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Abstract. Type II Diabetes Mellitus (T2DM) has become an increasingly prevalent disease due 

to the rising number of the obese population. Even though this disorder is the leading cause of 

more severe health complications, studies have shown that T2DM is largely preventable if 

detected in an early phase. To improve current diagnosis and prognosis procedures, this study 

aims to examine three machine learning algorithms—K-Nearest Neighbor (KNN), Random 

Forest (RF), and Support Vector Classification (SVC)—and their potential in making accurate 

predictions on the outcomes of the Pima Indians Diabetes Dataset (PIDD). After training and 5-

fold cross validation, the results show that the RF algorithm has the highest accuracy at 75.25%, 

followed by SVC at 74.91% and KNN at 71.01%. In addition, feature importances were 

evaluated for all three models, yet we observed a drastic difference in the top-ranked features 

across different models, which implies that more training and larger datasets are necessary before 

realizing these computational approaches into practice. Nevertheless, the potential of these 

approaches highlighted in this study demonstrated that machine learning is a burgeoning strategy 

in clinical use and in solving real-world problems. 

Keywords: T2DM, Machine Learning, K-Nearest Neighbor, Random Forest, Support Vector 

Classification. 

1.  Introduction 

Diabetes Mellitus, a common metabolic disorder, is primarily characterized as hyperglycemia, which 

affects the patients’ ability to regulate blood glucose levels. If untreated, this chronic condition can lead 

to a series of severe health complications, including cardiovascular disease, vision defection, amputation, 

and end organ damage [1]. According to a 2022 report by the Centers for Disease Control and Prevention, 

Diabetes Mellitus was ranked as the eighth leading cause of death in the US, where 11.3% of the 

population is living with diabetes and 38% of the population bears prediabetes symptoms. Alarmingly, 

these figures continue to surge, largely driven by the escalating obesity rates [2]. Thus, proactive 

diabetes prevention is imperative, not just to counter its detrimental health implications but also to 

alleviate the economic burden accompanying this growing health crisis. 

There are many subclasses of Diabetes Mellitus, the most prevalent being Type I Diabetes Mellitus 

(T1DM) and Type II Diabetes Mellitus (T2DM). T1DM has an adolescent onset and is a result of 

defective insulin secretion; whereas T2DM is characterized by a later onset and is caused by cells’ 

resistance to insulin [3]. This study mainly utilizes data and draws inferences on T2DM, which makes 

up more than 90% of the diabetic populations but is highly preventable because of its chronic onset 
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period, also known as prediabetes, when patients experience a higher blood glucose level than normal 

before the emergence of T2DM [2]. Given that prediabetes is reversible, timely detection and 

intervention are paramount to prevent full-blown diabetes.  

In the fight against chronic diseases like T2DM, the adoption of cutting-edge technologies and 

analytical techniques has become vital. Among these, machine learning and data mining stand out as 

powerful tool sets. As the burgeoning domains in data science, they are instrumental in crafting 

predictive tools tailored to tackle various real-world challenges. Data mining, in essence, delves deep 

into vast datasets to decipher latent patterns and underlying relationships. Once these patterns are 

identified, machine learning utilizes sophisticated algorithms to assimilate these patterns, thereby 

making predictions about unobserved or new data. 

In line with this approach, our research endeavors to harness the prowess of three prominent machine 

learning methodologies—K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector 

Classification (SVC). These algorithms will be applied to a dataset of significant relevance to our study, 

the Pima Indians Diabetes Dataset (PIDD). The choice of this dataset, along with the specific algorithms, 

aligns with our objective to derive meaningful and actionable insights into the early prediction and 

potential intervention strategies for T2DM. The PIDD dataset, introduced in a seminal 1988 study by 

Smith et al., has gained considerable recognition within the medical and research communities. 

