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Abstract. In the field of real-time rendering, post-processing filters are crucial techniques for 

achieving global illumination and photorealistic rendering in real-time rasterization and ray 

tracing rendering pipelines. Due to the power consumption limitations and insufficient memory 

bandwidth of mobile devices, filters can cause significant performance bottlenecks. To reduce 

the cost of filters on mobile devices, this paper proposes a real-time approximation method for 

nonlinear filtering. Our method reduce the number of texture samplings and memory usage. 

Through experiments conducted on mobile devices, it has been demonstrated that the proposed 

method can effectively reduce the number of texture samplings in feature images within scenes 

of similar complexity, as compared to mainstream industrial methods. This reduction in texture 

samplings leads to improved rendering quality while maintaining the same frame rate. Our 

method eliminates performance bottlenecks and enhances the quality of global illumination on 

mobile devices. By reducing the computational complexity of the non-linear filter, it provides 

users with a smoother experience. 
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1.  Introduction 

With the increasing performance of modern GPUs, there is a growing demand for realistic 3D 

rendering. Global illumination is an effective method for achieving realistic lighting in computer 

graphics. Traditional real-time rasterization rendering pipelines use advanced algorithms to simulate 

global illumination. 

Screen-space algorithms often sample screen-space coordinates to gather feature information, such 

as normal and depth, at specific positions. This is done to achieve global illumination effects such as 

ambient occlusion and reflections. Real-time ray tracing rendering pipelines are constrained by 

hardware performance and employ a mix of rasterization and ray tracing algorithms. In the ray tracing 

stage, a limited number of rays per pixel are cast to maintain rendering speed, resulting in noticeable 

noise in the rendering. Both real-time rendering pipelines share a common characteristic: the need to 

significantly reduce the number of samples to achieve interactive rendering speeds. The visual effects, 

such as depth of field and HDR bloom, are common post-processing effects that are implemented 

using the fuzzy effect. However, these effects can significantly impact the performance of mobile 

devices. This is because of the characteristics of the tile-based rendering architecture of the GPU, 
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which necessitate multiple reads and writes from system memory to on-chip memory for post-

processing. 

Mobile devices are more susceptible to power consumption and heat compared to PC devices, and 

they typically have higher resolutions [1]. Due to bandwidth limitations, the memory usage of textures 

and the number of texture samples are important factors that impact the power consumption of mobile 

devices. As the filter kernel size increases, the number of texture samples during rendering also 

increases. Joint bilateral filtering introduces noise-free feature information but also increases the 

number of texture samples, which depends on the number of pixels sampled during convolution. 

Modern GPUs have dedicated texture caches that store neighboring pixels for efficient sampling. 

However, using large convolution kernels will result in sampling a significant number of pixels 

outside the texture cache. Frequent cache misses can result in unexpected performance overhead. 

The use of convolution filters can be computationally intensive, especially when the filter kernel is 

large.  Real-time denoising of noisy rendering targets at a faster speed and lower cost has been a 

popular research topic. In real-time rendering, mainstream image processing algorithms first reduce 

the resolution of the rendering target to an appropriate level and then increase it to the target resolution. 

2.  Related Work 

2.1.  Linear filter 

Daniel Rákos [2] utilized the characteristics of bilinear sampling to adjust the coordinate offset when 

sampling textures. This adjustment considers the linear weight of sampled pixels and the Gaussian 

filter weight. Considering that 2D Gaussian filtering is typically divided into two one-dimensional 

Gaussian filters to improve performance, Daniel Rákos's method [2] treats each texture sampling as 

equivalent to two texture samplings, resulting in a 50% reduction in cost. 

The Kawase Filter [3] is a high-performance blur algorithm that produces a blur effect like 

Gaussian blur but with better performance. Utilizing the hardware feature of bilinear sampling, 

sampling the four pixels diagonally from the target pixel can significantly reduce the number of 

texture samplings. As the number of iterations increases, the distance between the diagonal pixels and 

the center pixel also increases. This continuous iteration helps to achieve a faster approximation of a 

large convolution kernel. Based on the Kawase Filter, the Dual Kawase Filter [4] utilizes down-

sampling to decrease computational complexity and achieves anisotropy by employing suitable 

weights and sampling positions to address the issue of inadequate smoothness in mean blur.  

Tianchen Xu [5] proposed a method for approximating large convolutional kernels using box filters. 

