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Abstract. Multi-robot coverage algorithm is essential in exploration, search and rescue, tracking
and other tasks. Nowadays, global planning-based approaches are difficult to solve the actual
deployments of very large robot team coverage problems. In this article we use the heuristic
algorithm based on graph neural networks to solve the multi robot coverage algorithm. Firstly,
we discretize the coverage task and encode it into a graph. The location of graph and the robots
are nodes. Then we design a graph neural network controller and use imitation methods to train
the controller. The controller will generate the solution that is not inferior to the expert through
imitating an open-loop expert solution based on VPR. Finally, we designed a graph neural
network architecture to perform zero shot generalization on large maps and teams, enabling the
system to be extended to larger map teams. It is difficult for the expert. And we successfully use
this model to simulate 10 quadcopter and a number of buildings in a city. We also prove the
GNN controller is better than the method based on the planning in the exploration task.

Keywords: multi-robot, coverage, graph neural networks.

1. Introduction

With the advancement of technology, the multi-robot technology has been increasingly valued by people.
The area coverage task requires the robot to avoid obstacles in the area and continuously explore the
environment, sensing and recording the surrounding environment through sensors until the robot
traverses the entire area and collects environmental information for the entire area. Coverage tasks
typically require exploring unknown environments, facing unknown obstacles, and spending a lot of
time. Multi-robot possess collaborative capabilities, high flexibility and work efficiency. So multi-robot
is widely used in coverage tasks, such as implement sensor coverage in an environment that rejects
communication [ 1], perform fast environment mapping [2], [3], search and rescue [4] and so on. When
the scale of the environment and robot teams are not large, management and control of the robot
population can be achieved easily. But as the scale and complexity of the environment become large,
the implementation difficulty of robot coverage algorithms greatly increase. This is because in real life,
many data are generated from non-Euclidean spaces, and most of the data represents graphs with
complex relationships and interdependent relationships between objects. The performance of traditional
deep learning methods in processing complex graph data is not optimistic because the graph is irregular
and complex. This inspires us to solve the problem using another method that is suitable for processing
graph data. That is graph neural networks (GNN).

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
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Recently, Graph Neural Network (GNN) is widely used in multi-robot problem. Such as path
planning [5],[6], search [7] and rescue, etc. These works inspire us to use Graph Neural Networks (GNN)
to solve coverage tasks. When multi-robot needs to handle coverage problems, according to [8], we
understand that firstly, robots need to access a set of locations in the environment. When we use graph
neural networks (GNN) to solve the coverage problems, we first encode the multi-robot coverage task,
extract graph data from non-Euclidean space, then convert the task into a graph. In global agents, each
robot is regarded as a node in the graph. The allowed movement is the graph edge. With this method,
we can abstract the entire map and obstacle model. And we can show all the elements of the problem in
a single spatial map. The elements only have local links [9].

When we need to solve muti-robot path planning problems, we can imitate expert solutions. The
existing research can already support medium team size coverage tasks. We can collect task data and
expert solutions. And then use these data to train GNN controllers to learn and imitate experts. After
that, it can be extended to larger teams and maps. In [9], the generalization of the scene simulating a
quadcopter aircraft is demonstrated. This environment has thousands of waypoints. The quadcopter
aircraft must traverse them. Furthermore, this approach is applied to the exploration task. But robots
will show team waypoint maps during task execution. This scene prove that the graph neural network
controller can perform heuristic learning by learning and imitating experts. And the trained graph neural
network controller performs well.

In this article, we also designed a GNN architecture. This GNN architecture that abstracts using graph
equivariance design. In this way we can accelerate learning progress. This way also can get zero shot
generalization for large maps and teams can be achieved in this way [9]. And the graph neural network
has more graph operation layers, which can enable the graph neural network controller to control long-
distance information. The number of graph operation layers is directly related to the distance that
information is transmitted from one node to another along the graph edge. To let the multiple robots
explore as many areas of interest as possible within the limited time [10], this study will divide the map
into multiple lattices and connect adjacent spatial nodes. Accelerate robot exploration efficiency by
discretizing as many regions of interest as possible.

