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Abstract. Gaussian-Process Factor Analysis (GPFA) is a useful method to discover the unknown 

dynamics of neural activities. Currently, there are a lot of studies based on the GPFA model. 

However, many of the existing GPFA models are specially for a specific situation, and they are 

no longer effective in other conditions. This paper aims to solve this problem by proposing a 

GPFA framework based on the standard GPFA model which can be applied to any neural 

dynamics with unknown latent structure. This framework also provides an idea to determine the 

latent dimension by using cross-validation. This framework will first be used on the synthetic 

data created by a generative model, to test two different ways of reproducing the spike train and 

check its utility. After that, it will be applied to real neural data recorded from anesthetized 

macaque monkeys. The framework shows a good result on the synthetic data. And its 

performance on the real neural data suggests that it still has some space to be improved. 

Discussion of the result will mainly focus on the potential approach to improve the framework’
s accuracy. 
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1.  Introduction 

In recent years, thanks to the rapid development and increasing use of technologies such as multi-

electrode and optical recording, researchers can record large-scale neural data with high resolution. 

Numerous scholarly investigations within the field of neuroscience have undergone a substantial shift 

in focus, transitioning from the study of individual neurons to the analysis of neural populations. This 

transition is driven by the acknowledgment that neural populations possess the ability to generate and 

convey a more extensive amount of information. Dimensionality reduction is always used to analyze 

neural population activity. This method can produce low-dimensional representations of high-

dimensional data to preserve and highlight the neural mechanisms and statistical power underlying 

various phenomena [1].  
Traditional methods, for example, PCA, are static dimensionality reduction methods which does not 

take into account time labels, and neural data are mostly time series. With the help of GPFA, researchers 

can leverage the time label information to get more powerful dimensionality reduction for time series 

data [2]. Nowadays, there are many existing studies about GPFA, which inspire a lot of different GPFA 

models based on different kinds of specific problems. One of the most famous applications is using 
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GPFA to disentangle the bidirectional signal flow between two brain areas [3]. However, dimensionality 

reduction problems are countless. Even within the angle of neural data problems, there are still plenty 

of unknown latent dynamics. And it is unrealistic to set up unique GPFA models for each of them. Thus, 

setting up a commonly used GPFA model is necessary. Moreover, besides the large number of studies 

of the GPFA model, researchers do not have a useful way to determine the hyperparameter, or in other 

words, the dimension of the latent, which is a big problem in using the GPFA model.  
This paper aims to propose a new and common framework for GPFA to cover the whole process of 

neural data analysis. Since the linear combination of Gaussian distribution can simulate all kinds of 

probability distribution [4], this framework will use the standard GPFA model to fit the unknown neural 

dynamics. With the help of the method of expectation-maximization, the speed of fitting the model can 

be dramatically increased. Then, by using a novel approach of spanning all the possible latent dimension 

values by cross-validation, the most suitable hyperparameter will be found. To guarantee the utility of 

the framework, in this paper, the framework will be used on the synthetic data generated by the 

generative model at first. After checking the results of reproducing the spike rate sequence and the most 

suitable model on the synthetic data, the model will be applied to a real neural dataset recording from 

the V1 area of anesthetized macaque monkeys. 

2.  Method 

2.1.  Data 

The neural data used in this paper is a multi-electrode recording data recorded from anesthetized 

macaque monkeys. In the experiment, natural images and gratings were flashed on the screen, and 

meanwhile, the multi-electrode recorded the activity in monkey’s brains. The whole dataset can be split 

into two parts, the first part was the brain activity when monkeys were shown the images, and the other 

part was the one after being shown the images. This paper uses the second part of the dataset because it 

can ensure a coherent process in a monkey’s brain. The data is a 3-D array in the form of 

#trials#neurons#miliseconds, including 20 trials, 102 neurons, and 211 millisecond time points. The 

value of each data point is binary, either 0 or 1, which suggests whether there is a neural spike in the 

time point or not. The data was posted to CRCNS.org on November 23, 2015, and labeled as primary 

visual cortex number 8 [5]. 

