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Abstract. As a matter of fact, stock market prediction has always been a popular problem. Many 

investors and scholars think that it’s impossible because they believe it’s random and doesn’t 

have any patterns. However, many studies have found that long term prediction is possible, and 

that the existence of patterns in stocks makes it able to be predicted. Because of the possibility 

of predicting the stock market, many studies and investors have thought of new methodologies, 

ranging from statistical, economical, and others, employing techniques from a variety of 

practices. One methodology that has recently gained momentum is machine learning, which 

shows great promise and improvement. This study looks at four prevalent stock market 

prediction models, which include ARIMA, LightGBM, XGBoost, and LSTMs, explains some 

research done with them, the problems they have, and future improvements. It finally briefly 

discusses other methods researchers have used to predict the stock market that weren’t explained 

in the paper. 
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1.  Introduction 

If done well, investing in the stock market is one of the best ways to make money. Otherwise, it turns 

into one of the best ways to lose money. The market also greatly influences the economy and many 

aspects of society. Because of its importance, many have tried to grasp the chaos of the stock market to 

profit from it, but to little success. The difficulty in trading stocks comes from the stock market’s volatile, 

nonparametric, noisy, and chaotic nature [1]. Unpredictable events like a pandemic or war can cause it 

to crash suddenly, or one piece of seemingly unrelated news may cause a stock to drop. And volatility 

is just one aspect of the stock market’s difficulty; stock markets are influenced by many correlated 

factors, including political, psychological, company-specific, and economic variables, which makes it 

nearly impossible for one person to analyse it all [2].  

Because of the complexity of the stock market, there are many theories trying to summarize how the 

stock market functions. One such example is the extremely controversial Efficient Market Hypothesis 

(EMH), which states that the performance of a stock considers all the information about it in the present 

moment, and thus makes it pointless to predict trends in the market through different types of analysis 

[3]. Some studies argue that variables such as stock prices and the financial market as a whole are 

predictable to an extent [2, 4]. Other arguments against EMH point to the existence of price trends and 

the correlation between events and financial figures that affect the market [1]. This doubt of EMH has 
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helped develop new modern methods of stock prediction, with methodologies stemming from statistics, 

pattern recognition, and AI, just to name a few. 

This study will focus on statistical and machine learning (which include sentiment analysis, 

supervised/unsupervised learning, or a hybrid approach) approaches to predicting the stock market. One 

important group of statistical approaches for stock market prediction is univariate analysis models 

(models which take time series data as input values) [2]. These include Auto-Regressive Moving 

Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA), Generalized 

Autoregressive Conditional Heteroskedastic (GARCH) volatility, and Smooth Transition 

Autoregressive (STAR) models [2]. One notable time series data model is the ARIMA, which is a widely 

used technique for stock market analysis. ARIMA models are an extension to ARMA models, and are 

able to predict non-stationary series data by making it stationary through the addition of differencing to 

remove trends and seasonality. However, like ARMA models, ARIMAs cannot account for volatility 

clustering.  

Pattern recognition is generally a subfield of machine learning. However, their applications are vastly 

different in stock prediction, and therefore can be classified as a different method [5]. Pattern recognition 

takes candlestick charts and visual stock price charts to find recurring patterns which correlate to future 

trends [6, 7]. Out of all the methods, machine learning (ML) has been studied the most for its potential 

applications to stock price prediction. Older models of single decision trees, discriminant analysis, and 

naïve Bayes are being replaced by more effective ones such as Random Forest, logistic regression, and 

neural networks [8]. Recently, Artificial Neural Networks (ANNs) are becoming more popular in market 

analysis because of their nonlinearity [2]. Some studies have also used sentiment analysis to evaluate 

the stock market [9]. They work by analyzing text from news sources or articles that are related to a 

specific stock/company and then predicting the success of that stock from its result. One notable use of 

sentiment analysis to predict volatility was Seng and Yang [10].  

With so many different methods, it’s hard to keep track of them and see which ones work the best. 

This paper will give an in-depth explanation of ARIMA, LightGBM, XGBoost, and LSTM models and 

how they are used to predict stocks, along with their performance. After reviewing all four models, the 

paper will then compare all their pros and cons and discuss some potential developments. The structure 

of the paper is as following. Section 2 describes the above models in stock prediction. Section 3 

compares the methods in Section 2, as well as future outlooks. Section 4 concludes the paper. 