The essence of this algorithm is to compute the approximate weights for each level of the image 

pyramid and subsequently conduct an up-sampling process using a linear combination approach on the 

down-sampled image groups. This allows for the fast approximation of linear filters with large 

convolutional kernels. Tianchen Xu [5] derived weight formulas for box filters that correspond to 

commonly used filtering kernels in rendering algorithms. These include Gaussian blur for post-

processing, irradiance maps for image-based lighting (IBL), and BRDF for ray tracing. The algorithm 

has key features that include its computational complexity being independent of the kernel size and its 

cache-friendly nature when implemented on a GPU. 

2.2.  Non-linear filter 

Bilateral filtering is a type of non-linear filtering that considers the influence of the value range in 

addition to Gaussian filtering. Its purpose is to preserve the edges in the image after filtering. The 

value range encompasses not only the color of the image, but also feature information such as world 

space normal, depth, etc., in real-time rendering. These pieces of information are typically stored in 

rendering textures that have the same resolution as the rendering target. Compared to image color, 

world space normal and depth are free of noise. 

Paris S [6] proposed a signal processing-based method for approximating bilateral filtering. They 

interpreted bilateral filtering as a high-dimensional convolution and non-linear operation and 
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performed down-sampling of the input image in both the spatial and intensity domains. Then, they 

conducted convolution operations in the down-sampled space, achieving efficient computation of 

bilateral filtering. Building on the work of Paris S [6], Jiawen Chen [7] further introduced the concept 

of bilateral grids. 

A novel Gaussian-adaptive bilateral filter (GABF) [8] is proposed by using a low-pass guidance for 

the range kernel through a Gaussian spatial kernel. GABF attempts to address the issues present in the 

Gaussian range kernel when filtering input in the presence of noise, as well as its impact on edge-

preserving image smoothing operations. 

2.3.  Deep learning methods 

Nowadays, deep learning methods are rapidly developing in various fields, particularly in computer 

vision [9]. Computer graphics is also experiencing significant advancements in this area. Real-time ray 

tracing rendering pipelines are gradually starting to integrate deep learning techniques to achieve 

denoising of the final rendering results. Starting with the proposal of Kernel-Predicting Convolutional 

Networks [10], there has been a growing number of neural networks introduced for denoising, 

including the Deep Dual-Encoder Network [11]. However, the time cost of inference using deep 

learning methods is still unacceptable for real-time rasterization rendering pipelines. In the traditional 

rasterization process, there are numerous intermediate rendering textures that require blur and 

denoising processing. 

3.  Methodology 

3.1.  Approximation to gaussian filter 

Gaussian filtering is a classic low-pass filter, and the resulting filtered image follows a Gaussian 

distribution. The convolution operation, based on the Gaussian function, applies weights to each pixel 

in the spatial domain. This can achieve image smoothing or noise suppression. It is commonly used in 

real-time rendering for post-processing effects, such as depth of field and motion blur.  

The Gaussian filter operates on the pixels q in the spatial domain S and calculates the L2 norm of 

the distance between q and its neighboring pixel p. It then determines the weighted contribution of 

pixel q to pixel p by applying the Gaussian filter kernel. 

Tianchen Xu [5] proposed that when up-sampling, the pixel values obtained from sampling the 

accumulated up-sampled image and the pixel values obtained from sampling the down-sampled image 

at the current level are linearly interpolated using the parameters obtained from the weight formula. 

The formula is as following: 
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After deduction, Tianchen Xu [5] obtained the Gaussian filter kernel weights, w, corresponding to 

the box filter. Furthermore, it is possible to derive the linear combination parameter α for the box filter 

in each layer of the image pyramid. The formula of weight is as following: 
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Tianchen Xu's method [5] is simple, fast, and suitable for real-time rendering. In addition to fitting 

the Gaussian filtering kernel, it can also be approximated to calculate computationally intensive 

functions in real-time rendering. This includes functions like the cosine function for diffuse irradiance 
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maps and microfacet normal distribution functions. Tianchen Xu's method [5] is easy to implement 

and has practical value. It can be further explored to fit more filters, such as implementing non-linear 

filters like bilateral filtering based on Gaussian filtering. 

3.2.  Algorithm pipeline 

Based on the method proposed by Tianchen Xu [5], we can separate the complexity of the convolution 

kernel for linear filtering from the sampling frequency. However, in real-time rendering, when 

implementing bilateral filtering or joint bilateral filtering, multiple texture samples are still required to 

calculate the range domain weights. These weights are used to compute the value range difference 

between the sampled pixels and the central pixel. It is evident that the number of texture samples 

depends on the size of the convolution kernel. To further reduce the large number of texture samples 

required for computing the value range difference, this paper proposes a differential sampling method 

based on image pyramids. The algorithm pipeline is presented in Figure 1 

 

Figure 1. The process of our algorithm in the render pipeline. 

