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Abstract. Most existing knowledge graphs (KGs) in specific domains suffer from problems of 

insufficient structural knowledge mining, superficial constraint of rules, incomplete system of 

rule patterns and higher error rate in the process of automated rule generation. In this paper, we 

present an adversarial generative approach for rule mining based on generative adversarial 

networks (GANs). The method firstly extracted a rule set according to a specific rule pattern 

defined manually, the rule set is then used as the adversarial  training dataset for the GAN, That 

is, the discriminator determines whether a rule is true or not by learning the pattern of the rule 

set, and the generator tricks the discriminator by forging rules and improves according to the 

feedback from the generator.Finally, a generator is obtained to generate new rules that conform 

to the rule pattern, and a discriminator is obtained to determine the confidence of the 

automatically constructed triples. 
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1.  Introduction 

Knowledge graphs(KGs), which are structured information carriers, have broad application prospects in 
the fields of knowledge management, intelligent applications, and data analysis. KGs can be classified 
into two categories: general domain KGs and specific-domain knowledge graphs, depending on the 
fields they cover. Typical examples of general KGs are Freebase [1], WordNet [2], Yago[3], etc, which 
are mainly used to describe commonsense knowledge and universal laws. A large number of high-

quality domain-specific KGs have been released in recent years [4][5][6]. Due to the different scope of 
knowledge covered, the characteristics of knowledge inside the graph are very different. In general, the 
knowledge structure of the domain-specific KG is more complex, and the relationships between entities 
are more diverse. In contrast, the knowledge structure of the commonsense KG tends to be flat and 
loose-structured. 

The ability of KG to make interpretable reasoning on structured information is an important support 
for many research tasks. Knowledge graph reasoning refers to the process of reasoning about new triples 

by using the existing triples in the KGs. In this process, adding rule constraints can effectively improve 
the accuracy and reliability of reasoning. Rule-based KG reasoning methods excel at performing 
inference by uncovering underlying logical rules, showcasing remarkable generalization ability and 
interpretability. Moreover, the flexibility of logical rules allows for seamless integration with diverse 
neural network models, thereby offering promising prospects for research and application.  

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241594

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

219



Although rule constraints can be used as a strong support for KG reasoning, the acquisition of rules 
and the quality of rules are crucial for reasoning under rule constraints. For a long time, it is difficult to 
obtain rules with high quality and reliability on a large scale, and to improve reasoning performance due 
to the lack of accuracy of rules obtained by automatic or semi-automatic means. A serious problem is 

that there are usually no extensive data sources for a specific domain and the data size is usually small, 
which makes automatic extraction of rules very difficult. To solve the above problems, this paper 
proposes a method for automatic rule extraction in a low-resource way for domain-specific KGs. This 
method automatically extracts rule instances through predefined rule patterns, and uses the generative 
adversarial networks(GANs) for training. Finally, more rule instances conforming to the rule pattern are 
generated, and the rules with high quality and high reliability are mined. 

2.  Related Work 

2.1.  Rules in Knowledge Graph 
The practice of introducing rules into KGs has been concerned since the emergence of KGs, and there 
are various forms of introducing rules. At present, the rules that are applied to support reasoning in the 

field of KG are mainly divided into three categories: Logical Rules:represents the foundational 
approach to knowledge representation in KGs. First-order logic (FOL) [7] serves as the cornerstone for 
formalizing knowledge and inferring logical relationships. Horn rule logic [8], a subset of FOL, is 
particularly well-suited for KG representation due to its emphasis on declarativity and interpretability. 
Association Rule Mining :To address the inherent limitations of logic rules, researchers have developed 
association rule mining algorithms. AMIE [9] is designed to efficiently extract association rules from 
KGs.Subsequent works [10][11] have made technical adjustments in search pruning, search 

parallelization, search space optimization, etc. Even so, it is still difficult to cope with the increasing 
size of the graph. Probabilistic Soft Logic Rules: The representative work has Markov logic network 
(MLN) [12] establishes a probabilistic graphical model by leveraging predefined rules and factual 
information extracted from the KG.  

