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Abstract. As a powerful reinforcement learning framework, Contextual Multi-Armed Bandits 

have extensive applications in various domains. The models of Contextual Multi-Armed 

Bandits enable decision-makers to make intelligent choices in situations with uncertainty, and 

they find utility in fields such as online advertising, medical treatment optimization, resource 

allocation, and more. This paper reviews the evolution of algorithms for Contextual 

Multi-Armed Bandits, including traditional Bayesian approaches and the latest deep learning 

techniques. Successful case studies are summarized in different application domains, such as 

online ad click-through rate optimization and medical decision support. Furthermore, the 

author discusses future research directions, including more sophisticated context modeling, 

interpretability, fairness issues, and ethical considerations in the context of automated 

decision-making. 
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1.  Introduction 

In recent years, contextual multi-armed bandits (CMBA) have been widely used in complex 

decision-making processes, where agents make a sequence of decisions from a set of arms whose reward 

depends on contextual information. The time in the decision-making process goes like 1, 2, ..., T, and the 

agent needs to make a decision to pull one arm among a set of K arms at each time T. Each arm has an 

unknown reward distribution that depends on the context, and the purpose of the agent is to learn which 

arm to select in order to maximize cumulative rewards over time. The reward of the arm being pulled 

will be received and that of the other arms remains unknown. In terms of the distribution of the reward, 

it is sampled from an unknown distribution in a stochastic setting while chosen by an adversary in an 

adversarial setting. It is worth noting that in various contexts, the arm getting the highest reward may 

also be different. 

Applications of CMAB span various domains, from online advertising to healthcare treatment 

optimization [1]. By adapting strategies based on observed contexts and rewards, CMAB algorithms 

offer an intelligent approach to maximize cumulative rewards over time. As an overview, Table 1 

summarizes all the algorithms discussed in this paper. In Table 1, the number of distinct contexts is 

represented by C, the number of policies is represented by N, the number of arms is represented by K, 

and the dimension of contexts is represented by d. 

Through a review, this paper aims to inspire researchers' interest in Contextual Multi-Armed Bandits, 

fostering further exploration and innovation to address the evolving decision challenges in the real 

world. 
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Table 1. A comparison between all the algorithms of contextual bandits discussed in this paper. 

Algorithm Regret 

LinUCB O(d√Tln((1+ T)/δ)) 

LinTS O(d2
δ
−1√T1+δ) 

D-LinUCB O((1/∈2+1/∆)log(T)) 

D-RandLinUCB 𝒪(d
2
3B

T

1
3
ˉ

T
2
3) 

D-LinTS 𝒪(d
2
3(log⁡K)

1
3B

T

1
3 T

2
3) 

TS for High-Dimensionl 
O(s∗√Tlog⁡ d)

O(s∗2[log⁡d + log⁡T]log⁡T)
 

2.  Contextual bandits feature representation 

In the context of CMAB problems, an essential component is the process of feature extraction. CMAB 

problems involve an intelligent agent making decisions within various contextual scenarios to optimize 

cumulative rewards. The feature extraction step plays a pivotal role in mapping contextual information 

to appropriate action choices. In this regard, several established methods for feature extraction in CMAB 

scenarios are worth noting. 

Firstly, the use of one-hot encoding is a prevalent technique [2]. It involves converting discrete 

contextual features, such as user demographics (e.g., gender or age groups), into binary vectors. Each 

unique feature value corresponds to a distinct dimension within the vector space. This method is 

particularly effective for scenarios with a finite set of discrete features. 

Another approach is the application of embeddings [2]. Embeddings are advantageous when dealing 

with contextual features characterized by a multitude of potential values. They facilitate the 

transformation of such features into lower-dimensional continuous vector spaces, allowing for the 

capture of intricate relationships among features. 

In addition, the normalization and standardization of continuous features are customary 

preprocessing steps [2]. These steps ensure that continuous features maintain consistent scales and 

ranges, which can be crucial for effective learning in CMAB settings. 

Considering temporal dynamics, incorporating time-related features, such as timestamps or time 

intervals, can be essential. These features enable the model to account for temporal dependencies, which 

can be particularly relevant in scenarios where time plays a significant role. 

