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Abstract. Artificial intelligence is being incorporated into more aspects of our daily lives. 

Agricultural production in China is at a critical juncture due to the rising fruit production and 

dwindling labor force, necessitating the adoption of mechanization and intelligent systems. 

Image processing is particularly suitable for this field. Image classification technologies in fruit 

categorization are examined in this research. The results of this study can help improve the 

development of intelligent, lightweight machinery for agricultural output. This, in turn, will 

enhance the efficiency of fruit cultivation, harvesting, and trading and alleviate labor 

constraints. Two popular convolutional neural network models, namely ResNet50 and 

MobileNetV2, were employed in this study. The study utilized two optimizers: SGD and Adam. 

The evaluation results revealed that the ResNet50 model, employing SGD optimization, 

achieved the highest accuracy of 95.57%. Despite its lower accuracy of 92.19%, the 

MobileNetV2 model demonstrates higher efficiency than ResNet50 due to its lower hardware 

requirements, rendering it suitable for operation on compact devices. 
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1.  Introduction 

Numerous industries, including transportation, education, agriculture, and various services, use 

computer vision extensively [1-3]. Computer vision is a widely used technical tool in both the 

industrial and agricultural sectors. It uses automated fruit harvesting, sorting equipment, and 

supermarket fruit scanning [4]. Both the agricultural and industrial sectors routinely identify and 

categorize fruits. Fruit identification and classification improve product packaging efficiency on farms, 

whereas they speed up the process of fruit shelving in supermarkets. As a result, identifying and 

classifying fruits is essential to achieving these goals. 

With its ranking as the world's third-largest country by land area and the highest global population, 

China exhibits remarkable scale. By the end of 2019, the cultivated area of various fruits in China had 

experienced rapid growth, covering 12.277 million hectares and yielding an annual output of 190.38 

million tons [5]. This extensive production places significant demands on fruit identification and 

classification. However, production efficiency in China remains low, primarily due to the persistent 

reliance on traditional manual farming methods and inadequate use of advanced scientific technologies, 

leading to significant human errors. Furthermore, the aging labor force and a declining birth rate in 

China have spurred the inevitable trend of labor automation to replace human workers. The research 

and implementation of automatic fruit image recognition can relieve the labor-intensive nature of fruit 
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classification, resulting in labor and financial resource savings, enhanced work efficiency, and more 

time and energy available for other tasks. 

This paper aims to investigate the fruits within the Fruit 360 dataset and present a deep learning-

based approach for recognizing fruit varieties and facilitating the identification of multiple fruit types. 

This paper will develop and enhance models utilizing ResNet50 and MobileNetV2, renowned deep-

learning networks, to achieve precise classification and recognition of various fruit varieties. 

Furthermore, the effectiveness of the models will be assessed. 

2.  Literature review 

Presently, numerous methods have been proposed by researchers for automatically identifying 

different types of fruits. Classical fruit classification and recognition methods typically entail 

extracting features using manually designed feature extraction techniques, encompassing aspects such 

as size, shape, color, texture, and other relevant characteristics from fruit images. These features are 

subsequently combined to construct one or more classifiers, enabling the attainment of automatic fruit 

classification and recognition, as depicted in Figure 1 [6]. Zhang et al., for example, extracted and 

merged SURF and color moments from pictures [7]. Using the K-means clustering technique and 

SVM technology, they got great results with a 94% identification rate. Nevertheless, this method does 

not yield satisfactory performance when handling online downloaded image datasets with diverse 

backgrounds and poses. Nevertheless, this method does not yield satisfactory performance when 

handling online downloaded image datasets with diverse backgrounds and poses. Thinh et al. 

examined three feature extraction techniques: edge detection, RGB histogram, and HOG [8]. The 

efficiency of three categorization models was also investigated: Random Forest, KNN, and SVM. The 

SVM model paired with HOG features provided the best accuracy (96%), according to their analysis. 

Complete Local Binary Pattern (CLBP) use as a textural trait for identifying fruits and vegetables was 

suggested by Tao et al. [9]. They combined color and texture information, using a nearest neighbor 

classifier to categorize fruits and vegetables, and took into account variations in lighting intensity. 

However, it was difficult to distinguish between fruit and vegetable representations with intricate 

backgrounds. 

 

Figure 1. Traditional fruit image classification and recognition system flowchart [6]. 

Deep learning has revolutionized feature extraction by automatically extracting image features 

through network structures, eliminating the need for manual control. This advancement enables more 

comprehensive and precise feature extraction. As an example, Saranya et al. compared convolutional 

neural networks (CNNs) against KNN and SVM [10]. The CNN fared better than the conventional 

algorithms, with a significantly higher accuracy of 96.49%. A 6-layer CNN created by Lu et al. was 

created specifically for fruit classification [11]. The model had an accuracy of 91.44% after being 

trained on a dataset including 1800 photos of 9 different kinds of fruit. Rectified linear units (ReLU) 

were used in the construction of an 8-layer deep CNN Wang et al. used parameter calibration [12]. 