2. Method

2.1. Multi-Robot Coverage Problem
In this article, the robot set is defined as R, with all waypoints as W, unreachable waypoints as X, and
X € W. Then, we define the environment map’s factors:p/ represents the position of the waypoint j. N

represents all waypoints which is adjacent the waypoint j [9]. Then define x,f € {0,1} represents the

interest of waypoint j at time ¢. Ifj € X, then xt' =1. T'is the time of the task. The robot i position at
time t is q§[9]. If the robot is currently on waypoint j, then there is / g We expressed the problem as

[9]:
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The goal of this study is to design a controller with closed-loop. It will use heuristic learning to
calculate the robot’s action based on the system state [9]. It can also perform generalization of dynamic
graphs. This is beneficial for us to solve exploration problems, as robots can also discover new
waypoints during the task. We attempt to learn another controller which also with closed-loop, , which
maximizes the expected waypoints on initial states and maps [9]:
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2.2. The coverage task

We abstract the agent and map and represent regard the robot as a node. The robot will move between
nodes in a discrete form. The robot's action space is also discrete. Each robot will select one node around
itself to move according to the learning algorithm. The topological structure of the graph will change as
the robot moves. We use the lattice to abstract the global position of the robot. In order to reduce
computational costs, we only maintain information between nodes and robots. In abstract graphics, there
are two types of edges. They are (1), (2), (3) The edges between nodes are used to display the space
covered and (4), (5), (6), (7) The edge between the robot and the node allows the robot to move to nearby
nodes. We use the obstacles and the lattice induced on the map to defined the connectivity of waypoints.
If qi=pj,then N;=N; [9].

Each node type is represented by the index i of its feature vector v; , 1 is the indicator function:

ViT {]iER’IiEW’IiEX} ®

We define ¢y is the feature vector of the index K’s directed edge. s; and 7, are the sender node and
the receive node. ¢, is distance s, and 7, between node positions [9]. So the distance can be expressed:

©)

= |2y, P,

Among them, ¢ is the feature vector of the index K’s directed edge. s, and 7, are the sender node
and the receive node. ¢ is distance s, and r; between node positions [9].

All edge elements is E= {e;}, All vertex elements is V' = {v; }, and the graph representation of the
system state is G = {E, V}. At time t, the task state is G,[9]. The Figure.1,2 and 3 show that the training
model was tested in Unity on a simulated robot team.
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Figure 1. (a)Simulation of the city Figure 2. (b) The graph Figure 3. (c)Ateam of 10 such

in Unity [9]. represention of the task [9]. quarotors were used [9].
Input State Output Action
Node 2 is . .
Robot unvisited
(node 5)
is at
waypoint
(node 4) a,a, C

Figure 4. The robot and the waypoint are the nodes and the edges indicating that the robot can move
to different place [9].

2.3. The exploration task
We have represented the coverage graph, which has many waypoints. The process of robot exploration
is the process of robots observing waypoints through sensors. In [9], when waypoints are observed by

sensors in the range S, they will be added to the graph: if ” pi-qi ” <, then W, =W, U{pl.} As time goes

by, the degree of robot exploration will increase, and the number of waypoints in the waypoint
concentration will increase.

In addition, we define nodes that may have unexplored adjacent nodes as boundary nodes. To
distinguish whether a node is a boundary node, we add an indicator feature F to distinguish [9]:

Vi:[]iER’]iEW’]iEX’]iEF] (10)

2.4. Aggregation Graph Neural Networks

The GNN is one of the most widely used tools in the field of building system structures. Because the
GNN can exploit the known structures of the relational system [11]. Graph convolutional networks are
a type of GNNs. The graph convolution operation is defined by learnable coefficients, which multiply
the power of the adjacency matrix by the graph signal [12], [13]. We will construct a multi robot system
network architecture by merging nonlinear graph convolutional network operations [9]
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Graphical network blocks are used to construct the basic structure of the system. Given a graphic

signal, defined as G={{ekj, {v; ], soG'=G= [{ek] ﬁ)}]/[9]:

E,=0° (ek Vi ,Vsk), Vi:CDV(Ei WV ,vsk), Ei:pe_’v. (11)

GN () is the function G of the graphic signal. G'is @, p°~ and @" The graphic signal converted
in this order. G and G' have the same connectivity.

The aggregation operation p°~" adopts a set of transformed event edge elements E£={e}c}r _at node
k

=i
i and generates a fixed size latent vector el'» [9]. The function must be capable of processing various levels
of graphics. Therefore, we normalize the output by aggregating the mean according to the number of
input edges [9]:

e—V (1 ’,:L )
PED) T2, oy o (12)

In addition, we understand that mean aggregation operations can help improve the stability of GNNs
with large receptive fields. We have designed two variants based on the aggregated GNN architecture
of [14]. Linear Aggregated GNN architecture Linear and nonlinear Aggregated GNN architecture.