Deep learning models, including Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), offer a sophisticated approach to feature extraction. These models are adept at 

automatically deriving complex feature representations from contextual information. 

Lastly, the combination of contextual features can yield more intricate representations. Techniques 

such as cross-feature interactions and polynomial feature engineering can be applied to enrich the 

feature set. 

The choice of a specific feature extraction method within the CMAB framework depends on the 

problem's characteristics and the nature of the data at hand. It is imperative to experiment and fine-tune 

these methods to ascertain the most effective approach for maximizing rewards in CMAB scenarios. 

3.  Contextual bandits algorithms 

3.1.  Stochastic contextual bandits 

Stochastic contextual bandit algorithms typically operate under the assumption that the reward 

associated with each arm conforms to an undisclosed probability distribution. Certain algorithms even 
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extend this assumption to posit that the distribution adheres to a sub-Gaussian distribution with 

unspecified parameters. Under the linear realizability assumption, this section discusses stochastic 

contextual bandit algorithms. 

3.1.1.  LinUCB. In the LinUCB algorithm [3], we assume that on each arm, the feature vector xt,a ∈

Rd is linear with the expected reward: 

 E⁡[rt,a ∣ xt,a] = xt,a
⊤ θ

∗
 (1) 

Where θ∗ is the true coefficient vector. Assume that at time t, the best arm is at
∗ = arg⁡max⁡a xt,a

⊤ θ∗, 
then the regret of LinUCB after t round is defined as 

 

RT = E⁡[∑ rt,at
∗

T

t=1
−∑ rt,at

T

t=1
]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ∑ xt,at
∗

⊤ θ
∗

T

t=1
−∑ xt,at

⊤ θ
∗

T

t=1

 (2) 

Let Dt represent the feature vector of the arm that is pulled at each time. Let ct represent the 

corresponding reward. If the sample (xt,a, rt,at)⁡is independent, then a closed-form estimator of θ∗ is 

obtained through ridge regression 

 θ̂t = (Dt
⊤Dt + λId)

−1Dt
⊤ct (3) 

For a prediction xt,a
⊤ θ̂t, the upper confidence bound should be: 

Assume that the rewards rt,a are independent random variables with means E⁡[rt,a] = xt,a
⊤ θ∗, let 

ϵ = √
1

2
ln⁡

2TK

δ
, and At = Dt

⊤Dt + Id, then with the probability 1 − δ/T, we got 

 ∣ xt,a
⊤ θ̂t − xt,a

⊤ θ
∗ ∣≤ (ϵ + 1)√xt,a

⊤ At
−1xt,a (4) 

However, in the LinUCB algorithm, samples from the previous round are used to estimate θ∗ and a 

sample for the present round is chosen, thus the samples are not independent. 

3.1.2.  LinTS. As an effective approach for balancing exploration and exploitation, Thompson 

sampling produces good empirical results with respect to display ads and news recommendations [4]. 

Multi-armed bandit problems can be solved using Thompson sampling as well. For contextual bandits, 

Agrawal et al. and Li et al. provide a Thompson sampling algorithm with linear payoffs [5,6]. Assume 

that in the bandit problem, there are K arms, and at time t, each arm "a" is linked to a d-dimensional 

feature vector xt,a. The context selection is not assumed to follow a specific distribution and can be 

determined by an adversary. A d-dimensional parameter μ ∈ ℝd is used to define a linear predictor 

and predict the mean reward of arm a by μ ⋅ xt,a. We assume an unknown underlying parameter 

μ∗ ∈ ℝd, therefore, at time t, the expected reward for the arm a is given by r̅t,a = μ
∗ ⋅ xt,a. The actual 

reward rt,a is obtained from choosing the arm a at time t with an unknown distribution with mean 

r̅t,a. The Thompson sampling algorithm selects an arm at at each time t⁡∈ {1,...,T} and receives a 

reward rt. Let a∗ be the optimal arm at time t: 

 at
∗ = arg⁡maxrt̅,a (5) 

Let Δt,a represent the difference of the expected reward between the optimal arm and arm a: 

 Δt,a = r ̅t,a∗ − r ̅t,a (6) 

Mathematically, the regret can be expressed as: 
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 RT = ∑  T
t=1 Δt,at

 (7) 

In the mentioned paper, the assumption 

δt,a = rt,a − r̅t,a  is conditionally R-sub-Gaussian, which implies that for a constant R≥0, rt,a ∈
[r̅t,a − R, r̅r,t + R]. 

