
A real-time approximation algorithm of nonlinear filtering

based on image pyramid

Zhihao Tian1, Weidong Wang1,2,3

1College of Computer Science, Jiangsu University of Science and Technology,

Zhenjiang, Jiangsu 212100, China

278653221@qq.com

3Corresponding author

Abstract. In the field of real-time rendering, post-processing filters are crucial techniques for

achieving global illumination and photorealistic rendering in real-time rasterization and ray

tracing rendering pipelines. Due to the power consumption limitations and insufficient memory

bandwidth of mobile devices, filters can cause significant performance bottlenecks. To reduce

the cost of filters on mobile devices, this paper proposes a real-time approximation method for

nonlinear filtering. Our method reduce the number of texture samplings and memory usage.

Through experiments conducted on mobile devices, it has been demonstrated that the proposed

method can effectively reduce the number of texture samplings in feature images within scenes

of similar complexity, as compared to mainstream industrial methods. This reduction in texture

samplings leads to improved rendering quality while maintaining the same frame rate. Our

method eliminates performance bottlenecks and enhances the quality of global illumination on

mobile devices. By reducing the computational complexity of the non-linear filter, it provides

users with a smoother experience.

Keywords: Nonlinear Filtering, Image Pyramid, Real-Time Rendering, Post Process.

1. Introduction

With the increasing performance of modern GPUs, there is a growing demand for realistic 3D

rendering. Global illumination is an effective method for achieving realistic lighting in computer

graphics. Traditional real-time rasterization rendering pipelines use advanced algorithms to simulate

global illumination.

Screen-space algorithms often sample screen-space coordinates to gather feature information, such

as normal and depth, at specific positions. This is done to achieve global illumination effects such as

ambient occlusion and reflections. Real-time ray tracing rendering pipelines are constrained by

hardware performance and employ a mix of rasterization and ray tracing algorithms. In the ray tracing

stage, a limited number of rays per pixel are cast to maintain rendering speed, resulting in noticeable

noise in the rendering. Both real-time rendering pipelines share a common characteristic: the need to

significantly reduce the number of samples to achieve interactive rendering speeds. The visual effects,

such as depth of field and HDR bloom, are common post-processing effects that are implemented

using the fuzzy effect. However, these effects can significantly impact the performance of mobile

devices. This is because of the characteristics of the tile-based rendering architecture of the GPU,

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241599

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

262

which necessitate multiple reads and writes from system memory to on-chip memory for post-

processing.

Mobile devices are more susceptible to power consumption and heat compared to PC devices, and

they typically have higher resolutions [1]. Due to bandwidth limitations, the memory usage of textures

and the number of texture samples are important factors that impact the power consumption of mobile

devices. As the filter kernel size increases, the number of texture samples during rendering also

increases. Joint bilateral filtering introduces noise-free feature information but also increases the

number of texture samples, which depends on the number of pixels sampled during convolution.

Modern GPUs have dedicated texture caches that store neighboring pixels for efficient sampling.

However, using large convolution kernels will result in sampling a significant number of pixels

outside the texture cache. Frequent cache misses can result in unexpected performance overhead.

The use of convolution filters can be computationally intensive, especially when the filter kernel is

large. Real-time denoising of noisy rendering targets at a faster speed and lower cost has been a

popular research topic. In real-time rendering, mainstream image processing algorithms first reduce

the resolution of the rendering target to an appropriate level and then increase it to the target resolution.

2. Related Work

2.1. Linear filter

Daniel Rákos [2] utilized the characteristics of bilinear sampling to adjust the coordinate offset when

sampling textures. This adjustment considers the linear weight of sampled pixels and the Gaussian

filter weight. Considering that 2D Gaussian filtering is typically divided into two one-dimensional

Gaussian filters to improve performance, Daniel Rákos's method [2] treats each texture sampling as

equivalent to two texture samplings, resulting in a 50% reduction in cost.

The Kawase Filter [3] is a high-performance blur algorithm that produces a blur effect like

Gaussian blur but with better performance. Utilizing the hardware feature of bilinear sampling,

sampling the four pixels diagonally from the target pixel can significantly reduce the number of

texture samplings. As the number of iterations increases, the distance between the diagonal pixels and

the center pixel also increases. This continuous iteration helps to achieve a faster approximation of a

large convolution kernel. Based on the Kawase Filter, the Dual Kawase Filter [4] utilizes down-

sampling to decrease computational complexity and achieves anisotropy by employing suitable

weights and sampling positions to address the issue of inadequate smoothness in mean blur.