2.  Methodologies 

The ARIMA model was first applied to economic data by statistician Box and Jenkins in the 1970s, and 

quickly became popular due to its relative simplicity and effectiveness. The output of ARIMA models 

solely comes from the input variables, error values, and forecasting equation, making it far simpler than 

other complex models such as an ANN. However, this simplicity also has its downsides: the ARIMA 

model’s linearity has trouble predicting a nonlinear stock market in the long term. Despite this, it can 

usually outperform the complex structural models in at least short term prediction [11]. The ARIMA(p, 

d, q) model combines three different concepts into one model: autoregression (AR), which captures 

relationships between observed values over a time period; integration (I), which differences the data to 

make it predictable by the linear model; and moving average (MA), which includes a residual error from 

a moving average model to be applied to lagged observations. The three variables p, d, and q define the 

number of autoregressive terms, differences, and moving average terms respectively. The ARIMA 

model uses a linear forecasting equation to predict future values, which is generalized as 

  ŷ𝑡 =  𝜇 +  𝜙1𝑦𝑡−1+. . . +𝜙𝑝𝑦𝑡−𝑝 − 𝜃1𝑒𝑡−1−. . . −𝜃𝑞𝑒𝑡−𝑞   (1) 

where 𝜇 is an optional constant, y is the real past value, e is the random error, and 𝜙1 and 𝜙𝑝 are the 

coefficients for AR(1) and AR(P) respectively, with 𝜃 serving the same purpose but for the moving 

average aspect of the equation.  

Ariyo et al. used an ARIMA to predict Nokia stock prices with a (2, 1, 0) model [11]. They tested 

multiple variants of the ARIMA(p, d, q) model and chose the one with the lowest Bayesian Information 
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Criterion. After finding the most optimal version of the model for the stock, they yielded Fig. 1, which 

displays the comparison of predicted vs actual Nokia stock price. Devi et al. also used an ARIMA to 

predict values of the Nifty Midcap-50 and its top 4 indices [12]. They chose the best model based on 

both the Akaike Information Criterion and the Bayesian Information Criterion, resulting in an ARIMA 

with the parameters (1, 0, 1). Table 1 shows the metrics they used to measure the performance of the 

model. 

 

Figure 1. Actual vs Predicted stock price values of Nokia Stock Index [12] 

Table 1. Metrics for NIFTY50 and top 4 indices [12] 

INDEX/ERROR NIFTY-50 RELIANCE OFSS ABB JSWSTEEL 

MAPE 0.2108 0.3759 0.4073 0.3847 0.4798 

PMAD 0.1792 0.3746 0.2902 0.5305 0.295 

% Error-Accuracy 16.26% 31.40% 26.47% 38.12% 24.88% 

 

The LightGBM and XGBoost models both focus on improving gradient boosting decision trees 

(GBDT). XGBoost was developed first by Chen and Guestrin as a scalable ML system for GBDT [13]. 

It is used in a wide variety of problems, ranging from classification to prediction [13]. The creators 

attribute this popularity to the system’s scalability, running over ten times faster than other solutions and 

scaling to billions of examples in memory-limited scenarios [13]. XGBoost introduces four main 

innovations to tree learning: an algorithm for handling sparse data, a justified weighted sketch for 

handling weights in tree learning, parallel computing for speed, and out of core computing to process 

billions of examples on a desktop [13]. Overall, XGBoost is still one of the best systems for GBDT.  

However, Ke et al. improved current GBDT systems, such as XGBoost, focusing on their problems 

with efficiency and scalability that were still unsatisfactory for problems with high feature dimensions 

and large data sets [14]. The paper proposed two new improvements: Gradient-based One-Side 

Sampling (GOSS) and Exclusive Feature Bundling (EFB) [14]. GOSS’s principle is that data instances 

with larger gradients have a proportionally larger effect on the computation of information gain and 

contribute greater to it. Therefore, GOSS aims to keep larger gradients and only randomly drop smaller 

gradients, instead of randomly dropping all instances. This leads to a more accurate gain estimation with 

the same target sampling rate [14]. EFB works to reduce feature spaces, as there can be some features 
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that are mutually exclusive in a large and sparse feature space. Ke et al. designed an algorithm to safely 

bundle these exclusive features, and called it EFB [14]. LightGBM can accelerate the training process 

by up to over 20 times while achieving almost the same accuracy [14]. One problem with LightGBM 

however is that it is very prone to overfitting with small datasets, and therefore the problem of using 

XGBoost or LightGBM depends on the situation.  

In order to find out which system of GBDT was the best for stock prediction, Yang et al. ran an 

experiment with stock market data from Jane Street, to compare both models with a neural network and 

their own proposed model of a fusion of XGBoost and LightGBM in a 1:1 ratio [15]. They evaluated 

using a unity value, which is calculated with the following formula:  

 𝑢 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑡, 0),6)𝛴𝑝𝑖     (2) 

where  

 𝑝𝑖 = ∑ (𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 ∗ 𝑟𝑒𝑠𝑝𝑖𝑗 ∗ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗)0
𝑗      (3) 

and 

  𝑡 =
𝛴𝑝𝑖

√𝛴𝑝𝑖
2

√
250

|𝑖|
     (4) 

when for each date i, each trade j will correspond to the following weight, resp, and action, and |i| is the 

total number of unique dates in the test dataset [15]. With the above evaluation method and four models 

created, they yielded Table 2 which describes the unity value [15]. Another study conducted by Ye et 

al. utilized the same methodology for Jane Street stock prediction and yielded a similar table with 

LightGBM outperforming XGBoost in the unity value [16]. 

