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Abstract. Federated learning (FL) is widely used because it is effective at enhancing data privacy. 

However, there will be many problems in the FL training process, such as poor performance of 

training models and the model converging too slowly, as the data is typically heterogeneous and 

the computing capabilities of the participant’s device are different. Here, we proposed an 

optimized FL model paradigm, that applies model arithmetic prediction to prevent the training 

process's inefficiency due to the participants' limited computational resources. The proposed 

formula for participant selection is based on posterior probabilities and correlation coefficients, 

which have been validated to reduce data noise and enhance the effect of central model 

aggregation. In addition, high-quality participant models are selected based on posterior 

probability, combined with correlation coefficients, which allows the server model to aggregate 

as many better-performing participant models as possible, meanwhile avoiding the impact of 

participants with too much data noise. During the aggregation step, the model loss values and 

the participant training delay are used to weight factors for participant devices, which accelerates 

FL convergence and improves model performance. Data heterogeneity and non-IID are fully 

taken into consideration in the method we proposed. Finally, these results have been verified by 

extensive experimental, we demonstrate better performance in the presence of non-IID data, 

especially affective computing. Compared with previous research, reduces training latency by 4 

seconds, and the model accuracy is increased by 10% on average. 

Keywords: Personalized Federal Learning, Affective Computing, Intelligent Perception, 

Distributed Computation 

1.  Introduction 

Service deployments to the cloud and the use of artificial intelligence are exponentially increasing the 

volume of data in the network. Along with the surge in demand for computing power, the widely used 

cloud computing framework is also facing enormous challenges, such as poor transmission, calculated 

immobility, and unstable storage. For this reason, Shi proposed that the algorithm model could be sunk 

to the edge [1]. As the emergence of edge computing, which can solve some problems caused by the 

massive data transmission to the server center, such as bandwidth shortage, network congestion, and 

long delay. However, due to the limitation of hardware, the edge side usually has insufficient computing 

power, time-consuming, and unmanageable data scattering problems when performing time-series data 

prediction such as affective computing. In order to obtain a valid model and still ensure the security of 

users' private data, Google proposed the Federal Learning (FL) paradigm [2]. FL enables servers and 
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client devices to jointly build a shared model without sharing data, pass intermediate parameters through 

shared encryption, and construct an optimal model. FL typically involves a multi-round of 

communication between the server and the clients (i.e., mobile devices), where in each round, 

participants first use their own limited size data to train their models[3]. And then, the central server 

aggregates these participants' models into an integrated, global model. FL paradigm consists of client-

server architecture and decentralized architecture [4], more analysis of centralized architectures in 

various studies, because of the privacy [5], saving resources, and high availability. Affective computing 

requires a lot of engineering to go from physiological data to recognizing emotions, which will consume 

a long time, and human-computer interaction needs to reduce the time required for computing. Human 

physiological data is more sensitive data, which can be analyze not only for emotions but also for a lot 

of information about human privacy. There is an urgent need to find new ideas to solve these problems 

in affective computing, and federal learning can be a good way to deal with the dilemmas facing 

affective computing. 

However, FL still needs to work on the following problems. On the one hand, due to the chain law, 

each participant's available computational resources are not the same. And the network bandwidth 

changes all the time, which results in the participants must train the model at different times. As a result, 

the consumption time during the training of the federated model becomes unstable, which will be more 

problematic in dealing with task scenarios that require high timeliness, such as autopilot and man-

machine interactive. On the other hand, clients cannot always have sufficient computing resources to 

train online. The training of the entire model will be impacted if a participant unexpectedly fails, and 

the amount of data transferred during training is too large. Thus, how to aggregate the clients’ model 

quickly and effectively determines the pros and cons of the FL model mainly. Furthermore, the quality 

and quantity of data are owned differently by each participant.  

Affective computing is an important direction to enhance human-computer interaction, but it is facing 

the problem that emotion recognition is still too slow for human perception. If affective computing is 

run in a high-performance framework like FL, Training will be faster and more effective. There are two 

traditional approaches to sentiment computing: the first is to design one model per user, and the second 

is to share one model across all users. FL is a combination of two approaches to affective computing 

that takes into account the differences in individual physiological signals and also solves the dilemma 

of a single machine having difficulty maintaining multiple models. And FL will protect privacy better 

due to the encryption of the transmitted data. 