Comprising eight predictive variables, this dataset offers insights that closely mirror the clinical 

indicators associated with T2DM risk.  Notably, the Pima Indian community, which the dataset 

represents, has been observed to have the highest global prevalence of T2DM [4]. The existing data and 

studies on these subjects are particularly helpful for our analysis of the three machine learning 

approaches.  

The aforementioned algorithms fall under supervised learning paradigms, which harness training 

data labels and predictors to undertake classification or regression tasks on unfamiliar data.  Specifically, 

the KNN algorithm makes predictions based on the proximity of the new data to existing training data 

in the feature space. The RF algorithm constructs an ensemble of decision trees and combines the outputs 

of those trees to make predictions. The SVC algorithm finds a hyperplane that optimally separates 

classes of data in a high-dimensional feature space [3]. After training all three models, comparisons and 

contrasts are made on the accuracies, feature importances, and inferences of these algorithms to 

summarize their performances and compatibility with diabetes prediction.  

Even though the PIDD dataset has been widely studied and analyzed, our investigation bears unique 

significance. To the best of our knowledge, there is yet a study that directly compares the three 

algorithms with the PIDD dataset. Existing studies either compare accuracies of some of the 

aforementioned machine learning algorithms or compare them to unsupervised learning algorithms [1, 

5-7], or construct a new prediction framework based on these algorithms [5,8]. However, few studies 

specifically analyzed the feature importances of these algorithms and what they infer about diabetes 

prediction. Our study is uniquely positioned to contrast KNN, RF, and SVC, extrapolating biological 

insights from their feature significance. Based on literature review of related work, we predict that the 

RF algorithm outperforms the other two algorithms in terms of its accuracy in T2DM prediction because 

of its usage of individual decision tree classifiers [3]. Features related to body weight and blood glucose 

will be the most contributive to these classifiers based on known top risk factors for T2DM [9], but the 

specific measures and intervals will be explored in this study. By harnessing these data-centric 

methodologies, our goal is to catalyze a paradigm shift in healthcare, advancing in the battle against the 

burgeoning diabetes epidemic. 

2.  Methods 

2.1.  Dataset description 

This dataset originated from research conducted by Smith et al., published by the National Institute of 

Diabetes and Digestive and Kidney Diseases [4]. The study comprises data from 768 diabetes patients, 

all females above 21 years old and of Pima Indian heritage. The dataset includes eight diagnostic 
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measurements and one target variable. Each measurement provides specific insights into the patient’s 

health, shown in Table 1. 

Table 1. Descriptions of feature variables and the outcome variable in the Pima Indian Diabetes Dataset 

from Smith et al.’s study [4] 

Attributes Descriptions 

Pregnancies Represents the number of times the patient has been pregnant. 

Glucose 
Measures the plasma glucose concentration at 2 hours post an oral glucose 

tolerance test. 

Blood Pressure Indicates the diastolic blood pressure (in mmHg). 

Skin Thickness Quantifies the triceps skin fold thickness (in mm). 

Insulin Represents the 2-hour serum insulin level (µU/ml). 

Body Mass Index (BMI) 
A calculation of weight-to-height ratio, specifically weight in kg divided 

by the square of height in meters (kg/m2). 

Diabetes Pedigree 

Function (DPF) 

A score representing a patient’s likelihood of developing diabetes, based 

on their family’s history of diabetes mellitus. This core encapsulates the 

potential genetic influence on an individual’s risk of diabetes. 

Age The age of the patient when the data were collected, measured in years. 

Outcome 

Denotes the patient’s diabetes diagnosis results, coded as 0 or 1, with 0 

signifying a negative test result for diabetes, and 1 signifying a positive 

test result. 

2.2.  Data pre-processing 

In the preliminary stage of data preprocessing, we initiated a strategic binning process to categorize data. 

All predictor variables were systematically categorized into five to six uniformly spaced bins as shown 

in Table 2. This binning approach served to heighten the accuracy of individual decision trees within 

the RF model and effectively minimize potential split points, thereby refining the accuracy of feature 

importance calculations. 
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Table 2. All eight predictor variables after the binning method is applied. Bin labels and bin intervals 

are shown in groups under each predictor variable. 