2.2.  Model 

To sum up, the whole framework can be divided into two parts: fitting the GPFA model and choosing 

the hyperparameter. Each part will be described below. The whole work in this paper can also be split 

into two steps: validating the synthetic data and applying it to the real neural data. 
In neuroscience, when the membrane potential of a neuron reaches a threshold, it will generate a 

sudden increase which is called a spike. There are two ways to record the information of neural activity: 

the first one is the spike train, which contains the spiking time of each neuron; the second one is the 

spike rate, which is defined as the number of spikes within a short time. The width of a time bin can 

have different choices and will lead to different results. Researchers often use spike binning square root 

transform to convert a spike train into the form of a spike rate. The framework is based on the 

standard GPFA model [6]. 

 𝑌 = 𝐶𝑋 + 𝑑 + 𝑁(0, 𝑅) (1) 

Where Y is a matrix in the shape of M×T, where M stands for the number of neurons and T represents 

the total amount of time points. Each point in the Y matrix is the spike count of a neuron at a time point. 

The basic idea of GPFA is to find the projection of the matrix Y in a low-dimensional subspace. And C 

is the transform matrix in the shape of M×P. X is the latent structure of the GPFA model in the shape of 

P×T, where P is the dimension of the latent. To make it close to reality, this model also adds the bias d 

and the Gaussian noise N ~ (0, R). The goal is to fit the model to an unknown neural structure. The 

method expectation-maximization is usually the first choice to do the fitting work which has proved to 
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be an accurate and fast approach compared with some traditional methods such as stochastic gradient 

descent.  
The spike counts are not necessarily a positive value. To convert the spike count, which is the value 

of each point of the matrix Y, into a non-negative spike rate, a simple math trick is needed: 

 𝑠𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒 =  (70𝐻𝑧)𝑦𝑖,𝑗/((𝒀)) (2) 

Where 𝑦𝑖,𝑗 is a value point of the matrix Y. 

The next part of the framework is to tune the hyperparameter, or in other words, choose the best 

latent dimension value. Some existing methods such as likelihood ratio tests may be very complicated 

and depend on some specific conditions, and using Cross-Validation can successfully avoid such 

problems and overfitting [7]. The idea here is to calculate the validation for each possible value of the 

latent dimension and choose the one with the highest value. Since the Bayesian Marginal log-likelihood 

can be equivalent to the Cross-Validation score using the log posterior predictive probability as the 

scoring rule [8], it is reasonable to average the marginal log-likelihoods for each fold of the Cross-

Validation as the validation or score.  
The first step in this paper is to validate the model on the synthetic data. The synthetic data is 

generated by the generative model which shows the spike rate of each neuron at each time point. The 

generative model is a modified GPFA model. The reason why modifying the model is to make it more 

real. According to the definition of spike rate, it should be a non-negative value. The latent structure X 

of the model is a traditional Gaussian process. Add the exponential function to each element of the 

projection matrix after projecting to the high dimensional space by the transform matrix W [9]: 

 𝑌 = exp (𝑊𝑋) (3) 

Therefore, each element of the matrix Y becomes equal to or greater than zero. Because the count of 

the neural spikes is integer, it is obviously that an inhomogeneous Poisson Process can be approximated 

to the distribution of spike train. The following work is to fit the standard GPFA model to the spike train. 

After getting the parameters C, d, and R, it is time to reproduce the sequence of spike rate and spike 

train. Another thing is to check the suitable hyperparameter. All of the results will be compared with the 

initial setting of the generative model, which is the validation of the framework. 
The next step is to apply this framework to the real neural data of the anesthetized macaque monkeys. 

The process is similar to the work on the synthetic data: fitting the standard model with expectation 

maximization and getting the parameters, checking the appropriate latent dimension with cross-

validation, and reproducing the spike rate and the spike train. The only difference is that because the 

form of the neural data is binary, which means each value point is either one (spike) or zero (silence), 

the neural data should be preprocessed and converted into the form of showing the exact time of spikes. 

After this transformation, it can be compatible with the algorithm. 

