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Abstract. This study aims to provide an analytical and predictive framework for understanding 
and forecasting the probabilities of varying severities of traffic accidents in Pennsylvania, based 
on the US Accident dataset dated up to March 23. Initially, the dataset and variable descriptions 
are provided for comprehensive understanding. During the data preprocessing phase, variables 
undergo a thorough examination for missing values, and suitable imputation methods are 
selected for data completeness. Further, feature selection and data cleansing are executed to 
prepare the dataset for model training. The study predominantly utilizes three machine learning 
algorithms, Logistic Regression, Random Forest, and Support Vector Machine, to construct 
predictive models. The performance of these models is meticulously evaluated for accuracy and 
compared through specific data sampling techniques. Overfitting checks, feature importance 
elucidation, and in-depth discussions on model performance variations are also included. By 
navigating through this multifaceted analysis, the study aims to shed light on the strengths and 
weaknesses of different modeling approaches for this particular problem context, thereby 
providing valuable insights for future research endeavors. 

Keywords: Traffic accidents, Machine learning, Severity prediction, Feature selection, 
Pennsylvania. 

1.  Introduction 
Traffic accidents have been a huge concern for decades, leading to numerous fatalities and injuries 
worldwide. As transportation networks expand, road traffic dynamics become increasingly complex; 
thus, understanding the patterns, causes, and consequences of traffic accidents can provide valuable 
insights for policymakers and urban planners to enhance road safety. 

Recent advances in data collection techniques have led to vast datasets detailing various aspects of 
traffic accidents. Machine learning and statistical modeling offer powerful tools to make sense of this 
data, providing a comprehensive view of the determinants of traffic accident severity and enabling more 
effective interventions. 

The paper is structured as follows: Section 1 introduces this project. Section 2 focuses on data pre-
processing, including details on data acquisition, cleaning, and additional data processing steps. Section 
3 discusses methodology, including elaborating on feature selection techniques and model creation. 
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Section 4 is about results analysis, providing an in-depth exploration of the outcomes, significant 
findings, and implications. Section 5 is the conclusion, summarizing the main takeaways, emphasizing 
the study's main contributions, and pointing out future research directions. 

Several studies have shown that different machine-learning techniques can offer more accurate 
models for this complex prediction task.[1] Factors like road conditions, weather, and driver behavior, 
among others, have been considered in creating more accurate and robust models. However, deciding 
which machine learning model can offer the best prediction accuracy while balancing complexity and 
computational cost has not been easy. The choice of model is especially crucial because the 
computational resources involved can sometimes account for a significant portion of the total 
operational expenses. 

Machine learning models like Random Forest, Logistic Regression, and Support Vector Machine 
(SVM) have been previously used for predicting traffic accident severity[2]. Random Forest offers the 
advantage of high accuracy but is hard to interpret. Logistic Regression is easy to interpret but could 
better deal with non-linear relationships between variables. Conversely, SVM is known for its high 
accuracy in high-dimensional spaces but is rather time-consuming. 

Existing studies also present divergent results concerning the effectiveness of these models. Some 
suggest that Random Forest outperforms other models, while others argue that simpler models like 
Logistic Regression could be equally effective when feature engineering is applied carefully[3]. This 
raises questions about the relative importance of model complexity versus feature selection in predicting 
traffic accident severity. 

Therefore, this study aims to empirically compare the effectiveness of Random Forest, Logistic 
Regression, and SVM in predicting the severity of traffic accidents and understand the role of feature 
importance in the performance of these models. A better understanding of these aspects will offer a more 
informed choice of model, potentially saving both computational resources and human lives. 

The dataset utilized for this study offers a comprehensive look into traffic accidents across 49 states 
in the United States. The dataset, collected from February 2016 to March 2023, is amassed from various 
trusted sources, including state transportation departments, law enforcement agencies, traffic cameras, 
and road-network traffic sensors. By employing multiple APIs for real-time traffic event data collection, 
the dataset comprises approximately 7.7 million accident records, rendering it highly representative of 
traffic conditions and associated risk factors in the United States. 

2.  Data processing 
For this part, we aim to explore the dataset of road accidents and prepare it for further analysis, focusing 
on predicting the severity of road accidents. The initial dataset has 296620 entries and 45 attributes. 
Each entry represents a unique road accident event, and each attribute represents features related to the 
accident, such as geographical coordinates, time, weather conditions, and road conditions. The info() 
method was used to get an initial understanding of the dataset’s structure. 