Predicto

rs 

Bin 

labels 

Bin 

interval

s 

Predicto

rs 

Bin 

labels 

Bin 

interval

s 

Predicto

rs 

Bin 

labels 

Bin 

interval

s 

Pregnanc

ies 

preg 0-

3 
0-3 

Skin 

thickness 

st 0-20 0-20 

Diabetes 

Pedigree 

Function 

dpf 0-

0.5 
0-0.5 

preg 3-

6 
3-7 st 21-40 21-40 

dpf 0.6-

1 
0.6-1 

preg 6-

9 
6-9 st 41-60 41-60 

dpf 1.1-

1.5 
1.1-1.5 

preg 9-

12 
9-12 st 61-80 61-80 

dpf 1.6-

2 
1.6-2 

preg 

12-15 
12-15 

st 81-

100 
81-100 

dpf 2.1-

2.5 
2.1-2.5 

preg 

15-18 
15-18 

Insulin 

ins 0-

141 
0-141 

Age 

age 20-

31 
20-31 

Glucose 

glu 

120-

136 

120-136 
ins 142-

282 
142-282 

age 31-

42 
31-42 

glu 

137-

152 

137-152 
ins 283-

423 
283-423 

age 42-

53 
42-53 

glu 

153-

168 

153-168 
ins 424-

564 
424-564 

age 53-

64 
53-64 

glu 

169-

184 

169-184 
ins 565-

705 
565-705 

age 64-

75 
64-75 

glu 

185-

200 

185-200 
ins 706-

846 
706-846 

age 75-

86 
75-86 

Blood 

pressure 

bp 0-24 0-24 

BMI 

XS 20-30 

bp 25-

50 
25-50 S 30-40 

bp 51-

75 
51-75 M 40-50 

bp 76-

100 
76-100 L 50-60 

bp 101-

125 
101-125 XL 60-70 

 

Subsequently, a one-hot encoding technique was applied, effectively transforming these categorical 

bins into binary columns. This approach ensures that if a data point falls into one bin, it cannot possibly 

be categorized in another, thus each entry in the dataset either denotes a 1 (present) or 0 (absent) in 

relation to each bin. Consequently, the original age variable was replaced by these newly generated 

columns, wherein each column now holds binary values of 0 or 1. This one-hot encoding procedure not 

only streamlines the data representation but also circumvents the need for normalization, fostering an 

enhanced environment for algorithms like KNN and SVM to operate by reducing potential biases 

induced by the scaling of predictor variables. It’s worth noting that, despite not all models necessitating 
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such preprocessing, utilizing the same pre-processed data maintains a uniform training baseline across 

all the considered models, thereby ensuring consistent and unbiased training results. 

2.3.  Model selection 

To predict the outcome of diabetes patients based on the predictor variables in PIDD, three machine 

learning algorithms were used in this study: KNN, RF, and SVC. These machine learning pipelines were 

developed using the KNeighborsClassifier, RandomForestClassifier, and SVC packages from the scikit-

learn library [10]. The data was partitioned into training and testing datasets at a 4:1 ratio with random 

shuffling before feeding into the models, a strategy also known as 5-fold.  

The KNN algorithm operates on the underlying assumption that the data points within the same 

category are partially proximate in feature space. By extension, it posits that the classification of an 

unseen data point can be inferred from observing the classes of its nearest neighbors. Mathematically, 

for a given data point 𝑥, KNN examines 𝑘 proximal training examples and proffers a classification based 

on the predominant output value among them. The hyperparameters in this algorithm include (1) 𝑘, 

which determines the number of nearest neighbors under consideration, and (2) distance metric, which 

can be Manhattan, Euclidean, and Minkowski [6].  