The linear aggregation GNN architecture can be represented by the following parameters:

@f (ek Vi ,Vsk) Vg, (13)
o} (5.v; )%, (14)

Nonlinear aggregation GNN is represented by learnable nonlinear functions:
DY (ek Vi ,Vsk) =NN, ([ek Vi ,Vsk]) (15)

oy(2 v,)NN,([e; v]) (16)

Among them, there are 16 hidden units of 3-layer MLP. Note that, in contrast to the nonlinear GNN
defined in (13), (14), a linear aggregate GNN in (9) may not use input edge characteristics, for example

as defined in (15), (16) [9].
2.5. Policy Architecture

For the coverage problem, we have developed GNN variants with multiple stages. By connecting the
outputs of each stage and finally processing them through linear output transformation [14]:

G,:fout ( [fdec (fenc (G) ) afdec (GN(fenc (G))) afdec (GN (GN(fenc (G)))) 9. ] ) ( 1 7)
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The number of GNN operations is a hyperparameter that determines the receptive field (K) of the
architecture. K represents the distance that information can be transmitted along the edges of the graph.
The f, ./, are 3layer MLPs with 16 hidden units. The f,; is a linear function. We sample the edges

of each robot node and its adjacent nodes, and perform transformation processing using the GNN variant
architecture to confirm that the robot will choose the waypoint to move.
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Figure 5. The GNN with K=10 [9].

11

Figure. 3 is the GNN with K=10 visualized during robot training, and green represents the robot
being explored. They need to access the red points along the blue waypoints and edge. When the value
of k increase, each agent can calculate the controller using information about larger regions of the map

[9].

2.6. Baseline controller

We tested the of learning strategies and three different types controllers through experiments. These
three controllers are (1) expert open-loop VRP solutions, (2) backward level controllers based on VRP,
and (3) greedy controllers. The expert solution is provided by Google's OR Tools library [15]. The expert
solution records the length of a task as t, implements the task in an open-loop format, and outputs training
data. The planned task length for the horizon controller in reverse is 7. And 7<7, it will execute the
first step of planning and then replan. The expert controller baseline uses the backward horizontal control
shown in Figures 4, 5, and 9[9]. Finally, the greedy controller will use heuristic learning methods to plan
each robot to the nearest unexplored waypoint. We use a limited receptive field to achieve planning,
using only the K-step distance matrix [9]. We demonstrated this standard in Figures 4, 5, and 9. Because
the greedy controller combining limited receptive fields and heuristics is more practical in complex
large-scale maps with high computational costs.

2.7. Imitative learning of expert solutions

In imitating the work of experts, we use the stochastic gradient descent to minimize the difference
between the actions of experts and the output of the strategy [9], as the space is discrete, there will be
cross entropy loss L:

£

dmi
17 =ar 7;:11" Z(Gt,uz) ep(™(Gy),uy) (18)

To imitate the strategies of experts, we first need to collect a dataset generated by expert strategy
training. In [9], we collect 2000 expert trajectories with a length of 7=50 in random graphs, where
learning controller on a trajectory with a length 7'=50 in the graph generated by the same distribution.
These models were trained over 200 periods. The batch size of the training in each training is 32. And
we use an Adam optimizer to help the robot train [9].
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We use expert controllers to solve exploration problems. The expert controller possesses full graph
knowledge and can generate complete trajectory maps. But only retain data on the local state around the
robot. The action of the robot will take is based on the observation of the current node and edge and
learn by comparing the different behavior between robot and expert. Finally, the robot will perform
similar or even identical behavior to the expert controller based on the surrounding environment without
full graph knowledge.

3. Results

3.1. Locality

In the coverage task, we made Figures 6. The abscissa represents the receptive field of GNN, and the
larger the receptive field, the larger the range of points of interest that the robot can perceive. The
ordinate of the graph represents the average reward of the graph. This represents the completion of a
coverage task. The higher the average reward, the better the controller completes coverage task. we can
conclude from Figure 6 that the GNN controller is significantly better than the greedy controller, but
weaker than the expert controller. We can conclude that when the K is low, the performance of GNN
controller is improved rapidly when K increase. Linear GNN controller performance is similar to that
of non-linear GNN controllers. The open loop expert received the mean reward of 91.0. And the SEM
is 0.87 [9]. From the figure, we can conclude that the expert controller can receive the most rewards and
have the best performance. The expert controller can provide the upper limit of GNN performance [9].

