
Analysis of ARIMA, LightGBM, XGBoost, and LSTM models

for stock prediction

Nathan Wu

Boston University Academy, Boston MA 02215, United States

nathanw7@bu.edu

Abstract. As a matter of fact, stock market prediction has always been a popular problem. Many

investors and scholars think that it’s impossible because they believe it’s random and doesn’t

have any patterns. However, many studies have found that long term prediction is possible, and

that the existence of patterns in stocks makes it able to be predicted. Because of the possibility

of predicting the stock market, many studies and investors have thought of new methodologies,

ranging from statistical, economical, and others, employing techniques from a variety of

practices. One methodology that has recently gained momentum is machine learning, which

shows great promise and improvement. This study looks at four prevalent stock market

prediction models, which include ARIMA, LightGBM, XGBoost, and LSTMs, explains some

research done with them, the problems they have, and future improvements. It finally briefly

discusses other methods researchers have used to predict the stock market that weren’t explained

in the paper.

Keywords: Stock prediction, machine learning, LightGBM, XGBoost, LSTM.

1. Introduction

If done well, investing in the stock market is one of the best ways to make money. Otherwise, it turns

into one of the best ways to lose money. The market also greatly influences the economy and many

aspects of society. Because of its importance, many have tried to grasp the chaos of the stock market to

profit from it, but to little success. The difficulty in trading stocks comes from the stock market’s volatile,

nonparametric, noisy, and chaotic nature [1]. Unpredictable events like a pandemic or war can cause it

to crash suddenly, or one piece of seemingly unrelated news may cause a stock to drop. And volatility

is just one aspect of the stock market’s difficulty; stock markets are influenced by many correlated

factors, including political, psychological, company-specific, and economic variables, which makes it

nearly impossible for one person to analyse it all [2].

Because of the complexity of the stock market, there are many theories trying to summarize how the

stock market functions. One such example is the extremely controversial Efficient Market Hypothesis

(EMH), which states that the performance of a stock considers all the information about it in the present

moment, and thus makes it pointless to predict trends in the market through different types of analysis

[3]. Some studies argue that variables such as stock prices and the financial market as a whole are

predictable to an extent [2, 4]. Other arguments against EMH point to the existence of price trends and

the correlation between events and financial figures that affect the market [1]. This doubt of EMH has

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241390

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

76

helped develop new modern methods of stock prediction, with methodologies stemming from statistics,

pattern recognition, and AI, just to name a few.

This study will focus on statistical and machine learning (which include sentiment analysis,

supervised/unsupervised learning, or a hybrid approach) approaches to predicting the stock market. One

important group of statistical approaches for stock market prediction is univariate analysis models

(models which take time series data as input values) [2]. These include Auto-Regressive Moving

Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA), Generalized

Autoregressive Conditional Heteroskedastic (GARCH) volatility, and Smooth Transition

Autoregressive (STAR) models [2]. One notable time series data model is the ARIMA, which is a widely

used technique for stock market analysis. ARIMA models are an extension to ARMA models, and are

able to predict non-stationary series data by making it stationary through the addition of differencing to

remove trends and seasonality. However, like ARMA models, ARIMAs cannot account for volatility

clustering.

Pattern recognition is generally a subfield of machine learning. However, their applications are vastly

different in stock prediction, and therefore can be classified as a different method [5]. Pattern recognition

takes candlestick charts and visual stock price charts to find recurring patterns which correlate to future

trends [6, 7]. Out of all the methods, machine learning (ML) has been studied the most for its potential

applications to stock price prediction. Older models of single decision trees, discriminant analysis, and

naïve Bayes are being replaced by more effective ones such as Random Forest, logistic regression, and

neural networks [8]. Recently, Artificial Neural Networks (ANNs) are becoming more popular in market

analysis because of their nonlinearity [2]. Some studies have also used sentiment analysis to evaluate

the stock market [9]. They work by analyzing text from news sources or articles that are related to a

specific stock/company and then predicting the success of that stock from its result. One notable use of

sentiment analysis to predict volatility was Seng and Yang [10].

With so many different methods, it’s hard to keep track of them and see which ones work the best.