2.3.  Evaluation 

Three things need to be evaluated: the accuracy of the reproduced spike rate, the reproduced latent, and 

the reproduced latent dimension. If the difference between the real latent dimension and the reproduced 

one is no more than two, it will be a reasonable result. And for the first and second one, currently, there 

is no appropriate method to measure the accuracy. But after plotting the reproduced one and the real 

one, it is possible to compare the number and the position of the peak to show how much the reproduced 

one fits the real one. Moreover, there are also two ways to reproduce the spike rate: one is to directly 

use the parameters to reproduce the standard GPFA model; and the other is to follow the structure of the 

generative model. Seeing that the latent in the two models have the same definition, it is necessary to 

check both of them. 
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3.  Result 

3.1.  Synthetic data 

The synthetic data is generated by the model mentioned in the last section. To show the latent dynamics 

more vividly, the dimension of the latent was chosen as two dimensions. That is because two dimensions 

can directly be posted on a plane. This study constructs a projection from two latent to fifty neurons. 

The parameters here are the transform matrix W and kernel parameter l, where the kernel is radial basis 

function kernel 

 𝑒𝑥𝑝 (−(𝑡1 − 𝑡2)2/(2𝑙2) (4) 

The results of the generative data are shown in Figure 1. 

 

Figure 1. Visualization of the generated data. Upper left: The low-dimensional latent structure; Upper 

right: the trajectory of latent dimension in 2-d picture; Lower left: the spike rate of each neuron in the 

generated data; Lower right: the spike train of the generated data. 

The first task is to reproduce the spike rate by using the standard GPFA model. And the first step is 

to use EM (expectation-maximization) method to fit the data by the standard model. After getting the 

parameters, using equation (1), (2) to reproduce the spike rate, and the result is shown in Figure 2. The 

picture on the left-hand side of Figure 2 is the real spike rate, and the one on the right-hand side 

is the reproduced spike rate. It is obvious that the real one is smoother and the difference 

between these two is non-trivial. 
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Figure 2. Comparison of the synthetic spike rate (left) and the spike rate reproduced from the standard 

model (right). 

However, after applying these two to an inhomogeneous Poisson Process and generating the spike 

train which is shown in Figure 3, it seems that the difference between the real one and the reproduced 

one is not as large as the spike rate. Figure 3 suggests that there are a total of 18 spikes in the original 

data and 16 spikes in the generated spike train, and the degree of dispersion of the two spike train results 

are very similar. Since the generative model and the fitting model are two completely different 

models, it is rational to believe that there are two different ways leading to the same result by 

the inhomogeneous Poisson Process, and the final result here is the spike train. Always 

remember that the final target is to reproduce the spike train, not the spike rate. 

 

Figure 3. Comparison of the synthetic spike train (left) and the spike train reproduced from the standard 

model (right). 

Let’s move on to the next task: reproducing with the generative model. The latent sequence X 

remains but is applied to the generative model by using the equation (3). Figure 4 shows an even much 

larger difference than Figure 2. It may be because using another model to fit the result will bring much 

more error. Regarding the structures of the two models, it is easy to find out that the standard model 

dramatically amplifies the value of the latent by the exponential of 70 Hz, which is much larger than the 

generative model with the exponential of Euler number. So, when reproducing the spike rate 

with the generative model, its fluctuation will be much smaller than before.  
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Figure 4. Comparison of the synthetic spike rate (left) and the spike rate reproduced from the generative 

model (right). 

Nevertheless, checking the reproduced spike train is necessary to validate the idea that reproducing 

from the generative model is not rational. Figure 5 shows that reproducing from the generative model 

also cannot generate a similar spike train with the original data, neither the frequency of the spikes nor 

the neuron generating a spike. To sum up, although getting a much different spike rate, the framework 

of the standard model can successfully reproduce a similar spike train with the original data. On the 

other hand, directly using the generative model will not receive a good result no matter in spike rate or 

spike train.  

 

Figure 5. Comparison of the synthetic spike train (left) and the spike train reproduced from the 

generative model (right). 

The final task is to use the cross-validation to find the suitable hyperparameter. From Figure 6, it is 

obvious that the result is three, which satisfies the demand of difference no more than two. It shows that 

the cross-validation part of the framework works. So far, the framework shows a robust effect on the 

synthetic data, and it is time to apply it to the real neural data. 
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Figure 6. Log-likelihood of each possible value of the latent dimension of the synthetic data. 

