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Abstract. The Receiver Operating Characteristic (ROC) curve is a crucial method for evaluating 

the effectiveness of diagnostic medical indicators and has found extensive applications. However, 

errors are inevitable in the data acquisition process. Therefore, discussions on error and various 

methods for improving and handling data have not only become the focus of academic discourse 

but also hold practical significance. Unlike general statistics, the diversity of error situations, 

ranges, and impacts in biostatistics often present unique challenges. In practical scenarios, such 

as drug experiments, limited sample sizes and variations in individual responses to the same drug 

necessitate the use of error models, data scales, and statistical processing based on historical data, 

biomedical knowledge, and experimental data. Furthermore, the choice of an appropriate method 

depends on the specific objectives of the experiment, which is essential for producing compelling 

conclusions. Importantly, the field of biology has introduced methods to address errors, such as 

cross-comparison experiments or repeated experiments, and data processing must adapt to 

changes in experimental designs. This paper presents a statistical approach based on the widely 

used practice of error reduction through repeated experiments in the context of assessing generic 

drug consistency. The paper first summarizes the common types of errors encountered in 

biostatistics and the corresponding analytical, control, and optimization measures. It explores 

several methods for calculating the Area Under the ROC Curve (AUC) when sampling error is 

introduced and applies error reduction through repeated experiments. Subsequently, the paper 

validates the methods under different error scenarios using simulated data, highlighting the 

suitability of different statistical models and their reasons for selection in cases where the 

difference between healthy and diseased populations is not substantial. This paper offers valuable 

insights into handling various types of real-world data to eliminate errors and obtain more 

accurate statistical conclusions. 
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1.  Introduction 

The ROC curve, as an effective method for evaluating the effectiveness of using continuous medical 

indicators to determine health status, is of paramount importance in diagnostic medicine. The Area 

Under the ROC Curve (AUC) is considered a significant measure to assess the effectiveness of this 

method [1]. For such diagnostic methods, a threshold is chosen. Values above this threshold are 

considered indicative of disease, while values below it are indicative of non-disease [2]. For example, 

in the diagnosis of hypertension, if a patient's systolic blood pressure exceeds 140 mmHg and diastolic 

blood pressure exceeds 90 mmHg, they are diagnosed with hypertension. Similarly, in the diagnosis of 

coronary artery disease, when more than 50% of a patient's blood vessels are blocked during a cardiac 

angiogram, they are considered to have heart disease. These are examples of using continuous medical 

indicators for diagnosis. However, before determining the threshold, it is essential to verify the method's 

effectiveness, which involves showing that the values for healthy individuals are lower than those for 

patients. Bamber demonstrated that the AUC represents Pr(Y > X) [3], where X and Y are the 

measurements for healthy and unhealthy populations, respectively. AUC = 0.5 indicates that the method 

is no different from random chance in distinguishing healthy and unhealthy individuals, rendering the 

metric meaningless. AUC values closer to 1 signify a greater diagnostic effectiveness. Normally, under 

parametric assumptions, the normal distribution is widely applied, while in non-parametric cases, AUC 

is estimated using the Mann-Whitney statistic. Regardless of the scenario, AUC remains the most critical 

metric. 

However, as a critical assessment of medical indicators, errors in the data must be considered. For 

most medical measurements, errors are introduced due to various factors such as external conditions and 

instrument limitations. Neglecting errors in the estimation of AUC significantly reduces reliability. 

Investigating the influence of errors on AUC contributes to a more accurate understanding of the 

method's effectiveness. Many articles have discussed various properties of AUC estimation, errors, and 

confidence intervals. Beyond the application of statistical methods to handle errors, methods involving 

multiple measurements have also been proposed to address error issues [3]. This paper explores several 

methods for estimating confidence intervals of AUC in the ROC curve and assesses their utility and 

characteristics using simulated data. It compares the performance of different methods under various 

data characteristics, offering recommendations for selecting AUC estimation methods in different 

situations where the difference between healthy and diseased populations is not substantial. 