There are various likelihood distributions that satisfy this condition, but for the sake of simplicity, the 

paper assumes a Gaussian likelihood and Gaussian prior. 

Thus, the likelihood of reward r̅t,a, given the context xt,a, is modeled using the probability density 

function 𝒩(xt,a
⊤ μ∗, v2)of a Gaussian distribution. Mathematically,v is defined as v = R√

24

ϵ
dln⁡(

t

δ
), 

where the algorithm parameter is ϵ ∈ (0,1), and δ is a parameter that controls the high probability regret 

bound. 

Similar to the closed-form of linear regression, we define 

 
Bt = Id + ∑  t−1

τ=1 xτ,axτ,a
⊤

 (8) 

 μ̂
t
= Bt

−1(∑  t−1
τ=1 xτ,arτ,a) (9) 

With probability 1−δ, the regret is bounded by: 

 RT = O (
d

2

ϵ
√T1+ϵ(ln⁡(Td)ln⁡

1

δ
)) (10) 

3.1.3.  D-LinUCB. LinUCB is an optimistic algorithm for non-stationary environments in a stochastic 

linear bandit model [7]. To handle non-stationarity and forget past observations smoothly, it utilizes 

discounted linear regression and exponential weights wt = γ
−t , where 0< γ<1 is the discount factor. 

The algorithm incorporates regularization and computes the upper confidence bound(UCB) for each 

action based on estimated regression parameters and uncertainty. The action with the highest UCB is 

selected to play, and the algorithm updates the parameter estimation and uncertainty based on 

observed rewards and chosen actions. 

At each step, the algorithm receives a set of available actions At and computes an upper confidence 

bound(UCB) UCB(a) = a⊤θ̂ + βt−1√a
⊤V−1ṼV−1a⁡for each action based on the current estimates of 

the unknown regression parameter θ̂t = arg⁡min⁡θ∈ℝd(∑ ws(Xs − ⟨As, θ⟩)
2 + λt ∥ θ ∥2

2t

s=1
) and the 

uncertainty in the estimates. The algorithm selects the action with the highest UCB and plays it, 

receiving a reward Xt = ⟨At, θt
⋆⟩ + ηt,⁡ The algorithm then updates its estimates of θ  and the 

uncertainty in the estimates based on the played action and reward. 

In the D-LinUCB algorithm, we introduce a confidence ellipsoid Ct which is defined as {θ: ∥ θ −
θ̂t−1 ∥Vt−1Ṽt−1−1 Vt−1

≤ βt−1}, and let 

 β
t
= √λS+ σ√2log⁡(1/δ) + dlog⁡(1+

L2(1−γ2t)

λd(1−γ2)
) (11) 

Based on the remark above regarding to scale-invariance, we can easily conclude that at time t, our 

D-LinUCB algorithm chooses the action At that maximizes ⟨a, θ⟩⁡⁡for a ∈ 𝒜t and θ ∈ Ct. 

Assuming that ∑ ∥ θs
⋆ − θs+1

⋆ ∥2
T−1

s=1
≤ BT, the regret of the D-LinUCB algorithm is bounded for all 

γ ∈ (0,1) and D≥ 1 then with the probability 1 − δ/T, we got 

 RT ≤ 2LDBT +
4L3S

λ

γD

1−γ
T + 2√2β

T√dT√Tlog⁡(1/γ) + log⁡(1+
L2

dλ(1−γ)
) (12) 

3.1.4.  D-RandLinUCB. D-LinUCB algorithm follows the optimism in the face of the uncertainty 

principle and picks actions through maximizing the UCB bound of expected reward based on 
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confidence level a and θ̂t
wls  [8]. However, in a non-stationary linear bandit environment, the 

D-RandLinUCB algorithm replaces the confidence level a with a random variable Zt ∼ 𝒟. 