Table 2. Utility score of the four models 

Models Unity 

Proposed Mode 7852 

Xgboost 6008 

Lightgbm 7487 

Neural Network 5019 

 

The LSTM model is a variant of recurrent neural networks (RNN), and its main purpose is to solve 

the exploding/vanishing gradient problem. This allows it to process longer time series data without 

problems with its gradient. The LSTM adds a new state to hidden layers called the cell state and three 

new aspects for memory to a traditional RNN: an input gate, output gate and forget gate. The key 

addition is the cell state, which runs smoothly through each node with only a few linear interactions. 

This allows it to pass through information that is mostly unchanged, retaining older data values. The 

first interaction with the cell state is the forget gate, which decides what information to retain and forget 

after the previous layer finishes. Then, an input gate allows new information from the current node to 

pass through, which combines a sigmoid function to decide which information to update, and a tanh 

function to normalize the new values that are added to the state. Finally, to decide what to output, the 

hidden state separate to the cell state goes through a sigmoid function, choosing which values to carry 

on, and is then multiplied with a normalized cell state via the tanh function.  

Another variant of the LSTM is the gated recurrent unit (GRU), which adds a reset and update gate. 

The reset gate controls how current and historical information is combined, and the update gate decides 

how much historic memory should be contained in each node. Sethia and Raut tested the viability in 

LSTMs and GRUs in stock prediction, comparing it to more traditional models such as support vector 

machines (SVM) and a simple feedforward network trained with backpropagation [17]. After running 

independent component analysis to choose features, they decided on 12 components for the final dataset. 

They used S&P 500 Open, High, Low, Volume and Adjusted Close information from the Yahoo Finance 
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API as well as other technical indicators, mainly for volume, trend, momentum, and volatility [17]. 

Table 3 displays the results they achieved. 

Table 3. Performance Comparison Between Models 

Model RMSE R2 Score Return Ratio Optimism Ratio Pessimism Ratio 

LSTM 0.000428 0.948616 4.308454 0.310246 0.203791 

GRU 0.000511 0.938698 5.722242 0.447867 0.120853 

SVM 0.000543 0.934952 -1.858130 0.080094 0.631331 

MLP 0.001052 0.874004 2.478719 0.689046 0.115430 

 

Another notable study conducted on the viability of LSTMs in stock prediction was Bhandari et al. 

which searched for the optimal number of parameters for LSTMs [18]. They tested it on the S&P 500 

index fund as well, arriving at the conclusion that single layer LSTM models with around 150 neurons 

have a better fit and accuracy than multilayer LSTM models [18].  

3.  Comparison, limitation and prospects 

This paper covered four prevalent models in the stock market prediction scene, and showed the 

performance of each one, and some other models as well. Although each paper uses different metrics to 

evaluate their model, a prevalent theme can be seen that LSTMs and variants of it performed the best 

when compared to ARIMA and GBDT methods. ARIMAs are known to be robust and efficient, but are 

lacking in long-term prediction, only matching ANN methods in short-term predictions. XGBoost can’t 

handle categorical data, so it must be converted to numerical before being inputted. LightGBM doesn’t 

run into this problem, and is overall a good way to predict the stock market. However, LSTMs just 

perform better overall while sharing similar problems to LightGBM, making it a better choice. LSTMs 

perform better than LightGBMs because they can capture better nonlinear time-series data, which allows 

it to be more consistent and see better results than ARIMAs or decision trees. However, despite being 

the most optimal method for stock prediction out of the ones discussed in the paper, LSTMs are not 

perfect. As Sethia and Raut explained, LSTMs cannot predict extreme price dips or sharp price spikes, 

which might be caused by dramatic events in the economy such as an election or a war [17]. They also 

stated that the model could be made resistant to this if the input dataset includes economic factors like 

interest rate and GDP growth [17]. Another possible way to predict these sudden changes is by 

incorporating LSTMs with sentiment analysis, as many studies have done using twitter comments [18].  

This could be effective as social media is gaining influence faster than ever, and could potentially affect 

the stock market. Another strategy that Gupta showed was to employ large language models (LLM) to 

analyse company financial data and predict which stocks to buy and sell [19]. This proved to have greater 

returns than the S&P 500 index fund. Other future improvements include a hybrid model which 

combines the models discussed above or with sentiment analysis. 

4.  Conclusion 

To sum up, for the longest time, stock markets have challenged researchers and investors to try and 

predict it. With a myriad of methods at their disposal, keeping track of all of them is nearly impossible. 

This paper is not all-inclusive. Many innovations are being made to further optimize the current models 

and methodologies for investing in and predicting the stock market, such as creating hybrid models and 

trying to predict for long term investments. Some of the most efficient methods are kept confidential, as 

once introduced to the public they could become ineffective. Because of the constant development of 

the field and changing of current knowledge and available data, this paper doesn’t try to give a shallow 

explanation of all methods currently known, but instead explains four machine learning models that are 

currently most used in stock prediction, showing the results and methodologies of previous studies 

conducted, the potential downsides, and improvements that could be made that could be made to them 

and the field in general. 
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