2.  AUC Confidence Interval Estimation Based on David Faraggi's Method 

Under the assumption that true values for measurements in the healthy populationUnder the assumption 

that true values for measurements in the healthy population, 𝑈𝑖 , follow a normal distribution with 

parameters 𝜇𝑥 and 𝜎𝑥
2, and true values for measurements in the diseased population, 𝑊𝑖, follow a 

normal distribution with parameters 𝜇𝑌  and 𝜎𝑌
2 , we define 𝐴 = 𝑃𝑟(𝑋 < 𝑌) = Φ(𝛿), where 𝛿 =

𝜇𝑌−𝜇𝑋

√𝜎𝑥
2+𝜎𝑌

2
. Our observed values are 𝑥𝑖 = 𝑈𝑖 + 𝜀𝑖  and 𝑦𝑗 = 𝑊𝑗 + 𝜂𝑗 , where 𝜀𝑖~N(0, 𝜎𝜀

2)  and 

 𝜂𝑗~𝑁(0, 𝜎𝜂
2), both following normal distributions. It is important to note that 𝑈, 𝑊, 𝜀, 𝜂 are mutually 

independent. Our confidence interval estimation is based on the assumption that 𝜎𝜀
2 = 𝜎𝜂

2 and 𝜎𝑈
2 =

𝜎𝑊
2 = 𝜎 

2 [4]. 

When incorporating errors, the value of AUC, denoted as 𝐴∗ = 𝑃𝑟(𝑦 > 𝑥), can be expressed as 

𝐴∗ = Φ(𝛿∗), where 𝛿∗ =
𝛿

√1+𝜃2
 and 𝜃2 =

𝜎𝜀
2

𝜎 
2 . Consequently, the confidence interval estimation for 

𝐴∗ can be derived from the confidence interval for 𝛿∗. To obtain both confidence intervals, we utilize 

the combined variance estimate 𝑆𝑝
2, as described by [5]: 

𝑆𝑝
2 =

(𝑚−1)𝑆𝑥
2+(𝑛−1)𝑆𝑦

2

𝑚+𝑛−2
 follows a 𝜒2  distribution with 𝑚 + 𝑛 − 2 degrees of freedom, where 

𝑆𝑥
2 and 𝑆𝑦

2 are the sample variances for 𝑋 and 𝑌. 
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Additionally, 
�̅�−�̅�

𝜎√1+𝜃2√
1

𝑚
+

1

𝑛

 follows a normal distribution 𝑁(
√2𝛿∗

√
1

𝑚
+

1

𝑛

, 1), where �̅�  and �̅�  are the 

sample means for 𝑋 and 𝑌. Since these two variables are independent, the ratio 𝑡 =
�̅�−�̅�

𝑆𝑝√
1

𝑚
+

1

𝑛

 follows 

a 𝑡 -distribution with 𝑚 + 𝑛 − 2 degrees of freedom, denoted as 𝑡𝑚+𝑛−2(𝜆), where 𝜆 =
√2𝛿∗

√
1

𝑚
+

1

𝑛

. 

The confidence interval for 𝜆, with confidence level (1-𝛼), is determined by the upper and lower 

limits, �̅� and 𝜆, which can be obtained using a non-central t-distribution with 𝑚 + 𝑛 − 2 degrees of 

freedom: 

𝑃𝑟(𝑡𝑚+𝑛−2(𝜆) ≤ 𝑡) = 1 −
𝛼

2
,    𝑃𝑟(𝑡𝑚+𝑛−2(𝜆) ≤ 𝑡) =

𝛼

2
 

(𝛿∗, 𝛿∗) =
√ 1

𝑚
+

1
𝑛

√2
 (𝜆, 𝜆)

 

The confidence interval for 𝐴∗  can be calculated as (𝜙(𝛿∗), 𝜙(𝛿∗)), where 𝜙  represents the 

standard normal distribution function. 

Without considering errors, the confidence interval for 𝐴 , denoted as 

(𝜙(√1 + 𝜃2𝛿∗), 𝜙(√1 + 𝜃2𝛿∗)), can be calculated. It is evident that, as the error proportion increases, 

its impact on the final confidence interval becomes significant. 