D-LinUCB: Xt = arg⁡max⁡
x∈𝒳t

⟨x, θ̂t
wls⟩ + a ∥ x ∥Vt−1 

D-RandLinUCB: Xt = arg⁡max⁡
x∈𝒳t

⟨x, θ̂t
wls⟩ + Zt ∥ x ∥Vt−1 . 

In the non-stationary linear bandit environment, dynamic regret is introduced to quantify the 

cumulative regret incurred by an algorithm over a sequence of time steps, which allow us to evaluate the 

performance of various algorithm in non-stationary bandit settings. 

Suppose that at time t, algorithm A chooses arm Xt = arg⁡max⁡𝒳t f̃t(x). The corresponding expected 

dynamic regret is bounded for integer D>0, 

 

E[R(T)] ≤ (c1 + c2)(1+
2

p3−p2

)√c3T

+T(p
1
+ p

2
) + d+ 2DBT +

4

λ

γD

1−γ
T.

 (13) 

 
c1 = √2log⁡T+ dlog⁡(1+

1−γ2(T−1)

λd(1−γ2)
) + λ

1/2,
 (14) 

 &c2 = a√2 log (
T

2
) , and⁡a2 = 14c1

2 (15) 

If we choose D =
logT

1−γ
, γ = 1 − (BT/(dT))

2/3, the expected dynamic regret is asymptotically upper 

bounded by 𝒪(d2/3BT
1/3
T2/3) as T → ∞. 

In the D-RandLinUCB algorithm which is designed to overcome conservatism issues faced by 

optimism-based algorithms in practice, we use the weighted method with exponentially discounting 

factor to adjust the non-stationary linear bandit environment. Since the action set 𝒳t changes from time 

t and has infinite arms, and the true parameter θt
⋆ varies within total variation BT.  

D-RandLinUCB achieves statistical optimality in terms of dynamic regret, but it has a trade-off with 

computational efficiency compared to another algorithm called Discounted Linear Thompson Sampling 

(D-LinTS). 

3.1.5.  D-LinTS. In the previous D-LinUCB algorithm [7], the random perturbations were injected by 

replacing optimism with simple randomization when deciding the confidence level. However, the 

D-LinTS algorithm chooses to perturb estimates before the expected rewards are maximized [8]. We 

use a weighted least-squares estimator θ̂t
wls along with the corresponding matrix Vt = Wt,λW̃t,λ

−1Wt,λ 

instead of θ̂t
ls and the Gram matrix Vt,λ. Since the random perturbations are not shared on each arm, 

the D-LinTS algorithm has more variation and corresponding larger regret bounds than the previous 

D-RandLinUCB algorithm. 

In the D-LinTS algorithm [8], we choose D = log⁡ T/(1 − γ) and γ = 1 − (BT/(dT√log⁡ K))
2/3, 

the expected dynamic regret is asymptotically upper bounded by 𝒪(d2/3(log⁡ K)1/3BT
1/3
T2/3) as T →

∞. 
To ensure that the randomly chosen confidence bound of D-RandLinUCB belongs to that of 

D-LinUCB with high probability, D-RandLinUCB uses a truncated normal distribution with zero mean 

and standard deviation 2/5 over [0,∞) as D. On the other hand, when implementing both LinTS and 

D-LinTS, D-LinTS uses a non-inflated version by setting a=1. According to Li et al. [3], in all scenarios, 

both randomized algorithms outperform the non-randomized D-LinUCB. However, D-LinTS not only 

outperforms D-RandLinUCB in all scenarios but also works as well as Oracle Restart LinTS 

considering the high dimension and big action space. 
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3.2.  High-dimensionl contextual bandits 

In the domain of high-dimensional contextual bandits, we move beyond the traditional constraints of 

fixed probability distributions for arm rewards. Here, the arms are not bound by predefined distributions 

and can be strategically selected by an adversary, challenging the decision-making process. To navigate 

this complex landscape, advanced techniques tailored to high-dimensional contexts are employed. 