Tianchen Xu [5] proposed a method for approximating large convolutional kernels using box filters.

The essence of this algorithm is to compute the approximate weights for each level of the image

pyramid and subsequently conduct an up-sampling process using a linear combination approach on the

down-sampled image groups. This allows for the fast approximation of linear filters with large

convolutional kernels. Tianchen Xu [5] derived weight formulas for box filters that correspond to

commonly used filtering kernels in rendering algorithms. These include Gaussian blur for post-

processing, irradiance maps for image-based lighting (IBL), and BRDF for ray tracing. The algorithm

has key features that include its computational complexity being independent of the kernel size and its

cache-friendly nature when implemented on a GPU.

2.2. Non-linear filter

Bilateral filtering is a type of non-linear filtering that considers the influence of the value range in

addition to Gaussian filtering. Its purpose is to preserve the edges in the image after filtering. The

value range encompasses not only the color of the image, but also feature information such as world

space normal, depth, etc., in real-time rendering. These pieces of information are typically stored in

rendering textures that have the same resolution as the rendering target. Compared to image color,

world space normal and depth are free of noise.

Paris S [6] proposed a signal processing-based method for approximating bilateral filtering. They

interpreted bilateral filtering as a high-dimensional convolution and non-linear operation and

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241599

263

performed down-sampling of the input image in both the spatial and intensity domains. Then, they

conducted convolution operations in the down-sampled space, achieving efficient computation of

bilateral filtering. Building on the work of Paris S [6], Jiawen Chen [7] further introduced the concept

of bilateral grids.

A novel Gaussian-adaptive bilateral filter (GABF) [8] is proposed by using a low-pass guidance for

the range kernel through a Gaussian spatial kernel. GABF attempts to address the issues present in the

Gaussian range kernel when filtering input in the presence of noise, as well as its impact on edge-

preserving image smoothing operations.

2.3. Deep learning methods

Nowadays, deep learning methods are rapidly developing in various fields, particularly in computer

vision [9]. Computer graphics is also experiencing significant advancements in this area. Real-time ray

tracing rendering pipelines are gradually starting to integrate deep learning techniques to achieve

denoising of the final rendering results. Starting with the proposal of Kernel-Predicting Convolutional

Networks [10], there has been a growing number of neural networks introduced for denoising,

including the Deep Dual-Encoder Network [11]. However, the time cost of inference using deep

learning methods is still unacceptable for real-time rasterization rendering pipelines. In the traditional

rasterization process, there are numerous intermediate rendering textures that require blur and

denoising processing.

3. Methodology

3.1. Approximation to gaussian filter

Gaussian filtering is a classic low-pass filter, and the resulting filtered image follows a Gaussian

distribution. The convolution operation, based on the Gaussian function, applies weights to each pixel

in the spatial domain. This can achieve image smoothing or noise suppression. It is commonly used in

real-time rendering for post-processing effects, such as depth of field and motion blur.

The Gaussian filter operates on the pixels q in the spatial domain S and calculates the L2 norm of

the distance between q and its neighboring pixel p. It then determines the weighted contribution of

pixel q to pixel p by applying the Gaussian filter kernel.

Tianchen Xu [5] proposed that when up-sampling, the pixel values obtained from sampling the

accumulated up-sampled image and the pixel values obtained from sampling the down-sampled image

at the current level are linearly interpolated using the parameters obtained from the weight formula.

The formula is as following:

max

max

()
()

(1 ()) (1) () ()

down

down

p L L L
p L

L p L L p L L L 

=
= 

−  + +  
 (1)

After deduction, Tianchen Xu [5] obtained the Gaussian filter kernel weights, w, corresponding to

the box filter. Furthermore, it is possible to derive the linear combination parameter α for the box filter

in each layer of the image pyramid. The formula of weight is as following:

2

4

2
2 4

16 ln 4
()

4

L
L

w L e 

 
= (2)

2 2

() 16 ln 4
()

2 (4 2)()

L

L

L

w L
L

w L dL


 


= =
+

 (3)

Tianchen Xu's method [5] is simple, fast, and suitable for real-time rendering. In addition to fitting

the Gaussian filtering kernel, it can also be approximated to calculate computationally intensive

functions in real-time rendering. This includes functions like the cosine function for diffuse irradiance

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241599

264

maps and microfacet normal distribution functions. Tianchen Xu's method [5] is easy to implement

and has practical value. It can be further explored to fit more filters, such as implementing non-linear

filters like bilateral filtering based on Gaussian filtering.