In practical applications, obtaining variance data is not straightforward. In fact, to use this method, 

each individual must be measured 𝑛 times to estimate 𝜎𝜀
2 from the variation in data obtained from 

individual experiments and then estimate 𝜎 
2 from the overall variance. Subsequently, the average of 

measurements for each individual is used to estimate the AUC confidence interval. Regarding 

measurement errors, since measurements are averaged, 𝜎𝜀
2  must be transformed to 

𝜎𝜀
2

𝑛
 for 

calculations [6]. 

3.  Confidence Interval Estimation for Repeated Experiments AUC Based on Yanhong Li et al.'s 

Calculation Method 

Repeated experiments are an important method to reduce the impact of errors; however, data processing 

after repeated experiments becomes more complex. The following discusses data processing after 

conducting repeated experiments. It's worth noting that if the confidence interval calculation method 

described below is not used and data is directly processed using methods like the Delta-method by 

Thomas and Hultquist [6], the results may turn out to be poor [7]. 

3.1.  Discussion on Confidence Interval Calculation 

For existing confidence intervals (𝑙1, 𝑢1) and (𝑙2, 𝑢2) with confidence level (1-α) for 𝜃1 and 𝜃2, 

and their point estimates  𝜃1̂ and  𝜃2̂, under the assumption of mutual independence, we can directly 

calculate the confidence interval for 𝜃1 − 𝜃2 (𝐿, 𝑈) as follows [8]: 

𝐿 = 𝜃1̂ −  𝜃2̂ − 𝑧√𝑣𝑎𝑟(𝜃1̂) + 𝑣𝑎𝑟( 𝜃2̂)      𝑈 = 𝜃1̂ −  𝜃2̂ + 𝑧√𝑣𝑎𝑟(𝜃1̂) + 𝑣𝑎𝑟( 𝜃2̂) 

Here, 𝑧 is the critical value corresponding to the (1-α) confidence interval in the standard normal 

distribution. However, the confidence interval obtained in this manner tends to be too wide. To optimize 

it, we examine the distance between 𝑙1 − 𝑢2 and 𝐿, which can be calculated as: 

𝑧 ‖√𝑣𝑎𝑟(𝜃1̂) + 𝑣𝑎𝑟( 𝜃2̂) − √𝑣𝑎𝑟(𝜃1̂) − √𝑣𝑎𝑟( 𝜃2̂)‖ 
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This distance is less than the distance between 𝜃1̂ −  𝜃2̂  and 𝐿 : 𝑧 ‖√𝑣𝑎𝑟(𝜃1̂) + 𝑣𝑎𝑟( 𝜃2̂)‖ . 

Similarly, the distance between 𝑢1 − 𝑙2 and 𝑈 is also less than the distance between 𝜃1̂ −  𝜃2̂ and 𝑈. 

Therefore, when estimating the variances 𝑣𝑎�̂�(𝜃�̂�) =
(𝜃�̂�−𝜃𝑖)2

𝑧2 , where 𝜃1 = 𝑙1 for 𝐿 and 𝑢1 for 𝑈, 

and  𝜃2̂ is 𝑢2 for 𝐿 and 𝑙2 for 𝑈, we have: 

𝐿1 = 𝜃1̂ −  𝜃2̂ − 𝑧√𝑣𝑎�̂�(𝜃1̂) + 𝑣𝑎�̂�( 𝜃2̂) = 𝜃1̂ −  𝜃2̂ − √(𝜃1̂ − 𝑙1)
2

+ (𝜃2̂ − 𝑢2)
2
 

𝑈1 = 𝜃1̂ −  𝜃2̂ + 𝑧√𝑣𝑎�̂�(𝜃1̂) + 𝑣𝑎�̂�( 𝜃2̂) = 𝜃1̂ −  𝜃2̂ + √(𝜃1̂ − 𝑢1)
2

+ (𝜃2̂ − 𝑙2)
2
 

Similarly, for the confidence interval for 𝜃1 + 𝜃2 (𝐿2, 𝑈2): 