2.1.  Missing ratio computation 
Data cleaning was essential for maintaining dataset quality. We used merging techniques to combine 
cleaned numeric and object data, ensuring no missing values existed. The Dataframe df_clean was 
generated using the pd. concat () function. It shows that the dataset contained no missing values and had 
296620 entries across 46 attributes. Addressing the class imbalance in the Severity variable is important 
since an unequal representation might lead to biased predictions. Therefore, techniques such as 
oversampling the minority class were employed to help solve this issue[4]. 

A df query was built to find the columns containing missing values and then to sort them by the ratio 
of missing values. Doing so showed nine columns containing missing values, with Wind_Direction 
having the highest missing ratio at about 0.022, followed by columns like Weather_Condition and 
Weather_Timestamp. Initial exploratory data analysis was conducted to help understand the data 
distribution, outliers, and general trends. The following figure is the table of the variables’ missing 
ratio[5]: 
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Table 1. Missing ratio for the dataset 

Index Column_name Missing_count Missing_ratio 
11 Wind_Direction 6521 0.022 
12 Weather_Condition 6024 0.020 
10 Weather_Timestamp 5115 0.017 
13 Sunrise_Sunset 1578 0.005 
14 Civil_Twilight 1578 0.005 
15 Nautical_Twilight 1578 0.005 
16 Astronomical_Twilight 1578 0.005 
9 Airport_Code 523 0.002 
2 Street 408 0.001 

2.2.  Data format unification 
During dataset preparation, we addressed missing values in features like 'Wind_Direction,' 
'Weather_Condition,' and 'Weather_Timestamp'. Missing data, less than 2.2% of the dataset, was 
imputed using the most frequent value for categorical variables and the mean for numerical ones. 

After successful imputation, we recast the data types of various features to more suitable forms, such 
as 'uint8' for 'Timezone' and 'float32' for numeric features like 'Start_Lat,' to optimize memory usage 
and computational efficiency. Subsequently, certain features were transformed to improve their utility 
in the upcoming analyses. For instance, time-related columns like 'Sunrise_Sunset' were mapped to 
numerical representations ('Day': 1, 'Night': 0). We extracted detailed temporal elements like 'Year,' 
'Month,' 'Day,' 'Hour,' and 'Minute' from the 'Start_Time' timestamp. We also calculated a new feature, 
'Time_Duration(min),' by rounding off the time difference between 'Start_Time' and 'End_Time.' 

However, it was observed that some entries had negative time duration values, which were clearly 
outliers. We addressed this by setting these entries to NaN and subsequently dropping them from the 
dataset. Finally, the cleaned numerical and categorical data frames were concatenated to form a 
comprehensive, cleaned dataset, ready for further analytical procedures. 

By executing these preprocessing steps, we aimed to maximize the reliability and interpretability of 
the dataset, thereby providing a robust foundation for the next stages of our data science pipeline. 

2.3.  Additional Data Processing 
Custom mapping based on frequency counts and Label Encoding were utilized for encoding. For 
columns like 'County,' 'Wind_Direction,' 'Month,' 'Weekday,' and 'Weather_Condition,' a two-step 
process was followed. First, the unique values within each column were sorted based on their occurrence 
frequency, from the least frequent to the most frequent. A custom mapping was created to replace each 
unique value with its corresponding index in the sorted list. For instance, the least frequent value would 
be mapped to 0, the next least frequent to 1, assigning a weightage based on the frequency of each 
category under the assumption that rarer categories might have more significance. 

Then the sklearn's LabelEncoder was used to transform these columns. While the initial custom 
mapping was based on frequency, LabelEncoder ensured that the variables were encoded to values 
ranging from 0 to n_classes-1, where n_classes is the number of unique values. For columns of Boolean 
data types, these were straightforwardly converted to integer types: 0 for False and 1 for True. Finally, 
for the remaining columns with 'category' and 'string' data types, LabelEncoder was applied.  