In the exploration task, Figure 7 abscissa and ordinate represent the same meaning as Figure 6. We
can conclude from Figure 7 that the performance of the GNN controller is the best, and the performance
of expert controller is better than that of greedy controller. The performance of the greedy controller is
the worst. For the GNN controller, as the receptive field increases, the performance and the mean reward
of the GNN controller also continue to increase.

We also tested the effect of different ranges of sensing fields on controller performance and task
outcomes under different scale maps. Because the receptive field has a range, we can receive information
within that range. We will focus on areas where robots can receive information to solve problem. That
will result decentralized solutions [9]. As shown in Figure 5, the robot can only move towards adjacent
areas and can only select one area to move at a time. The diameter is the maximum distance between
any two nodes [9]. As shown in Figure 10, the performance of models with larger receptive fields is
significantly higher than those with smaller receptive fields. And as the diameter of the graph increases,
the performance gap between the two controllers will increase. Controllers with larger receptive fields
can route proxies to these waypoints. But controllers with smaller receptive field cannot calculate high
return paths [9].
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Figure 6. GNNs with a larger receptive field are
more likely to achieve higher performance in
coverage tasks. The average reward for more than
100 episodes under standard error is displayed

[9].
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Figure 7. GNN surpasses expert controllers in
exploration tasks. The average reward for more
than 100 episodes under standard error is
displayed [9].
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Figure 8. Summary of coverage tasks with 5659 Figure 9. Summary of exploration tasks with
waypoints. We plotted an average reward of over 5659 waypoints. We plotted an average reward of
100 episodes under standard error. [9]. over 100 episodes under standard error. [9].

3.2. Transference

We have successfully promoted the GNN model to large robot teams and large maps, which is a scale
that traditional VRP solution cannot solve. These models are first trained on 4 agents and an average of
228 waypoints. Then GNN was tested on teams of up to 100 on the map with a size of 5659 waypoints
and a diameter of 205[9]. Then we created Figures 8 and Figure 9. The horizontal axis represents the
size of the team. Vertical axis represents the completion of the coverage task. The higher the average
reward, the better the controller's performance in completing coverage tasks. In Figure 6, we know that
the performance of non-linear GNN controller is significantly better than that of greedy controller. In
Figure 9, this difference is even greater. We assume that this is because the learning strategy is more
capable of learning the weighting of boundary nodes than other unexplored nodes [9].
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Figure 10. The influence of nonlinear GNN receptive fields in different diameter
patterns measured by the average return and standard error of 20 episodes [9].

3.3. Dynamics

We successfully use GNN to control coverage missions effectively with ten quadcopter aircraft in large
simulation environments, as shown in Figure 1 [9]. A team of 10 robots used a greedy controller and a
nonlinear GNN with K=19 for tasks. The team using the greedy controller visited 490 interest points
within 400 seconds, while the nonlinear GNN visited 610 interest points. This proves that our graph
neural network controller can access more points of interest in the same time for large map and team
coverage tasks, and the exploration efficiency of the robot is improved.
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4. Conclusion

We apply the GNN method to multi-robot coverage and exploration tasks. This method can extend the
coverage task to a team of up to 100 agents, which is difficult for existing expert solutions to achieve.
We demonstrate through experiments that the developed graph neural network controller can learn by
imitating expert schemes. And after testing, we can conclude that GNN controllers with large receptive
fields are significantly better than expert controllers in coverage tasks. In exploration tasks, the GNN
controller is significantly superior to the greedy controller. We achieve that the GNN architecture can
achieve zero shot generalization for large maps and teams, which is difficult for experts. We also conduct
coverage simulation experiments on multi robot teams in urban environments and discuss the dynamic
impact of robots during simulation experiments. Otherwise, we demonstrate that our GNN architecture
surpasses existing the method based on the planning.

But this paper also has some limitations. The control strategy is only applicable to coverage tasks in
some simple environments. In more complex environments or the task on 3D lattices, we may use the
on-board sensing strategy. In order to apply GNN to real-world robot teams, we need to consider the
issue of two or more robots potentially moving to the same waypoint and causing conflicts. And it is
also necessary to achieve collision avoidance function of the robot. We still face many challenges, such
as the intermittent communication. In order to solve this challenge, we can allow the robots
communicate with each other at regular intervals to update the position, waypoint map, and task progress
of other robots. [16] explores a method for implementing data distribution in robot teams.
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