𝐿2 = 𝜃1̂ +  𝜃2̂ − 𝑧√𝑣𝑎�̂�(𝜃1̂) + 𝑣𝑎�̂�( 𝜃2̂) = 𝜃1̂ +  𝜃2̂ − √(𝜃1̂ − 𝑙1)
2

+ (𝜃2̂ − 𝑙2)
2
 

𝑈2 = 𝜃1̂ +  𝜃2̂ + 𝑧√𝑣𝑎𝑟(𝜃1̂) + 𝑣𝑎𝑟( 𝜃2̂) = 𝜃1̂ +  𝜃2̂ + √(𝜃1̂ − 𝑢1)
2

+ (𝜃2̂ − 𝑢2)
2
 

Finally, to calculate the confidence interval for 
𝜃1

𝜃2
 (𝐿3, 𝑈3), where 𝑅 =

𝜃1

𝜃2
, we examine 𝜃1 −

𝑅𝜃2 = 0. The lower and upper limits of the confidence interval (𝐿3, 𝑈3) are determined as: 

𝐿3 = 𝜃1̂ − 𝑅 𝜃2̂ − √(𝜃1̂ − 𝑙1)
2

+ 𝑅2(𝜃2̂ − 𝑢2)
2 

𝑈3 = 𝜃1̂ − 𝑅 𝜃2̂ − √(𝜃1̂ − 𝑢1)
2

+ 𝑅2(𝜃2̂ − 𝑙2)
2 

Thus, the confidence interval for R is obtained by solving 𝐿3 = 0  and 𝑈3 = 0 , providing the 

smaller and larger roots as the confidence interval for 𝑅. 

𝐿4 =
𝜃1̂𝜃2̂ − √(𝜃1̂𝜃2̂)2 − 𝑙1𝑢2(2𝜃1̂ − 𝑙1)(2𝜃2̂ − 𝑢2)

𝑢2(2𝜃2̂ − 𝑢2)

 

𝑈4 =
𝜃1̂𝜃2̂ + √(𝜃1̂𝜃2̂)2 − 𝑙2𝑢1(2𝜃1̂ − 𝑢1)(2𝜃2̂ − 𝑙2)

𝑙2(2𝜃2̂ − 𝑙2)

 

3.2.  Applying Confidence Interval Calculation to Determine AUC Confidence Interval for Multiple 

Repeated Experiments 

As mentioned in Section 2, the confidence interval for AUC is obtained using the (𝜙(𝛿), 𝜙(𝛿)) 

method. Therefore, the calculation of the confidence interval is still based on determining the confidence 

interval for 𝛿∗, where 𝛿 =
𝜇𝑌−𝜇𝑋

√𝜎𝑥
2+𝜎𝑌

2
. 

Here, 𝜔𝑖𝑗  represents the 𝑗-th observation for the 𝑖-th individual in the healthy group (similar 

calculations apply to the diseased group), where 𝑗 = 1, ⋯ , 𝑘𝑖 ,𝑖 = 1, ⋯ , 𝑛. 

𝜔𝑖𝑗 = 𝑋𝑖 + 𝜀𝑖𝑗 , �̅�𝑖. = ∑
𝜔𝑖𝑗

𝑘𝑖
𝑗  , �̅�.. = ∑

𝜔𝑖.

𝑛𝑖 ,  𝑘ℎ =
𝑛

∑
1

𝑘𝑖
𝑖

 

Following the results of Thomas and Hultquist [6]: 
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𝑘ℎ ∑ (�̅�𝑖. − �̅�..)
2

𝑖

𝑘ℎ𝜎𝑥
2 + 𝜎𝜀

2
~𝜒2

𝑛−1  ,    
∑ ∑ (�̅�𝑖. − 𝜔𝑖𝑗)2

𝑗𝑖

𝜎𝜀
2

~𝜒2
𝑁−𝑛 ,   �̅�..~𝑁(𝜇𝑥,  

∑ (�̅�𝑖. − �̅�..)
2

𝑖

𝑛(𝑛 − 1)
) 

Specific calculation method: Calculate the confidence interval for 𝜃1 = 𝜇𝑌 − 𝜇𝑋 using the method 

from Section 3.2. Calculate the confidence interval for 𝑘ℎ𝜎𝑥
2 + 𝜎𝜀

2 and 𝜎𝜀
2 using the method from 

Section 3.1. Calculate the confidence interval for 𝜎𝑥
2 in the same manner. Finally, using the method 

from Section 3.1, calculate the confidence interval for 𝛿 =
𝜇𝑌−𝜇𝑋

√𝜎𝑥
2+𝜎𝑌

2
 and, consequently, obtain the 

AUC confidence interval [9]. This method offers significant advantages compared to the Delta-Method. 