Therefore, to make the FL more efficient and collaborative, and address the problems of affective 

computing due to slow feedback, online emotion recognition can be challenging in HCI scenarios, our 

work has optimized the training process of federation learning. Developed a provably effective FL 

algorithm to address the aforementioned system challenges. Furthermore, we improved the overall 

framework of FL. To predict the computing resources required for computing tasks, we proposed an 

algorithm model to estimate computing power. Owing to the algorithm model, the FL process selects 

the appropriate participant machine for a different task. Moreover, model correlation coefficients are 

used to calculate the similarity of each model parameter to eliminate participants that do not contribute 

positively to training in the model aggregation phase. Then, the computation delay of each participant 

model is estimated in the model update phase. Finally, bayesian maximum posterior estimation is 

invoked to calculate the probability of different clients’ participation in aggregation, and we proposed 

the loss-delay variable ratio as a weight for parameter updates. By assigning different weights, these 

approaches can train the optimal algorithmic model and reduce the model aggregation time. Here we 

optimized an FL model which both converges quickly and ensures the stability of the training process, 

by using increasing the weight coefficients to prevent model overfitting, and reducing training time, 

clients with sufficient arithmetic resources are selected. Importantly, using greedy strategies and 

intelligent algorithms, our entire time-domain optimized FL model achieves effective results, which 

effectively solves the problem of affective computing timeliness. 

The paper is organized as follows: Section 2 reviews the literature related to FL analysis. Section 3 

describes the optimized Federated Learning Algorithm for Time Domain Optimization in this paper. 
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The method proposed in this paper is described in detail, as well as the principle analysis. Section 4, 

based on the same dataset and different devices for affective computing, uses the official dataset to 

validate the pros and cons of the proposed methods. Finally, Sections 5 and 6 present the results and 

conclusions of the experiments generated during this study. 

2.  Relate Work 

2.1.  Current status of research 

FL is an emerging distributed learning technique. FL can deal with the issue of non-IID (not identically 

and independently distributed) data and data heterogeneity, which is different from distributed 

computing. It intends to jointly train shared models on various client devices by using client private data 

while maintaining data privacy. The traditional FL has six steps (Figure.1), which contain client device 

selection, server initialization of model parameters with model distribution, local training, parameter 

aggregation, and parameter update [6]. FL is generally divided into longitudinal FL, horizontal FL, 

federated reinforcement learning, federated migration learning [7], and hybrid FL. Horizontal FL is the 

learning within participating subjects, where the feature overlap is large and the sample overlap is small. 

But the longitudinal FL is the reverse. Federal migration learning means that the feature overlap and 

sample overlap are small between multiple parties participating in joint training. What’s more, many 

enterprise-level FLs are also gradually entering our vision currently, such as the self-developed 

enterprise-level FL platform FATE [8] (federated AI technology enabler) proposed in 2019. 

A. K. Sahu et al [9] investigates federated learning in the context of non-IID data. The authors 

propose an algorithm called FedAvg, which addresses the challenges posed by non-IID data by 

introducing data weighting and local training epochs. Experimental results demonstrate that FedAvg 

achieves better performance than traditional federated learning algorithms on non-IID data. [10] X. Li 

et al tackles the non-IID data challenge in federated learning and presents a method called Statistical 

Distillation to improve performance. The approach utilizes statistical information to estimate the global 

data distribution and incorporates it into model training. Experimental results show that Statistical 

Distillation improves model generalization on non-IID data. There are many studies that show that FL 

can efficiently process Non-IID data. 

FL is gradually catching the attention of researchers. Most of them focus on designing different 

federation training strategies. In order to prevent the client model from entering a local optimal scenario, 

hence the FedProx [11] method is incorporated as a solver to control the update rounds of the client, 

accelerating the convergence of the federated global model. In this paper, we presented an analysis of 

the possible cases of local optimal. Li et al. proposed FedBN [12], which adds a batch normalization 

layer (BN) to the local model, to solve the feature shift in the heterogeneity of federated learning data. 

Although these studies can speed up convergence, they neglect to consider communication costs and 

imbalances in training data distribution among participants. FedNova [13] standardizes client update 

methods to solve the difficulties of inconsistent client data. Cao et al. [14] proposed a distributed deep-

learning framework to deal with privacy preservation and parallel training issues. This framework 

proposes a goodness function, where the function value is defined according to the client dataset size 

and the loss value. Clients upload the value of the goodness functions to the server, and the server selects 

the client to upload its model parameters based on the size of the goodness value. Selecting participants 

with higher accuracy to upload model parameters can effectively avoid inconsistent data distribution 

and speed up the convergence of the model. However, this method will waste data. As each participant's 

data will contribute to the final model, the selection of participants to update the central model 

parameters requires further consideration.  