In summary, the encoding process aimed to convert all non-numeric variables into a numerical format 
while attempting to preserve as much semantic meaning of the data as possible. This step is crucial for 
ensuring the data is appropriately formatted for machine learning algorithms requiring numerical input 
features. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/52/20241582

217



Table 2. Variables after manual selection 

Column_name Non-Null Data Type 
Severity 296620 uint8 
Distance(mi) 296620 float32 
Temperature(F) 296620 float32 
Humidity(%) 296620 float32 
Pressure(in) 296620 float32 
Visibility(mi) 296620 float32 
Wind_Speed(mph) 296620 float32 
Amenity 296620 bool 
Bump 296620 bool 
Crossing 296620 bool 
Give_Way 296620 bool 
Junction 296620 bool 
No_Exit 296620 bool 
Railway 296620 bool 
Roundabout 296620 bool 
Station 296620 bool 
Stop 296620 bool 
Traffic_Calming 296620 bool 
Traffic_Signal 296620 bool 
County 296620 category 
Wind_Direction 296620 category 
Weather_Condition 296620 string 
Sunrise_Sunset 296620 bool 
Month 296620 category 
Hour 296620 uint8 
Weekday 296620 category 
Time_Duration(min) 296620 float32 

3.  Methodology 

3.1.  Additional Data Processing 
This section analyzes how to filter valid data. This paper mainly describes three methods: manual 
selection, VIF selection and ANOVA selection 

3.1.1.  Manual Process 
The purpose was to ensure that only the most relevant features would be retained in the dataset, aiding 
in model interpretability and performance. To this end, we undertook a manual process to drop columns 
deemed less pertinent for the upcoming analytical tasks. Columns such as 'Description' and 
'Weather_Timestamp' were removed primarily because they are high-dimensional text fields, which 
could introduce noise rather than meaningful variance. The 'Source' column was dropped since it was 
not considered to have predictive power for the problem at hand. 

Additionally, location-based features like 'Street' and 'City' were removed due to their extensive 
cardinality, making them challenging to analyze and incorporate into predictive models effectively. The 
same rationale was applied for dropping 'State' and 'Zipcode.' 'Airport_Code' was eliminated as it was 
deemed irrelevant to the analysis goals. 
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Temporal features like 'Start_Time' and 'End_Time' were also omitted, given that we had already 
extracted essential time components such as 'Month,' 'Hour,' and 'Weekday' in the preprocessing stage. 
Columns containing latitude and longitude information ('Start_Lat', 'Start_Lng') were removed due to 
their collinearity with other geographical features. Similarly, other features such as 'Timezone,' 'Day' 
'Min' and 'Year' were also eliminated for collinearity or limited predictive power. Lastly, 
'Astronomical_Twilight,' 'Nautical_Twilight,' and 'Civil_Twilight' were deemed redundant in the 
presence of the 'Sunrise_Sunset' variable, which encapsulates similar information straightforwardly. 

By rigorously selecting variables, we aimed to create a streamlined dataset that retains only the most 
impactful features, facilitating more efficient and insightful subsequent analyses. 

3.1.2.  VIF selection 
Variance Inflation Factor (VIF) is a statistical measure used to quantify how much the variance of an 
estimated regression coefficient increases when your predictors are correlated[6]. In simpler terms, VIF 
gauges the extent to which the presence of a variable can be explained by other variables in the model. 
It is calculated as VIF = 1 / (1 - R²), where R² is the coefficient of determination for the regression of a 
given variable against all other variables. Generally, a VIF value greater than 10 indicates a problematic 
level of multicollinearity. 

Applying VIF in this project proved highly effective for identifying collinearity among predictors. 
By leveraging VIF, we could focus on the most relevant predictors, avoiding overfitting and improving 
the model's performance. The VIF analysis allowed us to surgically remove variables that could 
compromise the interpretability and reliability of our model, such as 'Pressure(in)' and 
'Weather_Condition'. Consequently, our model can now offer more precise and interpretable results, 
underscoring the utility of VIF as an instrumental feature selection tool in predictive modeling. 

In our efforts to build a robust predictive model, variable selection is crucial to mitigate the risk of 
multicollinearity, thereby enhancing the model's explanatory power and prediction accuracy. For this, 
we employed the Variance Inflation Factor (VIF) as the metric to gauge the level of collinearity among 
the predictors. A common threshold for VIF is 10; values exceeding this possess high multicollinearity. 
Our analysis revealed several variables with exceedingly high VIF scores: 'Pressure(in)' with a VIF of 
400.81, 'Weather_Condition' at 278.78, 'County' at 24.16, 'Humidity(%)' at 19.93, 'Severity' at 19.42, 
'Visibility(mi)' at 17.76, and 'Temperature(F)' at 14.53. These variables were removed from the model 
to prevent inflated standard errors that could impair the model's interpretability and predictive power. 
In contrast, variables such as 'Distance(mi)', 'Wind_Speed(mph)', and 'Time_Duration(min)' 
demonstrated low VIF scores below 10, indicating that they are less prone to multicollinearity and thus 
were retained in the model. 