4.  Simulation Verification 

Through fitting and calculations using simulated data, we will explore the strengths and weaknesses of 

these methods under different scenarios. We primarily investigate the performance of the same method 

under different datasets. 

4.1.  First Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(160,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,225). The method used is based on Yanhong Li et al.'s calculation method for estimating 

AUC confidence intervals with multiple repeated experiments. The results obtained are shown in the 

following table: 

Table 1. Simulation data result 1 

Prediction Confidence Interval 

0.9785969 0.4681322 0.999987 

 

It can be observed that the estimation for the lower bound of the confidence interval is notably poor. 

This is due to the large variance in calculating the confidence interval for 𝜃1 = 𝜇𝑌 − 𝜇𝑋 , where 

𝜃1~𝑁(80,1800), leading to a wide confidence interval span. If this proportion is reduced, better 

confidence interval estimates may be obtained. Therefore, we proceed with a second set of simulated 

data, where we increase 𝜇𝑌 − 𝜇𝑋. 

4.2.  Second Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(180,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,225). The method used is based on Yanhong Li et al.'s calculation method for estimating 

AUC confidence intervals with multiple repeated experiments. The results obtained are shown in the 

following table: 

Table 2. Simulation data result 2 

Prediction Confidence Interval 

0.9877686 0.6470907 0.9999865 

 

It can be observed that only slightly increasing the difference between the healthy group and diseased 

group has no significant impact on the prediction and the upper bound of the confidence interval (less 

than 1%). However, it significantly improves the lower bound of the confidence interval. This indicates 

that if the value of 𝜃1 = 𝜇𝑌 − 𝜇𝑋  is further increased, the estimation of the lower bound of the 

confidence interval will significantly improve. 
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4.3.  Third Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(200,900). Two sets of 51 data points are generated for each group. The errors are generated 

from N(0, 225). The method used is based on Yanhong Li et al.'s calculation method for estimating AUC 

confidence intervals with multiple repeated experiments. The results obtained are shown in the following 

table: 

Table 3. Simulation data result 3 

Prediction Confidence Interval 

0.9973801 0.8023178 0.9999993 

 

After further increasing the difference between the healthy group and diseased group, the obtained 

confidence interval span is highly satisfactory. It can be seen that the lower bound is most sensitive to 

𝜃1 = 𝜇𝑌 − 𝜇𝑋. This is because the region of the lower bound corresponds to the peak region of the 

standard normal distribution density function. Fluctuations in this range have a significant impact on the 

final lower bound of the confidence interval, while predictions and the upper bound are more stable in 

the presence of fluctuations. The fourth set of data is used to confirm this point. 

4.4.  Fourth Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(120,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,225). The method used is based on Yanhong Li et al.'s calculation method for estimating 

AUC confidence intervals with multiple repeated experiments. The results obtained are shown in the 

following table: 

Table 4. Simulation data result 4 

Prediction Confidence Interval 

0.8284095 0.1507986 0.9984336 

 

It can be seen that after 𝜃1 = 𝜇𝑌 − 𝜇𝑋 is reduced, the estimation of the lower bound becomes poor, 

while the prediction value remains high. This confirms our analysis from the third set of simulated data. 

Therefore, in scenarios where 𝜇𝑌 − 𝜇𝑋 is small (less than double the true variance), the results obtained 

using this method are not satisfactory. We will adjust the proportion of sampling variance to true 

variance to observe its impact on confidence interval estimation. 