Each fully linked layer was implemented before a dropout layer. The use of data augmentation 

methods to avoid overfitting led to a remarkable overall accuracy of 95.67%. The model beat five 

current approaches, including conventional machine learning approaches and a sophisticated CNN 
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methodology. In addition to fine-tuning the pre-trained deep learning model VGG-16, created 

exclusively for the visual geometry group (VGGNet), Hossain et al. incorporated a six-layer CNN 

model [13]. According to the results, the refined classical network model performed admirably in 

classifying fruits and vegetables. 

From a classification methods standpoint, while certain classifiers based on traditional algorithms 

exhibit commendable accuracy and robustness, they frequently necessitate substantial engineering 

work for image feature extraction. Convolutional neural networks (CNNs) obviate the requirement for 

manual design of feature extraction procedures by automatically acquiring features from raw image 

data. This capability enables the generation of high-quality convolutional feature maps, while 

significantly reducing the need for manual involvement. Moreover, CNNs can mitigate the impact of 

noise using convolutional and pooling layers, thereby ensuring stability in recognizing image 

variations and facilitating accurate identification across diverse environmental conditions. 

Nevertheless, current models often encounter difficulties when classifying fine-grained varieties that 

belong to the same fruit category. Furthermore, these models impose high hardware demands during 

operation, while their training and storage requirements necessitate substantial memory capacity. Such 

factors substantially escalate the costs associated with research. Consequently, these models are 

typically incompatible with portable devices like mobile phones and are not extensively employed by 

small and medium-sized enterprises or individual consumers. 

3.  Dataset 

The fruit dataset utilized in this study, generated by Mihai Oltean and made available to the public, is 

called Fruits 360. It is updated in real-time regularly. In May 2020, the dataset was last updated. The 

90,483 photos in Fruits 360 each have a 100x100 pixel size. This dataset contains 67692 pictures for 

training and 22688 photographs for testing. It encompasses 131 distinct fruit types, and each image 

exclusively depicts a single fruit or vegetable, as depicted in Figure 2. Mihai Oltean captured the 

initial images of fruits by positioning them on a low-speed motor axis (3rpm) against a white paper 

background. A 20-second video was recorded using a Logitech C920 camera. However, the initial 

images are characterized by non-uniform backgrounds due to variations in lighting conditions. To 

mitigate this, the flood-fill algorithm was employed to process the images. 

 

Figure 2. Partial fruit varieties in the dataset. 
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4.  Deep learning approach 

4.1.  Convolutional neural network 

4.1.1.  Introduction to Convolutional Neural Networks. CNNs were initially multilayer neural 

networks created especially for jobs requiring image recognition. LeCun et al. used CNNs to 

successfully tackle the problem of reading handwritten digits in 1995 [14]. Figure 3 shows the LeNet5 

network model they developed. LeNet5 comprises 8 layers and serves as the foundational architecture 

for contemporary convolutional networks [15]. Input layers, hidden layers, and output layers are all 

features shared with conventional neural networks in terms of their general structure. Convolutional 

layers and pooling layers, also known as subsampling layers, are two essential building elements that 

make up the hidden layers, the main part of CNNs. This structure also includes regularly used 

completely connected layers. Within the framework of convolutional neural networks, the 

convolutional layers and pooling layers serve as essential modules for feature extraction within the 

hidden layers. This network model gradually adapts the weight parameters within each layer via 

backpropagation, while minimizing the loss function through gradient descent. As a result, with 

repeated training, the model's accuracy is increased repeatedly. In the lowest levels of the 

convolutional neural network, convolutional layers and pooling layers alternate. However, the upper 

layers are analogous to the entirely connected and hidden layers seen in logistic regression classifiers 

and traditional multilayer perceptrons. A classifier is the last output layer. 

 

Figure 3. The structure of the LeNet5 network [15]. 

4.1.2.  Introduction to ResNet50. CNNs have consistently outperformed in image classification 

challenges. Furthermore, increasing the network's depth enhances its effectiveness in feature 

extraction. However, as the network's depth increases, the problem of vanishing gradients becomes 

more apparent, making network optimization harder. In light of this, He et al. created the Residual 

Convolutional Neural Network (ResNet), a network design that enhances photo classification job 

performance while obtaining more depth [16]. The ResNet family of networks is now one of the most 

widely utilized network designs in the field of image-related applications. ResNet is made up of 

stacked residual blocks, as seen in Figure 4 [16]. In addition to weight layers, a residual block has skip 

connections, which link the input x straight to the output. H(x) represents the original mapping, 

whereas F(x) represents the residual mapping. Furthermore, the skip connections make it easier to 

transmit features between layers, reducing the barrier faced by disappearing gradients to some extent. 