Their applicability is constrained to precise reasoning, lacking the ability to represent uncertainty 
information and noisy data and cannot overcome the problems of rule-based reasoning, such as low 
tolerance to noise data, high cost of manual intervention, and difficulty in dealing with the growing scale 
of graphs. 

2.2.  Generative Adversarial Networks in Knowledge Graph  
Generative models are indispensable techniques in unsupervised learning tasks. In recent years, their 
applications to KGs have become increasingly popular. A number of research efforts have incorporated 
the generative adversarial network (GAN) framework into KG manipulation. KBGAN [13] employs 
adversarial learning to generate high-quality negative training samples, which supersedes the 

conventional method of uniform sampling and leads to improved KG embedding (KG embedding). 
Another GAN-based framework, IGAN [14], addresses the need for effective negative sampling in KG 
completion by generating optimal negative samples. This provides non-zero loss scenarios for the 
discriminator, enabling it to leverage a margin-based ranking loss for maximum efficiency. KSGAN 
[15] builds on KBGAN by employing a selective adversarial network to generate even better training 
examples for negative cases. 

While these methods leverage the adversarial element of GANs to achieve a level of refinement in 

the constraint accuracy of various rules during the reasoning process, their impact on the rule generation 
phase is less pronounced. Consequently, they do not directly contribute to the overall improvement of 
rule-based reasoning performance. This paper proposes a novel approach that directly integrates GAN 
with the rule generation stage. It aims to achieve a foundational enhancement in the quality of rule 
constraints, ultimately leading to a substantial improvement in the effectiveness of rule-based reasoning. 
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3.  Model 

3.1.  Rule Pattern Modeling 

The modeling of rules in this paper involves two levels: rule instances and rule patterns. A rule pattern 
is defined as the composition of multiple relations with structure according to the semantic logic 
relationship. A rule instance is a structured combination of multiple triples that conform to a rule pattern 
in the KG. For example, relation _husband_of, and relation _mother_of can semantically deduce relation 
_father_of, then the combination of above relations with the specific structure is treated as a regular 

pattern: (_husband_of&_mother_of ⟹ _father_of). Correspondingly, there may be multiple rule 
instances in the KG that conform to the rule pattern, such as: (Yao Ming, _husband_of, Ye Li) & (Ye Li, 

_mother_of, Yao Qin Lei)⟹ (Yao Ming , _father_of, Yao Qin Lei ). 
The basic idea of this paper for rule mining is to use a generative network to generate rule instances 

that conform to the rule pattern under the constraints of the rule pattern. Therefore, this paper models 
the regular patterns from three dimensions and incorporates this information into the training of the 
GAN model. In order to fully represent the structural information derived from the internal KG in the 

embedding space, we expect the vector representation of entities in the continuous space to exhibit the 
structure consistent with the feature subgraph. That is, the embedding vectors of entities in the 
embedding space have similar geometric characteristics as the subgraphs of the KG spectrum, and the 
geometric characteristics can be measured by the angle and distance in the continuous space. Therefore, 
we can use three sets of parallel terminology to describe the rule pattern: the feature subgraph structure 
of the KG, the logical expression of the relationship, and the structural information of the entity vector 
in the embedding space. And every rule pattern can be expressed precisely in the three parallel narrative 

ways respectively. 

 

Figure 1. parallel dimensional modeling of regular patterns 

Figure 1 takes the rule pattern of equivalence relation as an example, assuming that r1 and r2 are 

equivalent to each other, that is, they can maintain the same or similar semantics in the case of mutual 
replacement. According to the rule pattern that r1 is equivalent to r2, two rule instances conforming to 
the rule pattern are searched in the graph. The subgraph structure of each rule instance in the KG 
maintains a fixed structural feature, which is determined by the rule pattern. Since triples in a KG that 
conform to this rule pattern have a fixed subgraph structure, we expect these entities to retain this fixed 
structure when embedded in a continuous space, the structure can be accurately measured by distance 
and angle in a vector space. This measure provides the possibility to reshape the structure of embedding 

vectors in vector space according to the subgraph structure of KG. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241594

221



3.2.  GAN Taining Architecture 
In the network architecture of GAN, we use two LineaRE [16] models as generators and discriminators, 
respectively. The complete training process of the GAN architecture is shown in figure 2. 