The RF algorithm builds an ensemble of decision trees. Each tree, functioning as an individual 

predictor, makes a determination about the classification of an input. The final decision is determined 

based on a majority consensus. This is emblematic of the ensemble learning paradigm wherein multiple 

weak learners coalesce to configure a robust predictor. The accuracy of prediction of this algorithm 

depends on several hyperparameters including: (1) the number of decision trees forming the ensemble, 

(2) the maximal depth permissible of each tree, and (3) constraints on feature selection during the tree 

splitting process [5].  

The SVC algorithm is rooted in a geometric approach. It searches for an optimal hyperplane within 

the feature space that can distinctly split data into their respective classes. The essence of SVC is to 

locate a hyperplane such that the margin between the two classes is maximized. Hyperparameters of this 

algorithm include (1) C, which modulates the trade-off between margin maximization and classification 

error minimization, (2) kernel, which determines data transformation, and (3) gamma, which delineates 

the reach of individual training instances [7]. 

2.4.  Parameter optimization 

In the pursuit of model perfection, hyperparameter optimization stands paramount, acting as the key to 

dictating a model’s performance. This study opted for the grid search method to optimize the 

hyperparameters, leveraging the GridSearchCV module from the scikit-learn library [10]. This 

technique embarks on a comprehensive exploration, systematically sifting through each potential 

combination from a predetermined set of hyperparameters. 

The underlying mechanics of grid search can be perceived as a meticulous search algorithm that 

assesses the model’s performance across each hyperparameter permutation. Each combination’s 

performance is evaluated using 5-fold cross-validation, ensuring that every data instance partakes both 

as a test and as a training sample across the validation cycles. This iterative validation is pivotal, not just 

for its robustness in assessing generalization but also for ensuring unbiased performance evaluation. 

At the culmination of this exhaustive search, the hyperparameters that synergistically contribute to 

the zenith of cross-validation accuracy are earmarked as the optimal set. This optimization process, 

though computationally intensive, is invaluable. It ensures that each model is fine-tuned to its pinnacle 

of performance, providing a more equitable basis for comparison. 

2.5.  Evaluating outputs with cross validation 

Following the process of hyperparameter tuning and once the optimal parameters are delineated, the 

ensuing crucial step in our study is the rigorous evaluation of the models. It’s imperative to affirm that 

the chosen hyperparameters indeed generalize well to unseen data and aren’t just a byproduct of 

overfitting to the training dataset. 
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To achieve this objective, we also choose to use the 5-fold cross-validation. Under this paradigm, the 

dataset is judiciously partitioned into five distinct subsets or “folds.” In a cyclic manner, four of these 

folds are harnessed as the training data, whilst the solitary remaining fold serves as the validation set. 

This procedure is reiterated five times with a fixed random state, ensuring the result is repeatable. 

The overarching goal is to ascertain the mean accuracy across these five validation cycles. This 

average metric, hence derived, offers a holistic and less biased insight into the model’s performance. 

Once confident in this assessment, models are subsequently retrained using the entire dataset and the 

previously identified optimal parameters.  

2.6.  Determining feature importance 

Evaluating the significance of distinct features in influencing the predictive diabetes outcomes of the 

models is an important step in understanding how different machine learning algorithms process data. 

The methods applied to discern the feature importance varied based on the algorithm in use. 

Being a linear Support Vector Machine (SVM), SVC’s decision boundary is a hyperplane defined 

by: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏                                                                     (1) 

Where 𝑤 is the weight vector (coefficients) that indicates the importance of each feature. In essence, 

the weightage of the coefficients in the decision function provided an intuitive representation of the 

relative importance of each feature [11].   

The feature importance in RF is calculated based on the total decrease in node impurity averaged 

over all trees. Simply put, the magnitude by which a feature enhances the predictive accuracy of the 

model, by reducing its impurity, serves as an index of its importance. In this study, the feature 

importance is calculated using the built-in feature_importance_ attribute in the scikit-learn library [10]. 