By stacking residual blocks, ResNet may generate network levels with up to 152 layers. The Residual 

Network has demonstrated notable effectiveness in picture categorization tasks. Among the Residual 

Network architectures, ResNet50 and ResNet101 represent the most renowned network structures. 

These models demonstrated outstanding performance in the 2015 ILSVRC competition, ultimately 

claiming the championship. 
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Figure 4. Residual block structure [16]. 

4.1.3.  Introduction to MobileNetV2. With increasing network depth, deep network models exhibit 

improved performance. Nevertheless, this presents challenges including a substantial growth in model 

parameters and slower inference speed. In light of these challenges, Google introduced a lightweight 

network called MobileNet V1 in 2017 [17]. MobileNet V1 was primarily designed to utilize depth-

wise separable convolutions in place of conventional convolutions. The conventional convolution is 

broken into two components in depth-wise separable convolutions: the depth-wise convolution and the 

point-wise convolution [17]. As seen in Figure 5, this split considerably decreases computational 

complexity, which frequently falls between 1/8 and 1/9. MobileNet achieves a harmonious balance 

between performance and efficiency, exhibiting traits such as low latency and low power consumption. 

It proves to be ideal for deployment on mobile devices such as smartphones, which possess 

comparatively limited computational capabilities and hardware configurations when compared to 

computers. Through substantial reduction of computational complexity, while striving to retain 

optimal performance, MobileNet has found extensive applications in the realm of image recognition. 

 

Figure 5. Depthwise separable convolution [17]. 

MobileNet V2 enhances the initial MobileNet architecture through the incorporation of linear 

bottleneck layers and inverted residual structures, as illustrated in Figure 6 [18]. The linear bottleneck 

layer eliminates the final non-linear activation function found in the conventional bottleneck layer. In 

terms of channel dimensions, the inverted residual structure diverges from the traditional residual 

structure by first increasing and then decreasing the channel count. The increased number of channels 
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enables the extraction of more features, thereby enabling the model to strike an optimal balance 

between parameter count, computation time, and performance. 

 

Figure 6. MobileNetV2 Convolutional Block [18]. 

4.2.  PyTorch Deep Learning Framework 

Within the realm of deep learning, numerous remarkable learning frameworks exist, and this article 

selects PyTorch, which was introduced by Facebook's Artificial Intelligence Research team (FAIR) in 

2016. PyTorch strives to offer a rapid, adaptable, and dynamic deep learning framework. It shares a 

design philosophy reminiscent of Python, emphasizing enhanced readability and simplicity over 

unwarranted complexity. Notably, PyTorch has made several daring design decisions, with the most 

significant being the selection of a dynamic computation graph as its foundation. The dynamic 

computation graph fundamentally diverges from the static computation graph utilized in other 

frameworks, primarily due to its capacity to accommodate runtime modifications to the graph. 

Consequently, this attribute renders PyTorch highly flexible in managing intricate models, making it  

4.3.  Model optimization based on gradient descent method 

Gradient descent serves as the prevailing optimization algorithm for objective functions within the 

field of deep learning. To locate the local minima of the function, it initially computes the gradient 

direction of the loss function by taking its derivatives. Subsequently, it iteratively traverses in the 

opposite direction of the current point of the loss function by a predetermined step size, progressively 

converging towards the local minimum. The fundamental principle of gradient descent entails that as 

the function value approaches the target value, the corresponding gradient diminishes, resulting in a 

deceleration of the descent. Stochastic gradient descent (SGD) and the Adam algorithm were selected 

as the optimal optimization strategies for this investigation. Stochastic gradient descent substitutes the 

global gradient with the gradient of a random sample, enabling swift network convergence and the 

acquisition of a favorable local optimum within a condensed timeframe. Nonetheless, there is a 

possibility of converging to a local extreme point, resulting in diminished accuracy. The Adam 

algorithm amalgamates concepts from the Momentum algorithm and the RMSprop algorithm. It 

determines the gradient's mean and variance before determining the update step size to dynamically 

change the learning rate. This algorithm exhibits a low computational cost, necessitates less memory, 

as well as being resilient to gradient scaling and diagonal re-scaling. Consequently, it proves to be 

well-suited for processing sparse data and non-stationary objectives. Presently, it stands as one of the 

most optimal algorithms for gradient descent performance. 
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4.4.  Evaluation standards 

Predictions and corresponding results are used for classification, producing four possible outcomes: 

True Negative (TN) is the ability to identify and classify negative events; False Positive (FP), often 

known as the false positive rate, denotes wrongly classifying instances of negativity as positive; False 

Negative (FN), also known as the false negative rate, denotes mistakenly classifying positive cases as 

negative, whereas True Positive (TP) denotes accurately classifying positive instances as positive. 