 

Figure 2. GAN training framework incorporating geometric information 

Firstly, the training samples are selected from the rule set, taking the positive triple shown in the 
figure as an example: (Yao Ming, _Profession, Player). In the form of link prediction task, the head 
entities and relations are used as the input of the generator, and a set of outputs of the generator are 
obtained. The top three predicted tail entities in these outputs are selected, and the remaining negative 
triples are regarded as having obvious semantic errors and discarded. The process by which the generator 
gives the prediction of the tail entity adopts the LINeare model manner, as shown in Equation 1, where 

𝑤𝑟
1, 𝑤𝑟

2, and 𝑏𝑟 are the learnable parameter matrices and vectors of relation r as a linear map. 

𝑓𝑟(ℎ) = 𝑤𝑟
2−1 ∘ (𝑤𝑟

1 ∘ ℎ + 𝑏𝑟) = 𝑡 (1) 

On the other side of the top part of the figure, the positive triple goes through the rule matching 
process to search for different rule instances belonging to the same rule pattern, take the triple in the 
figure(Jackie Chan, _Occupation, Actor) as an example.  

Following the rule modeling method mentioned above, different rule instances under the same rule 
pattern are expected to have the same geometric structure in the vector space, so the F function is used 
to calculate the geometric distance between the candidate negative triples and the triples obtained by 

rule matching, and the one with the smallest distance is selected and passed to the discriminator for 
adversarial training. The function F considers the distance and angle of the entity vector in the 
continuous space, so as to limit the convergence of the rule instance to the rule pattern it belongs to in 
the embedding space. The specific calculation formula of F function is shown in Formula (2-4): 

𝐹(𝑇1, 𝑇2) = 𝜆|𝑑𝑖𝑠(𝑇1) − 𝑑𝑖𝑠(𝑇2)| + (1 − 𝜆)|𝑎𝑛𝑔𝑙𝑒(𝑇1, 𝑇2) − 𝑎𝑛𝑔𝑙𝑒(𝑇2, 𝑇1)| (2) 

𝑑𝑖𝑠(𝑇) =∥ ℎ − 𝑡 ∥2 (3) 

𝑎𝑛𝑔𝑙𝑒(𝑇𝑖 , 𝑇𝑗) =
(ℎ𝑖 − 𝑡𝑖) ∙ (𝑡𝑗 − 𝑡𝑖)

∥ ℎ𝑖 − 𝑡𝑖 ∥2∥ 𝑡𝑗 − 𝑡𝑖 ∥2
(4) 

∥∙∥2 is used to measure the Euclidean distance in space of the embedding vectors of head and tail 

entities. T is a triple:𝑇 = (ℎ, 𝑟, 𝑡). Finally, based on the received negative triples and the initial positive 
triples, the discriminator performs the marginal loss calculation and returns the feedback to the generator, 
which can be calculated by Eq. 5: 
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Loss = ∑ ∑ max⁡(0,𝑠𝑐𝑜𝑟𝑒(ℎ, 𝑟, 𝑡) − 𝑠𝑜𝑐𝑟𝑒 (ℎ′, 𝑟, 𝑡 ′) + 𝛾)

(ℎ′,𝑟,𝑡′∈𝑇′)(ℎ,𝑟,𝑡∈Τ)

(5)
 

The scoring function is used to evaluate the confidence of the triples, that is, the likelihood of 
semantic accuracy. The scoring function still uses the original formula 6 of LIneaRE's model: 

𝑠𝑐𝑜𝑟𝑒(ℎ, 𝑟, 𝑡) = 𝑠𝑐𝑜𝑟𝑒𝑟(ℎ, 𝑡) =∥ 𝑤𝑟
1 ∘ ℎ + 𝑏𝑟 −𝑤𝑟

2 ∘ 𝑡 ∥1 (6) 

The loss calculated from the scoring function is returned to the generator as feedback, then generator 
adjusts its parameters based on reward, and the higher its performance, the more likely it is that the 
generated negative triples are semantically accurate. 