In addition, many researchers have focused on data communication issues. Chen et al. [15] proposed 

to reduce communication costs by optimizing FL training and communication frameworks. Goetz et al. 

[16] proposed an Active Federated Learning(AFL) framework, each client executes a value evaluation 

function and then uploads the result to the server. Based on the result, the server calculates the 

probability of the client participating in the next model training and selects the participants. The above 
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methods have high requirements on the rationality of the function, and do not consider important factors 

such as the computing power and data quality of the participants. Blindly adding functions will greatly 

increase the calculation amount of FL and bring unnecessary model complexity. In terms of model 

aggregation, Yurochkin et al. proposed a Bayesian nonparametric approach [17], which matches client 

weights before aggregating parameters. FEDMA [18] further optimizes it through iterative inter-layer 

matching. Yet, the calculation and communication of FEDMA have a linear dependence on the network, 

and it is not suitable for training deeper models. In our paper, we use posterior probability and model 

similarity methods to address this problem exactly. Federalization of models is also an important branch 

of FL research. It usually considers models with less arithmetic power consumption, such as MobileNet 

[19]. Alternatively, the model can be de-branched, for instance using an 8-bit integer (INT8) instead of 

32-bit floating point (FP32) precision for training and inference, which reduces the model size, and 

simplifies the data manipulation steps. Among them, extreme quantization uses 1 bit to represent 

network weights and activations, known as binarization [20]. Using Knowledge Distillation (KD), the 

complex teacher network is compressed into a sparser network model that performs similarly to the 

teacher model. 

In summary, FL has a good performance in reducing model training time and increasing data security. 

New computing architectures are gradually attracting interest in affective computing, [21] proposed 

Edge AI technology to analyze thermal imaging image data of buildings, for rapid analysis of building 

house occupancy information, compared to traditional AI techniques, this approach offers a significant 

improvement in the time dimension. [22] the authors proposed Smart Edgent, a collaborative on-demand 

DNN co-inference framework with device edge synergy, that can split the network to another device, 

which Co-training models, and runs the network faster. We use FL to train the model, and through FL 

to solve the problem of high time-consuming affective computing. 

2.2.  Our contribution 

Focusing on the modification of the model can reduce the training time of FL as well as the 

communication cost, and calculation amount, but the model's accuracy will suffer. Here we focus on 

three aspects of communication costs, computational efficiency, and incentives to reduce the time 

required for federation learning training and reduce the amount of computation, optimize the federation 

learning process. Assuring federated learning is rational and effective, using greedy strategies combined 

with algorithms can improve efficiency. 

3.  Methodology 

3.1.  Traditional Federal Learning 

Suppose there are M client devices in federated learning, the collection of client devices is represented 

as   𝑀 = {1,2,… , 𝐾} , where 𝑚 ∈ 𝑀denoting a client device. Assume that each participant’s device is 

independent and can communicate smoothly with each other. Realistically, each client device has a 

distinct level of computer capability. Computer capability is expressed by equation (1) [23]. 

The concept of FLOPS was first proposed by Frank H. McMahon [24]. FLOPS is the number of 

floating-point operations performed per second, which is a measure of computer performance. In this 

study, FLOPS is used to define computational capability. Usually, FL takes all client devices into 

account, or selects them in a random way, when the device’s CPU resources are insufficient to execute 

the algorithmic model or when network bandwidth resources are limited, this slows down the overall 

FL framework. 

3.1.1.  Participating Device Selection. The computing resources required by federated learning's 

algorithm model can be quantified 𝐶𝑘 , and the maximum resources available for each client device 𝑅𝑚 , 

𝐶𝑃 = 𝑓(CPU, 𝐺𝑃𝑈,𝑀𝑒𝑚𝑜𝑟𝑦,𝑁𝑒𝑡𝑤𝑜𝑟𝑘) (1) 
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then when the storage and computational resources are satisfied, the computational delay can be 

expressed as(2)[25]: 

In the case of a stable network, we can assume that the delay may be larger when 𝑇𝑚,𝑐 is less than 1. 

On the contrary, the larger 𝑇𝑚,𝑐 the smaller the delay 

It’s assumed that the loss value of the model is𝐿𝑚 . Then, clients set the loss function as (3). 