(1) To quickly obtain the average of four adjacent pixels for feature images like pixel grayscale, 

depth, and world space normal, Mipmaps can be generated. 

(2) By sampling the original image, we can obtain the original value and the average value using 

various methods for calculating feature information. These results are then stored in a new rendering 

texture known as the D-Value Buffer.’ 

(3) Mipmaps are generated for the D-Value Buffer, corresponding to the pyramid of the original 

image. The formula is as following: 

 (0) (1)dp p p= −  (4) 

(4) The D-Value Buffer is introduced during fitting, based on the method developed by Tianchen 

Xu [5]. The difference is sampled according to the level of the image pyramid. After obtaining the 

difference, we can consider the range weights in the fitting process of the Gaussian filtering in the 

spatial domain. After calculating the spatial domain weights for this level, the 0-level image pyramid 

of the down-sampling stage is the original image of the rendered result. The Gaussian filtering 

approximation result is interpolated with the original pixel based on the range weights. 

 ( ) (1 ) ( ) (0)downp L W p L W p= −  +   (5) 

To address the jagged artifacts produced by fitting small-sized convolution kernels with a Gaussian 

filter in the box filter pyramid, we utilize an algorithm based on the down-sampling technique 
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proposed by Marius Bjorge in the Dual Kawase Filtering [4]. This algorithm samples diagonal pixels 

during down-sampling and blends them with specific weights. 

4.  Results  

4.1.  Tolerance Test 

We first implemented Tianchen Xu's method [5] for approximating Gaussian filtering and then 

implemented bilateral filtering using this method. We conducted tests on Gaussian filtering and 

bilateral filtering in the Sponza and compared the disparities in the rendered outcomes of the two 

techniques. It is evident from the tolerance comparison that extending the approximation of non-linear 

filtering based on Tianchen Xu's method is feasible. The scene rendering is implemented using 

OpenGL, and the tolerance comparison is tested using Beyond Compare. 

 

Figure 2. (Left)Approximation to Bilateral filtering,(Middle) Approximation to 

Gaussian filtering,(Right) Comparative testing of tolerance. 

The experiment on the Sponza scene with Gaussian filtering demonstrates that the algorithm 

presented in this paper can successfully simulate bilateral filtering. It can quickly and efficiently 

sample and calculate value range weights when applying Gaussian filtering at various levels. This 

allows for the preservation of high-frequency edge signals in the image while minimizing overhead. 

4.2.  Performance testing 

The application of bilateral filtering on the AO map can effectively reduce noise in the AO 

information without causing excessive blurring at the edges of the AO value range, resulting in 

outstanding visual effects. In modern pipelines, achieving high-quality screen space ambient occlusion 

(SSAO)blur is typically done by applying bilateral filtering separately in the horizontal, vertical, and 

diagonal directions [12]. Taking the implementation of SSAO in the Unity Universal Render Pipeline 

(URP) as an example, in complex scenes, if down-sampling is not performed, SSAO on iOS and 

Android platforms requires three rendering passes, resulting in significant overhead from intermediate 

textures and sampling. 

The test scenario involves building with the Unity engine, rendering 1.5 to 2 million triangles 

within a fixed field of view, and using 1500 to 1800 batches. The scene was packaged as an Android 

application and tested on the Snapdragon 8+gen1 mobile platform with the results shown in Table 1. 

Table 1. Performance testing of different filtering methods for implementing SSAO on mobile devices. 

 Not Enable Blur  Enable  
Down-sample 

 1/4 

Down-sample 

 1/16 
Mipmap Bilateral  

Low load 30 fps 10 fps 20 fps 26 fps 26 fps 

Average 28 fps 12 fps 18 fps 24 fps 24 fps 

High load 27 fps 14 fps 17 fps 22 fps 22 fps 
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According to the test results, it can be concluded that the bilateral filtering implemented based on 

Tianchen Xu's method [5] has good performance. It performs equally well as the bilateral filtering 

implemented after down-sampling by 1/16. 

5.  Conclusion 

In this paper, we extended the method proposed by Tianchen Xu [5] to implement fitting for bilateral 

filtering. Additionally, we introduced the D-value buffer to reduce the sampling frequency of feature 

information by down-sampling. However, our method has not yet fully addressed the jagged defects 

caused by the box filter approximation when using small convolution kernels. Replacing isotropic 

sampling with mean sampling during the down-sampling process is a feasible approach. In the future, 

we will explore additional solutions, such as employing a different approximation method that is 

suitable for small convolution kernels. This will be particularly useful when there are fewer down-

sampling levels, as it will help enhance the rendering quality in such scenarios.  
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