The following figure is the result after VIF selection: 

Table 3. Variable after VIF selection 

# Column_name Non-Null Data Type 
0 Severity 296620 uint8 
1 Distance(mi) 296620 float32 
2 Wind_Speed(mph) 296620 float32 
3 Amenity 296620 int64 
4 Bump 296620 int64 
5 Crossing 296620 int64 
6 Give_Way 296620 int64 
7 Junction 296620 int64 
8 No_Exit 296620 int64 
9 Railway 296620 int64 
10 Roundabout 296620 int64 
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11 Station 296620 int64 
12 Stop 296620 int64 
13 Traffic_Calming 296620 int64 
14 Traffic_Signal 296620 int64 
15 Wind_Direction 296620 int64 
16 Sunrise_Sunset 296620 int64 
17 Month 296620 int64 
18 Hour 296620 uint8 
19 Weekday 296620 int64 
20 Time_Duration(min) 296620 float32 

3.1.3.  ANOVA selection 
ANOVA is a statistical method to test differences between means, and it was used here to test the 
differences between the means of the dependent variable, Severity, for all different categories of each 
independent variable[7]. F_classif is a function used here to compute the ANOVA F-value between 
features, so it is useful for feature selection while using SelectKBest. SelectKBest is a feature selection 
algorithm that can select the top k features with the most significant impact on the targets. 

The variables from ANOVA selection are: 'Distance(mi)', 'Temperature(F)', 'Pressure(in)', 
'Wind_Speed(mph)', 'Crossing', 'Junction', 'Stop', 'Traffic_Signal', 'County', 'Wind_Direction', 
'Weather_Condition', 'Sunrise_Sunset', 'Month', 'Hour', 'Weekday' 

3.2.  Model Creation 
A two-pronged modeling approach was used to understand the intricate dynamics underlying traffic 
accidents, leveraging Logistic Regression and Random Forest algorithms, offering distinct advantages; 
Logistic Regression is known for its interpretability and ease of implementation, while Random Forest 
brings higher flexibility and accuracy.  

Two sets of features will be used to train each of these models: 
1.VIF-Selected Features: The first set of features is carefully selected based on Variance Inflation 

Factor (VIF) to mitigate the impact of multicollinearity. This approach aims to enhance the robustness 
and interpretability of the model. 

2.Manually-Selected Features: The second set comprises features that have been retained solely 
based on domain knowledge and pragmatic considerations.| 

The core objective of employing these dual methodologies is to probe into the nuanced ways in which 
feature selection affects model performance and interpretability, which is particularly pertinent given 
that traffic accidents result from a multitude of interacting variables. Simplifying or altering the data can 
inadvertently affect the model's explanatory power.  

Therefore, the overarching goal of this study is to evaluate and compare the performance and 
interpretability of Logistic Regression and Random Forest models when trained on distinct feature sets. 
Performance will be assessed through key metrics such as accuracy, precision, and recall, while 
interpretability will be gauged by examining feature importance rankings. The study aims to offer 
actionable insights for more effective traffic safety interventions through this integrated approach. 

By examining model performance across different feature combinations, the study offers a 
comprehensive and in-depth perspective into the complexities of traffic accidents. This multi-model, 
multi-feature set approach delivers multiple angles of performance evaluation and enriches our 
understanding of which variables hold significant weight in the real-world applicability of the models. 

Table 3. (continued). 
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3.3.  Random Forest Model 
Model Creation Random Forest is an ensemble learning method that constructs multiple decision trees 
and combines them for more accurate and stable predictions[8]. The algorithm uses Bootstrap 
aggregating, where each tree is trained on a randomly selected subset of data with replacement. 
Furthermore, at each decision node, the best split is determined not from all features, but from a random 
subset of them. For classification tasks, the prediction is the class voted by the majority of the trees; for 
regression, it's the average of all trees' predictions. Beyond its predictive power, Random Forest provides 
feature importance scores, doesn't require feature normalization, and can efficiently handle large 
datasets with numerous features. The formula of Random Forest is shown below: 

𝑅𝐹𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑛(𝑥)} 

𝑅𝐹𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑥) =
1
n
> 𝑇𝑖(𝑥)

!

"	$	%
 

Post-training, we evaluate the model's performance using key metrics such as accuracy. Feature 
importance is also extracted to determine which variables most significantly impact accident severity, 
thus shedding light on areas that may warrant further investigation or intervention. This approach not 
only provides us with a robust predictive model but also offers interpretable insights that can be 
invaluable for policy formulation in the area of traffic safety. Through this model, we aim to achieve 
high predictive accuracy while maintaining computational efficiency, thereby making it both scalable 
and practical for real-world applications. 