3.2. Algorithm pipeline

Based on the method proposed by Tianchen Xu [5], we can separate the complexity of the convolution

kernel for linear filtering from the sampling frequency. However, in real-time rendering, when

implementing bilateral filtering or joint bilateral filtering, multiple texture samples are still required to

calculate the range domain weights. These weights are used to compute the value range difference

between the sampled pixels and the central pixel. It is evident that the number of texture samples

depends on the size of the convolution kernel. To further reduce the large number of texture samples

required for computing the value range difference, this paper proposes a differential sampling method

based on image pyramids. The algorithm pipeline is presented in Figure 1

Figure 1. The process of our algorithm in the render pipeline.

(1) To quickly obtain the average of four adjacent pixels for feature images like pixel grayscale,

depth, and world space normal, Mipmaps can be generated.

(2) By sampling the original image, we can obtain the original value and the average value using

various methods for calculating feature information. These results are then stored in a new rendering

texture known as the D-Value Buffer.’

(3) Mipmaps are generated for the D-Value Buffer, corresponding to the pyramid of the original

image. The formula is as following:

 (0) (1)dp p p= − (4)

(4) The D-Value Buffer is introduced during fitting, based on the method developed by Tianchen

Xu [5]. The difference is sampled according to the level of the image pyramid. After obtaining the

difference, we can consider the range weights in the fitting process of the Gaussian filtering in the

spatial domain. After calculating the spatial domain weights for this level, the 0-level image pyramid

of the down-sampling stage is the original image of the rendered result. The Gaussian filtering

approximation result is interpolated with the original pixel based on the range weights.

 () (1) () (0)downp L W p L W p= −  +  (5)

To address the jagged artifacts produced by fitting small-sized convolution kernels with a Gaussian

filter in the box filter pyramid, we utilize an algorithm based on the down-sampling technique

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241599

265

proposed by Marius Bjorge in the Dual Kawase Filtering [4]. This algorithm samples diagonal pixels

during down-sampling and blends them with specific weights.

4. Results

4.1. Tolerance Test

We first implemented Tianchen Xu's method [5] for approximating Gaussian filtering and then

implemented bilateral filtering using this method. We conducted tests on Gaussian filtering and

bilateral filtering in the Sponza and compared the disparities in the rendered outcomes of the two

techniques. It is evident from the tolerance comparison that extending the approximation of non-linear

filtering based on Tianchen Xu's method is feasible. The scene rendering is implemented using

OpenGL, and the tolerance comparison is tested using Beyond Compare.

Figure 2. (Left)Approximation to Bilateral filtering,(Middle) Approximation to

Gaussian filtering,(Right) Comparative testing of tolerance.

The experiment on the Sponza scene with Gaussian filtering demonstrates that the algorithm

presented in this paper can successfully simulate bilateral filtering. It can quickly and efficiently

sample and calculate value range weights when applying Gaussian filtering at various levels. This

allows for the preservation of high-frequency edge signals in the image while minimizing overhead.

4.2. Performance testing

The application of bilateral filtering on the AO map can effectively reduce noise in the AO

information without causing excessive blurring at the edges of the AO value range, resulting in

outstanding visual effects. In modern pipelines, achieving high-quality screen space ambient occlusion

(SSAO)blur is typically done by applying bilateral filtering separately in the horizontal, vertical, and

diagonal directions [12]. Taking the implementation of SSAO in the Unity Universal Render Pipeline

(URP) as an example, in complex scenes, if down-sampling is not performed, SSAO on iOS and

Android platforms requires three rendering passes, resulting in significant overhead from intermediate

textures and sampling.

The test scenario involves building with the Unity engine, rendering 1.5 to 2 million triangles

within a fixed field of view, and using 1500 to 1800 batches. The scene was packaged as an Android

application and tested on the Snapdragon 8+gen1 mobile platform with the results shown in Table 1.