These methods empower agents to leverage the rich contextual information, often encoded in 

high-dimensional feature spaces, to make informed arm selections. The agent's strategy adapts 

dynamically based on observed rewards, allowing for intricate adjustments in the high-dimensional 

space to optimize decision-making in this adversarial environment. 

The Thompson sampling algorithm is a popular Bayesian algorithm for solving the contextual bandit 

problem. In the high-dimensional and sparse contextual bandit problem, the algorithm uses special 

classes of sparsity-inducing priors [9], such as spike-and-slab priors, to model the unknown parameter. 

The algorithm works by first initializing the prior distribution over the unknown parameter, and then at 

each round, it samples a parameter from the posterior distribution, which is updated based on the 

observed rewards and contexts. The algorithm then selects the action that maximizes the expected 

reward under the sampled parameter. By using sparsity-inducing priors, the algorithm can effectively 

handle high-dimensional and sparse contexts, and by using Bayesian inference, it can provide a 

probabilistic estimate of the unknown parameter. 

The algorithm used the sparsity-inducing prior proposed in the research of Russac et al. [10] for 

posterior sampling and established posterior contraction results for non-i.i.d. observations coming from 

a bandit environment and for a wide class of noise distributions. Using the posterior contraction result, 

an almost dimension-free regret bound is established for the proposed TS algorithm under different 

arm-separation regimes parameterized by ω. The algorithm enjoys minimax optimal performance for 

ω ∈ [0,1). In addition, the prior allows us to design a computationally efficient TS algorithm based on 

Variational Bayes. 

First, a dimension s is selected from a prior πd on the set [d]; next, a random subset S⊂[d] of size 

|S|=s, and finally, given S, a set of nonzero values βS: = {βi: i ∈ S} from a prior density gS for ℝS. In 

the tth round of the algorithm, a specific prior Π is set on β, and it is updated sequentially based on the 

observed rewards and contexts. In particular, it chooses the prior described in 

 (S, β) ↦ πd(|S|)
1

( d
|S|)

g
S
(β

S
)δ0(βSc) (16) 

with an appropriate choice of round-specific prior scaling λt  and updates the posterior using the 

observed rewards and contexts until (t−1)th round. Then a sample is generated from the posterior and an 

arm at is chosen greedily based on the generated sample. 

Since C = Θ(ϕuϑ
2ξKlog⁡ K), and K ≥ 2, d ≥ T. Define the quantity 

 κ(ξ, ϑ,K): = min{(4c3Kξϑ
2)−1, 1/2} (17) 

Rewards where c3 is a universal positive constant. Also, set the prior scaling λt as follows: 

 (5/3)λ
¯

t ≤ λt ≤ 2λ
¯

t, λ
¯

t = xтах√2t(log⁡d+ log⁡ t) (18) 

Then there exists a universal constant C0>0 such that we have the following regret bound for the 

algorithm: 

 𝔼{R(T)} ≲ Ib + Iω (19) 

where, 

 Ib = {
bmaxxmaxϕuϑ

2
ξ(Klog⁡K)

min{κ2(ξ,ϑ,K),log⁡K}
} s∗log⁡(Kd) (20) 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241593

292



 Iω =

{
 
 
 

 
 
 Φ1+ω (

s∗1+ω(log d)
1+ω

2 T
1−ω

2

Δ∗
ω ) ,     forω ∈ [0,1),

Φ2 (
s∗2[log⁡ d+log⁡T]log⁡T

Δ∗
) ,     forω = 1,

Φ2

(ω−1)
(

s∗2[log⁡ d+log⁡T]

Δ∗
) ,     forω ∈ (1,∞)

Φ2 (
s∗2[log⁡ d+log⁡T]

Δ∗
) ,     forω =∞,

 (21) 

and 

 Φ = σxmax
2 ξK(2+ 40A4

−1 + C0Kξxmax
2 A4

−1) (22) 

4.  Practical applications 

The nature of contextual bandit problems makes them suitable for various real-life situation and 

application (see Table 2). In particular, they can be beneficial when collecting data for assessing 

treatment effectiveness on animal models throughout different disease stages. Traditionally, conducting 

such assessments using conventional random treatment allocation procedures can be challenging. This 

is because administering poor treatments can lead to a deterioration of the subject's health, making data 

collection difficult. To address this issue, Durand et al. [11] intend to develop an adaptive allocation 

strategy that allocates more samples, so as to enhance the data-collection efficiency and explore 

promising treatments. In their work, the authors approach this application as a contextual bandit problem 

and introduce a practical algorithm for exploration and exploitation within this framework. 