4.  Results Analysis 
To fine-tune the model and extract the best hyperparameters, we employ Randomized Search Cross-
Validation. A balance between computational efficiency and model performance guides 
hyperparameters choice for Randomized Search. We explore n_estimators (number of trees in the forest) 
between [50, 100] and max_depth (maximum depth of each tree) among [None, 10, 20] to facilitate 
model complexity. min_samples_split and min_samples_leaf are constrained to small integers [2, 5] and 
[1, 2], to prevent overfitting. The max_features parameter is set to either 'auto' or 'sqrt' to define the 
number of features to consider when looking for the best split[9]. Randomized Search is executed with 
5 iterations and 2-fold cross-validation to balance runtime and reliability. 

4.1.  Feature Importance Analysis 
The chart illustrates the top 10 features' importance in a Random Forest model, highlighting that 
"Time_Duration(min)" stands out as the most significant feature, followed closely by "Distance(mi)" 
and "County", while factors like wind direction and weather conditions exhibit lesser importance: 

Figure 1. Feature Importance in Random Forest Model with manual selection's variables  
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The model's accuracy of 0.8799642640415346 (or approximately 88%) indicates that, out of all 
predictions made by the Random Forest model, about 88% of them were correct. This suggests a high 
degree of predictive reliability, demonstrating that the model can accurately classify or predict outcomes 
for the vast majority of the input data it encounters. 

The presented graph depicts the top 10 features' importance in a Random Forest model, post Variable 
Inflation Factor (VIF) selection. It's evident that "Time_Duration(min)" takes precedence as the 
foremost influential feature. "Distance(mi)" and "Hour" also have notable importance, while attributes 
like "Junction" and "Stop" have less impact: 

 
Figure 2. Feature Importance in Random Forest Model with VIF selection's variables 

Additionally, the model boasts an accuracy of approximately 85.74% signifying its commendable 
predictive accuracy on the dataset after the VIF-based feature selection. 

The dataset's severity distribution highlights that the majority of accidents fall under Severity Level 
2, comprising a significant 83.61% of all incidents. While the least severe incidents (Severity Level 1) 
are relatively rare, accounting for just 0.58%, the most severe accidents (Severity Level 4) make up 
5.35%. This distribution emphasizes the prevalence of moderately severe accidents and the imperative 
need for improved safety measures across all severity levels to mitigate risks: 

Table 4. Unique value distribution in ‘Severity’ column 

Severity Unique Number           Proportion 
1 23.56 0.583575 
2 34.64 83.605623 
3 23.76 10.461533 
4 27.9 5.349268 

4.2.  Report Comparison 
In the post-ANOVA selection analysis, the average predicted probabilities for different severity levels 
are presented. Severity Level 2 has the highest average predicted probability at 0.9033, indicating that 
most accidents are anticipated to fall into this category. This is corroborated by the histogram for 
Severity 2, which shows a pronounced peak nearing a probability of 1. Meanwhile, Severity Levels 1, 
3, and 4 have lower predicted probabilities of 0.3347, 0.5379, and 0.3500 respectively. The variances in 
these probabilities suggest there's some level of uncertainty in predictions across the board, but 
particularly for Severity Level 1 with a variance of 0.0392. Visually, the histograms for Severity Levels 
1, 3, and 4 demonstrate diverse distributions, with no single pronounced peak akin to Severity 2, 
indicating a more spread-out range of predicted probabilities for these categories: 
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Figure 2. Predicted probabilities distribution for each 4 severity with ANOVA selection 

Table 5. Result’s statistic conclusion on ANOVA selection 

Severity Average predicted probability Variance of predicted probability 
1 0.3347 0.0392 
2 0.9033 0.0106 
3 0.5379 0.0458 
4 0.3500 0.0466 

Table 6. Result’s statistic conclusion on Manual selection 

Severity Average predicted probability Variance of predicted probability 
1 0.3491 0.0372 
2 0.9085 0.0104 
3 0.5734 0.0424 
4 0.3896 0.0527 

 
The resultant data presents distinct predicted probabilities for the four severity levels. Severity Level 