This paper will give an in-depth explanation of ARIMA, LightGBM, XGBoost, and LSTM models and

how they are used to predict stocks, along with their performance. After reviewing all four models, the

paper will then compare all their pros and cons and discuss some potential developments. The structure

of the paper is as following. Section 2 describes the above models in stock prediction. Section 3

compares the methods in Section 2, as well as future outlooks. Section 4 concludes the paper.

2. Methodologies

The ARIMA model was first applied to economic data by statistician Box and Jenkins in the 1970s, and

quickly became popular due to its relative simplicity and effectiveness. The output of ARIMA models

solely comes from the input variables, error values, and forecasting equation, making it far simpler than

other complex models such as an ANN. However, this simplicity also has its downsides: the ARIMA

model’s linearity has trouble predicting a nonlinear stock market in the long term. Despite this, it can

usually outperform the complex structural models in at least short term prediction [11]. The ARIMA(p,

d, q) model combines three different concepts into one model: autoregression (AR), which captures

relationships between observed values over a time period; integration (I), which differences the data to

make it predictable by the linear model; and moving average (MA), which includes a residual error from

a moving average model to be applied to lagged observations. The three variables p, d, and q define the

number of autoregressive terms, differences, and moving average terms respectively. The ARIMA

model uses a linear forecasting equation to predict future values, which is generalized as

 ŷ𝑡 = 𝜇 + 𝜙1𝑦𝑡−1+. . . +𝜙𝑝𝑦𝑡−𝑝 − 𝜃1𝑒𝑡−1−. . . −𝜃𝑞𝑒𝑡−𝑞 (1)

where 𝜇 is an optional constant, y is the real past value, e is the random error, and 𝜙1 and 𝜙𝑝 are the

coefficients for AR(1) and AR(P) respectively, with 𝜃 serving the same purpose but for the moving

average aspect of the equation.

Ariyo et al. used an ARIMA to predict Nokia stock prices with a (2, 1, 0) model [11]. They tested

multiple variants of the ARIMA(p, d, q) model and chose the one with the lowest Bayesian Information

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241390

77

Criterion. After finding the most optimal version of the model for the stock, they yielded Fig. 1, which

displays the comparison of predicted vs actual Nokia stock price. Devi et al. also used an ARIMA to

predict values of the Nifty Midcap-50 and its top 4 indices [12]. They chose the best model based on

both the Akaike Information Criterion and the Bayesian Information Criterion, resulting in an ARIMA

with the parameters (1, 0, 1). Table 1 shows the metrics they used to measure the performance of the

model.

Figure 1. Actual vs Predicted stock price values of Nokia Stock Index [12]

Table 1. Metrics for NIFTY50 and top 4 indices [12]

INDEX/ERROR NIFTY-50 RELIANCE OFSS ABB JSWSTEEL

MAPE 0.2108 0.3759 0.4073 0.3847 0.4798

PMAD 0.1792 0.3746 0.2902 0.5305 0.295

% Error-Accuracy 16.26% 31.40% 26.47% 38.12% 24.88%

The LightGBM and XGBoost models both focus on improving gradient boosting decision trees

(GBDT). XGBoost was developed first by Chen and Guestrin as a scalable ML system for GBDT [13].

It is used in a wide variety of problems, ranging from classification to prediction [13]. The creators

attribute this popularity to the system’s scalability, running over ten times faster than other solutions and

scaling to billions of examples in memory-limited scenarios [13]. XGBoost introduces four main

innovations to tree learning: an algorithm for handling sparse data, a justified weighted sketch for

handling weights in tree learning, parallel computing for speed, and out of core computing to process

billions of examples on a desktop [13]. Overall, XGBoost is still one of the best systems for GBDT.

However, Ke et al. improved current GBDT systems, such as XGBoost, focusing on their problems

with efficiency and scalability that were still unsatisfactory for problems with high feature dimensions

and large data sets [14]. The paper proposed two new improvements: Gradient-based One-Side

Sampling (GOSS) and Exclusive Feature Bundling (EFB) [14]. GOSS’s principle is that data instances

with larger gradients have a proportionally larger effect on the computation of information gain and

contribute greater to it. Therefore, GOSS aims to keep larger gradients and only randomly drop smaller

gradients, instead of randomly dropping all instances. This leads to a more accurate gain estimation with

the same target sampling rate [14]. EFB works to reduce feature spaces, as there can be some features

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241390

78

that are mutually exclusive in a large and sparse feature space. Ke et al. designed an algorithm to safely

bundle these exclusive features, and called it EFB [14]. LightGBM can accelerate the training process

by up to over 20 times while achieving almost the same accuracy [14]. One problem with LightGBM

however is that it is very prone to overfitting with small datasets, and therefore the problem of using

XGBoost or LightGBM depends on the situation.