Precision, Recall, F1 Score, and Accuracy, are performance indicators used to evaluate classification 

models. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁)−1 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑃)−1 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)−1 (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)−1 (4) 

5.  Results and discussion of the experiment 

After determining the various parameters of the model, the classifier is executed, and the outcomes are 

presented in Table 1. Given the dataset's extensive array of fruit categories, weighted averages are 

employed to represent each performance metric accordingly. 

Table 1. Model classification results. 

  Training set Test set 

Model optimizer Accuracy 

(%) 

Loss Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Loss 

ResNez50 
SGD 99.99 0.0063 95.57 96.37 95.43 95.30 0.1543 

Adam 99.28 0.0456 89.82 92.06 89.82 89.25 0.3282 

MobileNetV2 
SGD 99.26 0.0088 92.19 94.53 91.89 91.46 0.2784 

Adam 97.95 0.1042 87.54 90.42 87.51 86.61 0.4043 

 

By evaluating the accuracy of the model's training set, it can be observed that irrespective of the 

model type or optimizer employed, high accuracy is consistently achieved. Nevertheless, the accuracy 

of MobileNetV2 with Adam optimizer stands at 97.95%, marginally lower than the counterparts 

exceeding 99%. All four models exhibit minimal loss values. The employment of the SGD optimizer 

yields superior accuracy and reduced loss values when juxtaposed with the Adam optimizer. These 

findings indicate that ResNet50 outperforms MobileNetV2 in terms of performance on the training set, 

and that the Adam optimizer performs better during network training. 

Results from the test set demonstrate that both models and optimizers achieve an accuracy of more 

than 85%, demonstrating remarkable performance. Regarding accuracy, ResNet50 excels by 

approximately 2% compared to MobileNetV2, whereas SGD surpasses Adam by approximately 5%. 

Consequently, the combination of ResNet50 with SGD optimization yields the highest recognition 

accuracy. Precision-wise, both models and optimizers attain accuracies surpassing 90%, signifying 

commendable performance. ResNet50 surpasses MobileNetV2, while SGD optimization outperforms 

Adam. Analyzing recall and loss values, it is evident that the ResNet50 model exhibits higher recall 

rates and lower loss rates compared to MobileNetV2. These findings suggest that the ResNet50-based 

recognition model excels in performance, showcasing robust generalization capabilities with minimal 

overfitting. Furthermore, the SGD optimizer demonstrates a superior average recall rate and lower loss 

value compared to Adam optimization, indicating enhanced performance of the SGD-trained network. 

In conclusion, the ResNet50-based recognition model demonstrates superior performance across 
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multiple indicators, while SGD optimization yields superior outcomes. This discrepancy may arise due 

to the inability of MobileNetV2, being a lightweight network, to rival the performance of ResNet50 

when employed on extensive datasets. However, MobileNetV2 presents advantages in terms of shorter 

training duration, heightened efficiency, and reduced computational demands, rendering it adequate 

for specific applications. Convolutional neural networks also perform remarkably well at 

differentiating between subcategories of the same variety of fruit. They successfully categorize fruits 

with similar appearances but different types. 

This study possesses certain limitations. While the Fruits 360 dataset employed exhibits notable 

diversity, the image quality predominantly consists of pristine white backgrounds for each fruit image. 

Nevertheless, numerous images within the dataset exhibit high similarity, captured from varying 

rotational angles. Consequently, this particular fruit dataset falls short of fulfilling authentic real-world 

business requirements. During practical applications, it is improbable for fruit recognition to involve 

background removal from images before recognition procedures. 

6.  Conclusion 

The ResNet50 and MobileNetV2 models are used in this paper to demonstrate a fruit categorization 

system based on computer vision. The Fruit 360 dataset is used by the system to do experiments. The 

experiment findings show that on the validation dataset, the ResNet50 model outperforms the 

MobileNetV2 model. The fruit classification system using the ResNet50 model achieved an accuracy 

of 95.57%, while the system using the MobileNetV2 model achieved an accuracy of 92.19%.  

Despite taking longer to create, the classifier model does away with the requirement for tedious 

feature extraction and selection found in conventional machine learning techniques. Despite its lower 

accuracy, the MobileNetV2 model is lightweight and well-suited for deployment in computer vision-

based systems. Future research should focus on refining and improving this model to enhance its 

accuracy and enable automation in fruit orchards. Furthermore, it is essential to choose image datasets 

that better represent real-world environments for training purposes. 
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