4.  Experiments 

4.1.  DataSets 
In this paper, three datasets are used to verify the performance of the proposed method, which are WN18 
dataset in the general domain, Bri-KGC dataset in the bridge management and maintenance domain, and 
Med-KGC dataset in the medical common knowledge domain. The statistics are shown in table 2. 

Table 1. Detailed statistics of the three datasets used in the experiments 

DataSet relation entity triple(train/valid/test) 

WN18 18 40943 141442/5000/5000 

Bri-KGC 34  4605  36818/3938/3940 

Med-KGC 86 47936 160747/8000/8000 

4.2.  Evaluation Metrics 

When testing the discriminator, this paper uses three common evaluation indicators of link prediction 
tasks: Mean Reciprocal Rank (MRR), Mean Rank (MR) and hit range (Hits@n, %) to measure the 
performance of the proposed method. When testing the generator, the evaluation metric used is accuracy. 
Accuracy refers to the ratio of correctly predicted triples to the total predicted triples, it usually is applied 
to evaluate the quality of classification models in triple classification task. 

4.3.  Baseline methods  

Our models are compared with following baseline classical models used to solve link prediction tasks: 
ComplEx[17] model solves the problem of KG link prediction based on the overall idea of latent 

factorization. QuatDE[18] model adopts dynamic mapping strategy to explicitly capture various 
relationship patterns of entities. ConvE[19] model uses convolutional neural networks to learn the 

representation of entities and relations, which treats the representation of entities and relations as pixels 
in an image, and then uses convolutional neural networks to learn the relationship between these pixels. 
KBGAN(TransD+ComplEx): taking pre-trained model TransD as discriminator and ComplEx as 
generator. 

4.4.  Results  

Following KBGAN, our model also utilizes pre-training models (e.g.LineaRE) as generator and 
discriminator in the adversariallearning network. In pre-training process, the aforementioned models are 
trained 10000 epochs, taking 1024 training data as mini-batch. the dimension of embedding vectors is 
set to 512 and the scoring function uses L2 distance. It can be seen from table 2 that the proposed method 
has comparable performance with other models in Hit@10, MR And MRR indicators, it shows that our 
model can effectively search entities with low confidence but conforming to rules, which is of great help 
for mining high-quality rules to constrain downstream tasks. 
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Table 2. Results compared to baseline model performance 

 WN18 Bri-KGC Med-KGC 

 MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10 

ComplEx 531 0.948 95.3 454 0.766 85.2 493 0.686 77.1 

QuatDE 120 0.950 96.1 177 0.814 87.2 167 0.671 78.7 

ConvE 

KBGAN 

504 

392 
0.942 

0.933 
95.5 

96.1 
330 

403 
0.817 

0.799 
86.7 

88.9 
384 

487 
0.632 

0.657 
75.4 

79.7 

Ours 166 0.948 96.5 167 0.826 90.3 204 0.697 80.2 

5.  Conclusion 

Aiming at the problems of low rule quality and insufficient structural knowledge mining depth in KG 

rule mining tasks, this paper proposes a KG rule mining method of joint rule pattern under the adversarial 
generative network architecture. This method models rule patterns by introducing geometric properties, 
and then mines rule instances under the guidance of rule patterns. The experimental results show that 
the proposed method can improve the performance of the KG completion task in the bridge management 
and maintenance field and the medical common sense field, and can also adapt to the KG completion 
task in the public domain. 
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