As for the KNN, the algorithm inherently lacks a direct method for gauging feature importance. To 

address this, we utilized the permutation importance method. This entailed sequentially shuffling each 

feature and contrasting the model’s predictive performance pre- and post-shuffle. A notable 

deterioration in performance post-shuffle would signify the feature’s importance. 

It’s worth noting that, feature importance is discerned through various methodologies, which can 

exhibit a broad spectrum of values contingent upon the techniques employed. To ensure the 

comparability of these disparate scales of importance across multiple methods, a min-max normalization 

process is enforced to scale all importance values using the following formula:   

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                                                                 (2) 

This adjustment bounds all feature importance values across the three models by [0,1] and provides 

a coherent and normalized scale for more rigorous and direct comparative analysis. 

3.  Results 

3.1.  Comparative model performance 

For analysis, three machine learning models, facilitated by the scikit-learn package (version 1.2.1), were 

employed to predict diabetes onset: KNN, RF, and SVC. Each model was rigorously trained and 

evaluated using a 5-fold cross-validation approach on the pre-processed dataset, which underwent 

binning and one-hot encoding procedures. 

Through Grid Search, the optimal parameters for the KNN model were identified as a leaf size of 1, 

distance metric “Euclidean”, 𝑘 value of 6, and weights set to “uniform”. Using this configuration, KNN 

achieved an accuracy of 71.01%. The best parameters identified by Grid Search for the RF model were 

a max depth of 8, max samples set at 0.92, min samples split and leaf at 0.01, and the number of 

estimators being 18. Under these parameters, the RF model achieved an accuracy of 75.25%. For the 

SVC model, the optimal parameters as determined by Grid Search were regularization set at 100, gamma 

value of 0.01, with the kernel type as “linear”. The SVC model, with this configuration, achieved an 

accuracy of 74.92%. Overall, the RF model has the highest accuracy score amongst all three models, as 
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we hypothesized. Yet, SVC and KNN both had notable accuracy above 70%, and SVC’s score is 

comparable to that of the RF. 

In evaluating the performance metrics from the KNN, SVC, and RF models, a discernible distinction 

in accuracy was observed. Despite rigorous hyperparameter adjustments, both SVC and RF models 

consistently outperformed KNN. The inherent complexities of diabetes data, which frequently involve 

non-linear interrelations among its predictors, likely contributed to these discrepancies. Specifically, the 

RF model, leveraging its ensemble of decision trees, excels in navigating these non-linear intricacies. 

On the other hand, the linear SVC adeptly delineates data points in high-dimensional spaces by 

establishing optimal hyperplanes and optimizing the separation margin between classes. Such a method 

of separation often transcends the capabilities of distance-centric models like KNN. The latter primarily 

anchors its predictions on local patterns, potentially overlooking broader relationships or subtle variable 

interactions intrinsic to the dataset. 

Despite the various applications of machine learning techniques, the predictive accuracies hovered 

around the 75% mark. This is indicative of the intricate nature of diabetes, which is a tapestry of genetic, 

environmental, and lifestyle determinants. The available dataset, while comprehensive, may still fall 

short in capturing all nuances essential for prediction, especially given potential data quality issues or 

the inherent limitations in feature representation. Additionally, the models carry inherent assumptions 

about data that may not fully resonate with the actual dataset characteristics. The size and diversity of 

our dataset, though substantial, might not be expansive enough to train models to higher accuracies. 

Thus, the achieved accuracy underscores both the achievements and inherent challenges in leveraging 

data-driven approaches for complex medical predictions. 