Table 1. Performance testing of different filtering methods for implementing SSAO on mobile devices.

 Not Enable Blur Enable
Down-sample

 1/4

Down-sample

 1/16
Mipmap Bilateral

Low load 30 fps 10 fps 20 fps 26 fps 26 fps

Average 28 fps 12 fps 18 fps 24 fps 24 fps

High load 27 fps 14 fps 17 fps 22 fps 22 fps

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241599

266

According to the test results, it can be concluded that the bilateral filtering implemented based on

Tianchen Xu's method [5] has good performance. It performs equally well as the bilateral filtering

implemented after down-sampling by 1/16.

5. Conclusion

In this paper, we extended the method proposed by Tianchen Xu [5] to implement fitting for bilateral

filtering. Additionally, we introduced the D-value buffer to reduce the sampling frequency of feature

information by down-sampling. However, our method has not yet fully addressed the jagged defects

caused by the box filter approximation when using small convolution kernels. Replacing isotropic

sampling with mean sampling during the down-sampling process is a feasible approach. In the future,

we will explore additional solutions, such as employing a different approximation method that is

suitable for small convolution kernels. This will be particularly useful when there are fewer down-

sampling levels, as it will help enhance the rendering quality in such scenarios.

References

[1] Engel, W. (2018). GPU Pro 360 Guide to Mobile Devices (1st ed.). A K Peters/CRC Press.

https://doi.org/10.1201/9781351138000

[2] Daniel Rákos. (2010) Efficient Gaussian blur with linear sampling. https://www.rastergrid.com/

blog/2010/09/efficient-gaussian-blur-with-linear-sampling

[3] Masaki Kawase. 2003. Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L. In Game

Developers Conference 2003.

[4] Marius Bjorge. Bandwith-Efficient Rendering (2015). SIGGRAPH2015 Xroads of Discovery

House Advertisement. IEEE Computer Graphics and Applications, 35(2), c4–c4.

https://doi.org/10.1109/mcg.2015.41

[5] Tianchen Xu, Xiaohua Ren, and Enhua Wu. 2019. The Power of Box Filters: Real-time

Approximation to Large Convolution Kernel by Box-filtered Image Pyramid. In SIGGRAPH

Asia 2019 Technical Briefs (SA '19). Association for Computing Machinery, New York, NY,

USA, 1–4. https://doi.org/10.1145/3355088.3365143

[6] Paris, S., Durand, F. A Fast Approximation of the Bilateral Filter Using a Signal Processing

Approach. Int J Comput Vis 81, 24–52 (2009). https://doi.org/10.1007/s11263-007-0110-8

[7] Jiawen Chen, Sylvain Paris, and Frédo Durand. 2007. Real-time edge-aware image processing

with the bilateral grid. ACM Trans. Graph. 26, 3 (July 2007), 103–es.

https://doi.org/10.1145/1276377.1276506

[8] B. -H. Chen, Y. -S. Tseng and J. -L. Yin, "Gaussian-Adaptive Bilateral Filter," in IEEE Signal

Processing Letters, vol. 27, pp. 1670-1674, 2020, https://doi.org/10.1109/LSP.2020.3024990.

[9] Wang, L., Shao, H. & Deng, X. An Unsupervised End-to-End Recursive Cascaded Parallel

Network for Image Registration. Neural Process Lett 55, 8255–8268 (2023).

https://doi.org/10.1007/s11063-023-11311-3

[10] Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill, Pradeep

Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolutional networks

for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4, Article 97 (August 2017),

14 pages. https://doi.org/10.1145/3072959.3073708

[11] Xin Yang, Dawei Wang, Wenbo Hu, Li-Jing Zhao, Bao-Cai Yin, Qiang Zhang, Xiao-Peng Wei,

and Hongbo Fu. 2019. DEMC: A Deep Dual-Encoder Network for Denoising Monte Carlo

Rendering. J. Comput. Sci. Technol. 34, 5 (Sep 2019), 1123–1135.

https://doi.org/10.1007/s11390-019-1964-2

[12] Engel, W. (2018). GPU Pro 360 Guide to Image Space (1st ed.). A K Peters/CRC Press.

https://doi.org/10.1201/9781351052221

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/50/20241599

267