In order to find out which system of GBDT was the best for stock prediction, Yang et al. ran an

experiment with stock market data from Jane Street, to compare both models with a neural network and

their own proposed model of a fusion of XGBoost and LightGBM in a 1:1 ratio [15]. They evaluated

using a unity value, which is calculated with the following formula:

 𝑢 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑡, 0),6)𝛴𝑝𝑖 (2)

where

 𝑝𝑖 = ∑ (𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 ∗ 𝑟𝑒𝑠𝑝𝑖𝑗 ∗ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑗)0
𝑗 (3)

and

 𝑡 =
𝛴𝑝𝑖

√𝛴𝑝𝑖
2

√
250

|𝑖|
 (4)

when for each date i, each trade j will correspond to the following weight, resp, and action, and |i| is the

total number of unique dates in the test dataset [15]. With the above evaluation method and four models

created, they yielded Table 2 which describes the unity value [15]. Another study conducted by Ye et

al. utilized the same methodology for Jane Street stock prediction and yielded a similar table with

LightGBM outperforming XGBoost in the unity value [16].

Table 2. Utility score of the four models

Models Unity

Proposed Mode 7852

Xgboost 6008

Lightgbm 7487

Neural Network 5019

The LSTM model is a variant of recurrent neural networks (RNN), and its main purpose is to solve

the exploding/vanishing gradient problem. This allows it to process longer time series data without

problems with its gradient. The LSTM adds a new state to hidden layers called the cell state and three

new aspects for memory to a traditional RNN: an input gate, output gate and forget gate. The key

addition is the cell state, which runs smoothly through each node with only a few linear interactions.

This allows it to pass through information that is mostly unchanged, retaining older data values. The

first interaction with the cell state is the forget gate, which decides what information to retain and forget

after the previous layer finishes. Then, an input gate allows new information from the current node to

pass through, which combines a sigmoid function to decide which information to update, and a tanh

function to normalize the new values that are added to the state. Finally, to decide what to output, the

hidden state separate to the cell state goes through a sigmoid function, choosing which values to carry

on, and is then multiplied with a normalized cell state via the tanh function.

Another variant of the LSTM is the gated recurrent unit (GRU), which adds a reset and update gate.

The reset gate controls how current and historical information is combined, and the update gate decides

how much historic memory should be contained in each node. Sethia and Raut tested the viability in

LSTMs and GRUs in stock prediction, comparing it to more traditional models such as support vector

machines (SVM) and a simple feedforward network trained with backpropagation [17]. After running

independent component analysis to choose features, they decided on 12 components for the final dataset.

They used S&P 500 Open, High, Low, Volume and Adjusted Close information from the Yahoo Finance

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241390

79

API as well as other technical indicators, mainly for volume, trend, momentum, and volatility [17].

Table 3 displays the results they achieved.

Table 3. Performance Comparison Between Models

Model RMSE R2 Score Return Ratio Optimism Ratio Pessimism Ratio

LSTM 0.000428 0.948616 4.308454 0.310246 0.203791

GRU 0.000511 0.938698 5.722242 0.447867 0.120853

SVM 0.000543 0.934952 -1.858130 0.080094 0.631331

MLP 0.001052 0.874004 2.478719 0.689046 0.115430

Another notable study conducted on the viability of LSTMs in stock prediction was Bhandari et al.

which searched for the optimal number of parameters for LSTMs [18]. They tested it on the S&P 500

index fund as well, arriving at the conclusion that single layer LSTM models with around 150 neurons

have a better fit and accuracy than multilayer LSTM models [18].