3.2.  Feature importance 

Given the intricacies of diabetes as a medical condition and its multifactorial etiology, feature 

importance is vital in underscoring the predominant influencers in the diagnosis. Depending on the 

nature of the algorithm, we computed feature importances using either the algorithm’s inherent 

mechanism or the permutation importance method. The visual representation of each feature’s 

significance across KNN, RF, and SVC models is depicted in Figure 1. The feature importances among 

the bins of each feature for KNN, RF, and SVC are illustrated in Figure 2, Figure 3, and Figure 4, 

respectively. By cross-examining these plots, one can discern shared patterns or variances in how each 

model weights the importance of individual features, shedding light on potential avenues for further 

research or clinical examination. 
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Figure 1. Feature importances across all predictor variables in KNN, RF, and SVC models. (a) depicts 

the standardized feature importances across all features for the KNN model. (b) depicts the standardized 

feature importances across all features for the RF model. (c) depicts the standardized feature importances 

across all features for the SVC model. 

For the KNN model, features pertaining to “glu” (Glucose) ranges consistently emerge across 

different categories, exemplifying the critical role glucose level plays in the KNN classification. 

Likewise, various intervals of “ins” (Insulin) reiterate its substantial importance. Pregnancies, 

represented as “preg”, span multiple categories, suggesting their multifaceted influence. The scope of 

standardized importances, ranging from the peak at “1” to the bottom at “0”, illuminates a gradient of 

influence, with “glu” and “ins” emerging as possibly more pivotal than others in the KNN’s 

classification construct. 

In the feature importance ranking of the RF model, “XS” (BMI 0-20) manifests as the preeminent 

feature, holding standardized importance of “1”. Attributes such as “ins 0-141” (Insulin), “age 20-31” 

(Age), and “glu 169-184” (Glucose) exhibit significant influences, with values hovering around 0.9, 

0.85, and 0.81, respectively. These factors underscore their fundamental roles in the model’s ensemble 

decision-making. Conversely, several attributes like “L” (BMI), “age 75-86” (Age), and multiple “ins” 

(Insulin) intervals beyond 282 exhibit zero importance, suggesting that within this model, they hold 

limited or no sway.  

In the context of the SVC analysis, the attribute “glu” (Glucose) consistently emerges as a paramount 

determinant, particularly in the ranges “glu 169-184” and “glu 185-200”, exhibiting standardized 

importances of 1 and approximately 0.936 respectively. This dominance reiterates the pivotal role 

glucose levels occupy in the SVC’s classification strategy. Moreover, the recurrent prominence of 

glucose across multiple intervals accentuates its central significance in the model’s decision-making 

matrix. Conversely, certain features, such as “ins 706-846” (Insulin), “age 75-86” (Age), and “st 61-80” 

(Skin Thickness) among others, hold standardized importance of zero, implying their minimal or non-

existent influence within the SVC’s predictive framework.  
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When juxtaposing the results of the KNN, RF, and SVC models, distinct patterns emerge. SVC 

notably highlights the significance of “glu” (Glucose) across several ranges, whereas in RF, a broader 

set of features including “ins” (Insulin) and “age” plays a central role. KNN, on the other hand, presents 

a mix of influential features, with both “glu” (Glucose) and “ins” (Insulin) appearing frequently across 

various ranges. Furthermore, while certain features such as “age 75-86” are deemed negligible in RF, 

they acquire moderate importances in SVC. Such differences underscore the varied methodologies each 

model employs and how each feature’s significance can pivot based on the underlying model’s 

mechanics. 

 

Figure 2. Standardized feature importances in each predictor variable for KNN, specified by bins. (a) 

depicts the feature importances within the pregnancies feature. (b) depicts the feature importances within 

the glucose feature. (c) depicts the feature importances within the blood pressure feature. (d) depicts the 

feature importances within the skin thickness feature. (e) depicts the feature importances within the 

insulin feature. (f) depicts the feature importances within the BMI feature. All graphs are ranked in 

descending order.  
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Figure 3. Standardized feature importances in each predictor variable for RF, specified by bins. (a) 

depicts the feature importances within the pregnancies feature. (b) depicts the feature importances within 

the glucose feature. (c) depicts the feature importances within the blood pressure feature. (d) depicts the 

feature importances within the skin thickness feature. (e) depicts the feature importances within the 

insulin feature. (f) depicts the feature importances within the BMI feature. All graphs are ranked in 

descending order. 
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Figure 4. Standardized feature importances in each predictor variable for SVC, specified by bins. (a) 

depicts the feature importances within the pregnancies feature. (b) depicts the feature importances within 

the glucose feature. (c) depicts the feature importances within the blood pressure feature. (d) depicts the 

feature importances within the skin thickness feature. (e) depicts the feature importances within the 

insulin feature. (f) depicts the feature importances within the BMI feature. All graphs are ranked in 

descending order. 