3.2.  Real Neural Data 

After a simple preprocessing, the real neural data from the anesthetized macaque monkeys is shown in 

the form in Figure 7. The first step in this section is to find the suitable latent dimension. Just repeat the 

steps in section 3.1, and the result is shown below in Figure 8. 

 

Figure 7. Visualization of the spike train after preprocessing. 

 

 

Figure 8. Log-likelihood of each possible value of the latent dimension of the real neural data. 

The dimension of the latent is three. Thus, in the following steps, the latent dimension parameter 

should be set as three. According to the conclusion in section 3.1, it is nonsense to think about the 
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underlying structure of the neural activity since the standard GPFA model has already fitted the spike 

train. Then, reproduce the spike train with the help of parameters inferred from the standard GPFA 

model. 

Figure 9 shows that there are still some differences between the final result and the original data. The 

original data shows a little bit more spikes and more spiking neurons than the reproduced data, which 

means that the framework still needs to be optimized. In the next section, some more details of the 

framework will be analyzed and discussed, aiming to find some new directions for future studies. 

 

Figure 9. Comparison of the real neural spike train (left) and the spike train reproduced from the 

standard model (right). 

4.  Discussion 

The framework proposed in this paper has a good performance on the synthetic data, however, it still 

cannot meet the expectations of the real neural data. It shows that there are still some limitations in this 

framework, and it is worthwhile to discuss the reason for them. 
One of the biggest problems of this framework is that there is no ready-made method to determine 

or measure the accuracy of the framework. Most of the comments on the result are based on the intuition 

of the naked eye. It is possible to compare two methods of reproducing with the model data and figure 

out which one is better, however, when it comes to a single result and model data, intuition is not correct. 

Thus, setting up a rule for analyzing the similarity between two spike trains is necessary. 

The framework also has some details that need to be studied. For example, the kernel used to create 

the Gaussian process of the latent structure X. This paper uses the radial basis function kernel because 

it is the most commonly used one [10]. But it is still uncertain whether it is the best choice or not. 

Moreover, when projecting the latent dynamics X to the high-dimensional space, a math trick is always 

needed to get a positive value of the spike rate matrix Y, and there is no certain way to do such a math 

trick. Even in this paper two different approaches. These two problems are worth studying in the future 

since they are correlated heavily with the framework. 

Finally, a possible reason that this framework performs better on the synthetic data is that the 

generative model is still a slightly modified GPFA model, which may share some common features with 

the standard GPFA model. In this case, the framework needs to be more precise to adapt to some models 

that are not as Gaussian as the generative model used in this paper. 

5.  Conclusion 

This paper aims to propose a generic framework that can adapt to most kinds of neural data and neural 

activity, finding the latent structure and reproducing the spike train. The framework is based on the 

standard Gaussian-Process Factor Analysis model. With the help of an expectation-maximized 

algorithm, this model can be quickly embedded into the spike train and get the parameters. The 

innovative part is the method of choosing the appropriate latent dimension by spanning all the possible 

values using cross-validation. This framework performs well on the synthetic data. It roughly reproduces 

the original spike train in both frequency and spiking neurons. It also successfully finds the closed value 
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of the latent dimension by calculating the average log-likelihood. However, it still shows some 

limitations on the real neural data. The final result shows clear differences with the original spike train. 

Fortunately, this work does not work into a dead end. There are still some parts that can be improved, 

for example, the kernel function of the covariance matrix, the method of converting the spike count into 

a non-negative spike rate, and most importantly, a standard that can measure the accuracy of the model 

and the spike train. These shortages mean that this framework has the potential to become better. On the 

other hand, a wilderness demand for such kinds of models will push the development of the GPFA 

model. The applications of the GPFA model are wide in neuroscience. Therefore, this kind of model 

will continuously draw strong attention from neuroscientists and there will always be someone trying to 

improve the performance of it. Hope that with the development of the relevant technology, a more useful 

GPFA model can be developed soon. 
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