3. Comparison, limitation and prospects

This paper covered four prevalent models in the stock market prediction scene, and showed the

performance of each one, and some other models as well. Although each paper uses different metrics to

evaluate their model, a prevalent theme can be seen that LSTMs and variants of it performed the best

when compared to ARIMA and GBDT methods. ARIMAs are known to be robust and efficient, but are

lacking in long-term prediction, only matching ANN methods in short-term predictions. XGBoost can’t

handle categorical data, so it must be converted to numerical before being inputted. LightGBM doesn’t

run into this problem, and is overall a good way to predict the stock market. However, LSTMs just

perform better overall while sharing similar problems to LightGBM, making it a better choice. LSTMs

perform better than LightGBMs because they can capture better nonlinear time-series data, which allows

it to be more consistent and see better results than ARIMAs or decision trees. However, despite being

the most optimal method for stock prediction out of the ones discussed in the paper, LSTMs are not

perfect. As Sethia and Raut explained, LSTMs cannot predict extreme price dips or sharp price spikes,

which might be caused by dramatic events in the economy such as an election or a war [17]. They also

stated that the model could be made resistant to this if the input dataset includes economic factors like

interest rate and GDP growth [17]. Another possible way to predict these sudden changes is by

incorporating LSTMs with sentiment analysis, as many studies have done using twitter comments [18].

This could be effective as social media is gaining influence faster than ever, and could potentially affect

the stock market. Another strategy that Gupta showed was to employ large language models (LLM) to

analyse company financial data and predict which stocks to buy and sell [19]. This proved to have greater

returns than the S&P 500 index fund. Other future improvements include a hybrid model which

combines the models discussed above or with sentiment analysis.

4. Conclusion

To sum up, for the longest time, stock markets have challenged researchers and investors to try and

predict it. With a myriad of methods at their disposal, keeping track of all of them is nearly impossible.

This paper is not all-inclusive. Many innovations are being made to further optimize the current models

and methodologies for investing in and predicting the stock market, such as creating hybrid models and

trying to predict for long term investments. Some of the most efficient methods are kept confidential, as

once introduced to the public they could become ineffective. Because of the constant development of

the field and changing of current knowledge and available data, this paper doesn’t try to give a shallow

explanation of all methods currently known, but instead explains four machine learning models that are

currently most used in stock prediction, showing the results and methodologies of previous studies

conducted, the potential downsides, and improvements that could be made that could be made to them

and the field in general.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241390

80

References

[1] Abu-Mostafa Y and Atiya A 1996 Applied Intelligence vol 6(3) pp 205–213.

[2] Zhong X and Enke D 2017 Expert Systems with Applications vol 67 pp 126–139.

[3] Fama E 1970 The Journal of Finance vol 25(2) pp 383–417.

[4] Chong E, Han C, and Park F C 2017 Expert Systems with Applications vol 83 pp 187–205.

[5] Shah D, Isah H, and Zulkernine F 2019 International Journal of Financial Studies vol 7(2) p 26.

[6] Velay M and Daniel F 2018 arXiv preprint arXiv:1808.00418.

[7] Nesbitt K and Barrass 2004 IEEE Computer Graphics and Applications vol 24(5) pp 45–55.

[8] Ballings M, Van den Poel D, Hespeels N, and Gryp R 2015 Expert Systems with Applications

vol 42(20) pp 7046–7056.

[9] Bollen J, Mao H, and Zeng X 2011 Journal of Computational Science vol 2(1) pp 1–8.

[10] Seng J L and Yang H F 2017 Kybernetes vol 46(8) pp 1341–1365.

[11] Ariyo A, Adewumi A, and Ayo C 2014 UKSim-AMSS 16th International Conference on

Computer Modelling and Simulation p 137.

[12] Devi B U, Sundar D and Alli P 2013 International Journal of Data Mining & Knowledge

Management Process vol 3(1) pp 65–78.

[13] Chen T and Guestrin C 2016 Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining pp 785-794.

[14] Ke G, Meng Q, Finley T, et al. 2017 Advances in neural information processing systems vol 30.

[15] Yang Y, Wu Y, Wang P, and Jiali X 2021 E3S Web of Conferences vol 275 p 01040.

[16] Ye F, Wang J, Li Z, Jihan Z, and Yang C 2021 6th International Conference on Intelligent

Computing and Signal Processing (ICSP) pp. 385-388.

[17] Sethia A and Raut P 2018 Information and Communication Technology for Intelligent Systems

pp 479–487.

[18] Bhandari H, Rimal B, Pokhrel N, Rimal R, Dahal K, and Khatri R 2022 Machine Learning with

Applications p 100320.

[19] Tiwari T, Gururangan S, Guo C, et al. 2023 arXiv preprint arXiv:2306.03235.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241390

81