4.5.  Fifth Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(160,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,900). The method used is based on Yanhong Li et al.'s calculation method for estimating 

AUC confidence intervals with multiple repeated experiments. The results obtained are shown in the 

following table: 

Table 5. Simulation data result 5 

Prediction Confidence Interval 

0.9352721 0.4761308 0.9992275 

 

It can be observed that enlarging the sampling error relative to the true error has no significant impact 

on the prediction value and the confidence interval data. 𝜇𝑌 − 𝜇𝑋  still remains the primary factor 

influencing the final results. 
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4.6.  Sixth Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(160,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,25). The method used is based on Yanhong Li et al.'s calculation method for estimating AUC 

confidence intervals with multiple repeated experiments. The results obtained are shown in the following 

table: 

Table 6. Simulation data result 6 

Prediction Confidence Interval 

0.9698731 0.4704401 0.9999481 

 

It can be observed that reducing the sampling error relative to the true error has no significant impact 

on the prediction value and the confidence interval data. 𝜇𝑌 − 𝜇𝑋  still remains the primary factor 

influencing the final results. 

We will now use the method of David Faraggi to estimate the confidence interval of AUC. Alongside 

comparing its results to those obtained in the previous six sets of experiments, we will determine the 

strengths and weaknesses of these methods in different scenarios. 

4.7.  Seventh Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(160,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,225). The method used is based on David Faraggi's AUC confidence interval estimation 

method. It's essential to note that the data used for processing represents the average of data obtained 

twice. According to the properties of the normal distribution, the calculation requires transforming 𝜎𝜀
2 

into 
𝜎𝜀

2

𝑛
 and substituting it for the solution. 

We first calculate the t-value as required for the data and then use software to solve the corresponding 

estimates and upper and lower bounds for λ, which are subsequently substituted into the equation to 

obtain the results. 

Table 7. Simulation data result 7 

Prediction Confidence Interval 

0.863176 0.7782511 0.9375467 

 

Compared to the first set of data, although the prediction value has decreased, it's evident that this 

method's ability to provide confidence intervals is significantly superior to Yanhong Li's method. This 

is because David Faraggi's method estimates the upper and lower bounds based on the t-distribution, 

which means that the obtained lower bound does not significantly affect the result when applied to the 

standard normal distribution. This is a significant characteristic that sets it apart from other methods. 

We will continue to explore the changes in numerical mean values for healthy and diseased populations. 

4.8.  Eighth Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(180,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,225). The method used is based on David Faraggi's AUC confidence interval estimation 

method. The results obtained are shown in the following table: 

Table 8. Simulation data result 8 

Prediction Confidence Interval 

0.9503237 0.914344 0.9890933 
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It can be seen that as the gap between the diseased population and healthy population data widens, 

the prediction value rises quickly, approaching the prediction made using Yanhong Li's method. 

Simultaneously, the width of the confidence interval significantly narrows, indicating a marked 

improvement in the prediction. Therefore, in this scenario, this method is considered superior to 

Yanhong Li's method. 

Continuing to increase𝜇𝑌 − 𝜇𝑋 has limited research value for this method. We will now reduce this 

difference and observe its impact on the final results. 

4.9.  Ninth Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(120,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,225). The method used is based on David Faraggi's AUC confidence interval estimation 

method. The results obtained are shown in the following table: 

Table 9. Simulation data result 9 

Prediction Confidence Interval 

0.7250927 0.6212518 0.8249914 

 

In this scenario, Yanhong Li's method, although providing a higher prediction value, fails to offer an 

effective confidence interval. While this method provides a smaller prediction value, it offers a more 

reliable confidence interval. It's worth noting that Yanhong Li's method provides a prediction value that 

falls outside the 95% confidence interval of this method, indicating potential overestimation. 

Additionally, as 𝜇𝑌 − 𝜇𝑋  decreases, the width of the confidence interval increases, confirming our 

earlier speculation. We will now adjust the ratio of sampling variance to true variance to observe its 

impact on confidence interval estimation. 