Table 2. Bandit for Real Life Application [12]. 

 CMAB Non-stationary CMAB 

Healthcare √  

Recommendation system √ √ 

Dialogue system √  

 

In addition to real life applications like clinical trials, contextual bandits could also be used to 

improve various machine learning algorithms (see Table 3). 

Bouneffouf et al. [13] explore this idea by introducing a novel active learning strategy that models 

the active learning problem as a contextual bandit problem. Their proposed method, called Active 

Thompson Sampling (ATS), adopts a sequential algorithmic approach. In each round of the algorithm, 

ATS assigns a sampling distribution on a pool of available unlabeled data points. From this distribution, 

it samples one point and queries the oracle for the corresponding label of the sampled point. This active 

learning strategy effectively balances exploration and exploitation by making informed decisions on 

which data points to query for label information. 

Noothigattu et al. [14] conducted a study that focuses on a scenario where an agent can observe the 

behavioral traces of individuals within a society but lacks access to explicit constraints governing the 

observed behaviors. To address this challenge, the authors employ inverse reinforcement learning to 

learn these potential constraints. Once the constraints are learned, they are combined with a potentially 

unrelated value function using a contextual bandit-based orchestrator. This orchestrator plays a critical 

role in selecting a contextually-appropriate choice between two policies: the constraint-based policy and 

the environment reward-based policy. When making decisions, the agent can now mix policies in new 

approaches, selecting the best actions from either a reward-maximizing policy or a constrained policy. 
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Table 3. Bandit in Machine Learning [12]. 

 CMAB Non-stationary CMAB 

Active Learning √  

Reinforcement learning √  

5.  Conclusion 

This paper reviews some of the most notable algorithms of contextual multi-armed bandits and 

summarizes it, in an organized way (Table 1). The LinUCB algorithm is a linear bandit algorithm that 

balances exploration and exploitation by modeling the uncertainty of each arm's reward using a linear 

regression approach [3]. The LinTS algorithm is a linear bandit algorithm that uses Bayesian methods to 

estimate the uncertainty of each arm, achieving a balance between exploration and exploitation [5]. The 

D-LinUCB algorithm is an enhanced linear upper confidence bound algorithm that improves the 

accuracy of uncertainty estimation for each arm by introducing covariance information, achieving a 

better balance between exploration and exploitation [6]. The D-RandLinUCB algorithm combines 

randomization and LinUCB approach to achieve improved exploration-exploitation trade-off by 

effectively estimating the arm rewards and uncertainties [7]. Similarly, the D-LinTS algorithm enhances 

the LinTS approach by incorporating randomization, leading to more effective uncertainty modeling 

and a better balance between exploration and exploitation in linear bandit problems [7]. In a 

high-dimensional environment, the TS algorithm [8] usually employs Bayesian methods to estimate 

uncertainty for multi-dimensional arms, achieving a more precise balance between exploration and 

exploitation. 

In conclusion, this review has highlighted key insights and trends in contextual multi-armed bandits. 

It is evident that the traditional UCB algorithm and TS algorithm are no longer sufficient to address the 

decision-making challenges posed by complex environments in multi-armed bandit problems and that 

this field has seen significant developments in recent years. While we have discussed important 

contributions, it's essential to acknowledge the existing uncertainties and the need for further research. 

Looking ahead, future research in this area could explore extension in multimodal environments or 

integration of deep learning and reinforcement learning, and the findings presented here are expected to 

have a lasting impact on many Recommendation Systems like medical decision-making and automated 

trading. 
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