2 continues to dominate with a pronounced average predicted probability of 0.8905, supported by its 
histogram, which prominently peaks near a probability of 1, reiterating the high likelihood of events 
falling under Severity Level 2. On the other hand, Severity Levels 1, 3, and 4 register notably lower 
average probabilities of 0.2148, 0.4567, and 0.3288, respectively. These values are reflected in their 
corresponding histograms that portray diverse distributions. Severity Level 1, for instance, manifests a 
left-skewed distribution, suggesting fewer incidents reaching higher predicted probabilities. In contrast, 
Severity Levels 3 and 4 present more balanced distributions. The variances provided underline a level 
of uncertainty across all severity levels. Overall, the VIF-based selection further underscores the 
recurring prominence of Severity Level 2 in these predictions: 
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Figure 4. Predicted probabilities distribution for each 4 severity with Manual selection 

Table 7. Result’s statistic conclusion on VIF selection 

Severity Average predicted probability Variance of predicted probability 
1 0.2148 0.0256 
2 0.8905 0.0110 
3 0.4567 0.0417 
4 0.3288 0.0464 

 

 

Figure 5. Predicted probabilities distribution for each 4 severity with VIF selection 

 
In our analysis of vehicle accident data in Pennsylvania from the U.S. dataset 

"US_Accident_March23," the dependent variable "Severity" revealed a notably imbalanced distribution. 
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Specifically, Severity level 2 accidents were highly over-represented, accounting for approximately 
83.61% of the dataset, while Severity level 1 was significantly under-represented, constituting merely 
0.58%. This imbalance might naturally lead to a higher predictive accuracy for Severity level 2 events 
in machine learning models, while diminishing the model's ability to accurately predict other Severity 
levels. 

5.  Conclusion and discussion 
The significance of this dataset is more than providing data; it touches upon the public safety issue that 
accounts for a huge number of injuries every year. Given the dataset's wide-ranging geographic coverage 
and the many years of data collection, it serves as a strong foundation for examining the severity of 
traffic accidents. Moreover, the extensiveness of the dataset enables an evaluation of contributing factors 
such as road conditions, weather, and driver behavior, making the predictive models developed in this 
study[10]. 

Analyzing this huge dataset has academic relevance and offers benefits to society. Accurate models 
based on such data can provide invaluable decision-making support to government agencies, emergency 
services, and policymakers, potentially reducing traffic accidents' severity and frequency. 

Upon model evaluation, several trends were evident. For example, with the ANOVA selection, the 
model offered an average predicted probability of 0.3347 for Severity level 1 events, with a variance of 
0.0392. Since Severity level 1 incidents comprise only 0.58% of the actual dataset, the model's predictive 
performance is far from ideal in this context. For Severity level 2, the model's average predicted 
probability was robust at 0.9033, with a low variance of 0.0106. This resonates well with the dataset's 
high prevalence of Severity 2 events, confirming the model's adeptness in predicting this particular level. 
However, the average predicted probabilities for Severity levels 3 and 4 were 0.5379 and 0.3500, with 
variances of 0.0458 and 0.0466, respectively. These figures indicate a certain level of imprecision, 
especially in predicting Severity Level 3 events. 

The observed imbalance in the distribution of the Severity variable has profound implications for 
predictive modeling tasks. Given the over-representation of Severity level 2 accidents, machine learning 
models are naturally predisposed to achieve higher predictive accuracies for this category. However, 
this bias comes at the cost of potentially undermining the model's competence in predicting rarer 
Severity levels, such as Severity level 1. This poses a challenge since predicting less frequent yet 
possibly more severe accidents is crucial for implementing effective preventive measures. 

Understanding the inherent biases in the dataset is pivotal. It informs us about the data at hand and 
lays the foundation for more informed and strategic decision-making in model selection and training. 
Several strategies could be explored to enhance the robustness and fairness of our predictive models,  in 
the future: 

1. Resampling Techniques: We can consider oversampling under-represented severity levels or 
undersampling over-represented ones to achieve a more balanced dataset. 

2. Cost-sensitive Learning: Models can be more attentive by assigning higher misclassification costs 
to under-represented severity levels. 

3. Advanced Model Architectures: Exploring complex models or ensemble techniques that can 
handle class imbalances more effectively. 

4. Incorporating Domain Knowledge: Integrating expert opinions or other external information can 
provide valuable context and enhance prediction accuracy for under-represented classes. 

In conclusion, while the present dataset offers valuable insights into vehicle accidents in 
Pennsylvania, it also underscores the significance of addressing data imbalances for better predictive 
modeling. The journey of refining and optimizing our models is continuous, and addressing this 
challenge head-on will be pivotal in our endeavor to create safer roadways. 
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