4.10.  Tenth Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(160,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,900). The method used is based on David Faraggi's AUC confidence interval estimation 

method. The results obtained are shown in the following table: 

Table 10. Simulation data result 10 

Prediction Confidence Interval 

0.857375 0.7712289 0.9333739 

 

It can be observed that increasing the sampling error relative to the true error has no significant 

impact on the prediction value and the confidence interval data. The prediction value slightly decreases, 

and the confidence interval width slightly widens. At the same time, the confidence interval maintains 

a significant advantage compared to the fifth set of simulated data. 

4.11.  Eleventh Set of Simulated Data 

Data for the healthy group is generated from 𝑁(80,900), and data for the diseased group is generated 

from 𝑁(160,900). Two sets of 51 data points are generated for each group. The errors are generated 

from 𝑁(0,25). The method used is based on David Faraggi's AUC confidence interval estimation 

method. The results obtained are shown in the following table: 

Table 11. Simulation data result 11 

Prediction Confidence Interval 

0.9154539 0.8444226 0.9716023 
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It can be observed that reducing the sampling error relative to the true error results in a significant 

increase in the prediction value and a noticeable decrease in the confidence interval width. This indicates 

that in scenarios where 𝜃2 =
𝜎𝜀

2

𝜎 
2  is small, this method is sensitive to this parameter. As the parameter 

further increases, its sensitivity gradually decreases. 

5.  Summary 

In summary, for all scenarios, the AUC predictions obtained using Yanhong Li et al.'s method for 

estimating AUC confidence intervals with multiple repeated experiments are greater than the predictions 

obtained using David Faraggi's AUC confidence interval estimation method. However, the confidence 

intervals provided by David Faraggi's AUC confidence interval estimation method are often 

significantly narrower than those provided by Yanhong Li et al.'s method for estimating AUC 

confidence intervals with multiple repeated experiments. We also found that the confidence interval 

width given by Yanhong Li et al.'s method for estimating AUC confidence intervals with multiple 

repeated experiments is more sensitive to 𝜇𝑌 − 𝜇𝑋 , but less so to changes in 
𝜎𝜀

2

𝜎 
2 . In contrast, the 

confidence intervals provided by David Faraggi's AUC confidence interval estimation method are 

sensitive to both 𝜇𝑌 − 𝜇𝑋 and 
𝜎𝜀

2

𝜎 
2 . Therefore, if a higher AUC prediction is desired, Yanhong Li et 

al.'s method for estimating AUC confidence intervals with multiple repeated experiments should be used. 

If wider confidence intervals are sought, then David Faraggi's AUC confidence interval estimation 

method should be employed. In cases where 𝜇𝑌 − 𝜇𝑋 is substantial, the estimates from both methods 

are similar. 

While Yanhong Li et al.'s method for estimating AUC confidence intervals with multiple repeated 

experiments may have relatively weaker overall performance, it has a broader range of applications. It 

does not require every experimental subject to participate in the same number of trials and does not 

demand an equivalent sampling error variance and true variance for both the healthy and diseased 

populations. Therefore, it still holds important practical value. 

6.  Conclusion 

The area under the ROC curve (AUC) serves as the most crucial diagnostic method effectiveness metric, 

and its wide range of applications means that it requires different data processing approaches for various 

data characteristics. Obtaining more reliable data based on data characteristics is of great significance. 

However, there are various methods for estimating AUC confidence intervals, and each method 

naturally comes with its assumptions, limitations, and applicable scenarios. In addition to the two 

methods introduced, improved, and validated in this paper for estimating AUC under the assumption of 

a known parameter and a normal distribution, there are various other methods. These include methods 

for estimating AUC confidence intervals when data is affected by the instrument's measurable range 

using Maximum Likelihood Estimation (MLE) and methods for estimating AUC confidence intervals 

for data that follows an exponential random variable distribution, among others. The simulated 

experiments in this paper also highlight that choosing an estimation method that closely aligns with the 

existing experimental data conditions leads to better conclusions regarding confidence intervals. When 

dealing with real data, one should conduct preliminary data preprocessing based on knowledge of the 

relevant information, data sources, and inherent characteristics. By doing so, the corresponding 

confidence interval estimation method can be determined. When necessary, various methods can be used 

for small-scale simulations to determine the optimal estimation method. 
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