Delving deeper into feature importances, the intricate subtlenesses between models becomes evident 

(Figure 2-4). Each model responds distinctly to subcategories within the overarching features, 

underscoring the inherent methodologies and data sensitivities unique to each algorithm. 

For instance, within the KNN model, the insulin range “ins 0-141” (Insulin) retains a prominent 

standardized importance of approximately 0.927. Yet, as insulin level increases, a tapering of 

importance is evident, with the “ins 142-282” (Insulin) bracket holding a value of approximately 0.455 
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and further diminishing for subsequent ranges. The RF model, in its ensemble strategy, similarly 

underscores the significance of the “ins 0-141” (Insulin) category, holding an importance close to 0.902. 

However, the subsequent categories manifest a sharp decline, with “ins 142-282” (Insulin) at 

approximately 0.333 and a variety of ranges holding zero importance, highlighting the model’s 

discerning feature prioritization. 

In contrast, as for the SVC model, the distinctions are subtler between insulin level bins. The “ins 0-

141” (Insulin) range is drastically less dominant compared to KNN and RF, with an importance value 

of approximately 0.107. A gentle decline across subsequent ranges is also observed, but the overall span 

of importances between the highest and lowest non-zero values is considerably narrower than the other 

two models. 

This pattern is emblematic of a broader trend across all features, not just “ins”. Each model, with its 

unique analytical lens, extrapolates distinct patterns within the granular categories of overarching 

features. Such variability reinforces the need for a holistic evaluation, taking into account both the 

broader feature importances and the nuanced subtleties within each feature’s subcategories, to 

effectively discern the most informative predictors and derive actionable insights. Therefore, it is worth 

noting that T2DM prediction cannot be made solely based on one machine learning framework, and a 

larger sample size and greater variety of predictor variables will make the predictions more accurate and 

realistic. 

4.  Conclusion 

Diabetes, particularly T2DM, presents a significant global health challenge with wide-reaching 

implications for affected individuals and healthcare systems. The escalating prevalence of obesity, 

especially in the United States, suggestes that there is a pressing need for early detection and intervention 

for T2DM. Fortunately, the chornic and reversible nature of T2DM indicate early detection is feasible. 

In this research, the performances of three supervised machine learning algorithms, KNN, RF and SVC, 

were critically evaluated on the PIDD dataset. Our findings reveal that RF exhibited the highest 

predictive accuracy at 75.25%, likely due to its usage of individual decision trees, while SVC and KNN 

followed closely with a 74.92% accuracy rate and a 71.01% accuracy rate, respectively. A noteworthy 

observation from our analysis was the varying feature importances across the algorithms, emphasizing 

the necessity to interpret machine learning results with discernment, especially when transitioning these 

findings to real-world clinical applications. 

Looking ahead, this paper proposes expanding the scope of machine learning approaches utilized in 

T2DM prediction research, in order to achieve higher accuracy and maintain consistent feature 

selections. This includes exploring unsupervised learning, reinforcement learning, and neural network 

and deep learning paradigms. What’s more, incorporating additional clinically relevant predictors, such 

as hemoglobin A1c (HbA1c) levels and physical activity metrics, would further refine and enhance the 

predictability and relevance of these models. As people harness the capabilities of machine learning and 

artificial intelligence, it is imperative to strike a balance between computational accuracy and clinical 

interpretability, ensuring we make strides towards the overarching goal of mitigating the impact of this 

preventable disease. 
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