles, showing a propensity for overfitting in our model. Furthermore, during the 

initial training rounds, we observed that certain portions of the neural network model achieved an 

accuracy rate of over 90%. This indicates that in order to improve our model, we must either decrease 

the number of training rounds or optimize model hyperparameters. Furthermore, neither dynamic lexical 

embedding or transformer models were used in this investigation. Future research could look into how 

these models can be used to improve results. 
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