Where 𝑥  is the training data of the clients,  𝑦i  is the true label,  𝑦𝑡 is the prediction label , and 𝐷(𝑥, 𝑦)  

represents the model. According to greedy theory, we can estimate the contribution of each participant 

model to the central model when it is aggregated (4). 

Indicates the aggregation weight. The smaller the loss value, the higher the training degree of the 

model. FL can be effectively improved if the running delay is smaller. Thus, in the participant selection 

stage, if the resources required by the algorithm model are fully considered, and the resources and 

network bandwidth that each participant can provide. It not only speeds up the convergence of the 

algorithm model, reduces the time required for FL training, but also ensures the stability of federated 

learning. 

3.1.2.  Model training and parameter aggregation. Before distributing the model, initialize the 

algorithm model parameters to  𝑤(0), and each participant uses local data to train their own model. 

When the loss values of each participant tend to balance, the model stops training. FL enters the 

parameter aggregation step, and the commonly used aggregation methods are: Firstly, the weights of 

each participant are averaged, and the central model parameters after aggregation are (5). 

where indicates the t-th training session. 

Update the central server global parameters to. The participant continues to local training if the model 

does not converge. However, each participant's model training effect differs due to the different data 

resources. If all participantsdirectly update the model parameters in an average way, some better client 

models will be ignored. The federated learning model will converge slowly if too much weight is given 

to poorly trained models. We propose a method for evaluating model training that assigns different 

contribution coefficients to different participants, improving the recognition accuracy of the model as 

well as making it more effective. 

3.1.3.  Central Model update. In traditional federated learning, the update process of the central model 

parameters is as follows. 

It’s assumed that equation (6) denotes the training data owned by the i-th participant, where 𝑤 is the 

weight of the current global model, and the participants  𝑘 run the step stochastic gradient descent with 

step length set to 𝜂   (take 0.01,0.5,0.1), then the weight coefficients are iterated as in (7). 

 

𝑇𝑚,𝑐 =
𝐶𝑘

𝑅𝑚
 (2) 

𝑓(𝜔, 𝑥, 𝑦𝑖 , 𝑦t ) =
1

𝑁
∑ {𝑙𝑜𝑔𝐷 (𝑦i , 𝑦𝑡) + 𝑙𝑜𝑔( 1 − 𝐷(𝑦i , 𝑦𝑡)}

𝑛
1    (3) 

𝑅 =
𝐿𝑚

𝑇𝑚,𝑐
 (4) 

∑
1

𝑛
𝐾
𝑘=1 𝑤𝑡+1

𝑘  (5) 

𝒟𝑖 = {(𝐱𝑛, 𝑦𝑛)}𝑛=1
𝑁𝑖  (6) 
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Where 𝛥𝑙 denotes the average loss value of all clients, 𝐷𝑡𝑖indicates the delay of the i-th participants 

in this round. However, in a real-world setting, the central server treats all participants equally, and the 

data input by each participant may be non-IID. If parameters are updated this way, 𝜔  may 

deviate[24],significantly affecting training model performance. Therefore, in the case of non-IID data, 

we need to assign different weight coefficients to each participant based on some parameters for 

updating the central model coefficients. 

3.2.  Optimized Personalized Federal Learning 

To solve the problems encountered in the above process, this study proposes an innovative solution to 

break through the current dilemma of FL. It makes the FL training process more stable, reduces the 

training latency, and improves the effectiveness of training models. 

3.2.1.  Algorithm Model Arithmetic Prediction. Usually, in model training, it contains matrix 

multiplication and division, vector multiplication by matrix, and addition and subtraction of matrices. 

Here, FLOPs (floating point operations, floating point operations, understood as the amount of 

calculation) is used to measure the amount of calculation. Assume that the dimension of the input vector 

is  𝑁𝑛×𝑛  , and the dimension of the hidden layer is  𝑎 × 𝑛  , the state layer vector dimension is 

𝑀𝑛×𝑚  ,then the number of calculations for a vector multiplied by a matrix is   𝑛 × 𝑛, the vector has 

columns 2𝑛 , the number of calculations is 2𝑛2. In the same way, multiplying a vector by a matrix is 

approximately 𝑛3  ,the vectors' total addition is around 𝑛  .Therefore, the number of calculations of 

neural network neurons after a gradient descent is equation (8). 

When the matrix storage requires an average of 4B a number, the neuron needs 4 × (2𝑛3 + 𝑛2)𝐵 

FLOPS memory to perform a gradient descent. From this we can estimate how much memory space is 

required to run a deep neural network. The data in the matrix are all floating-point types, and the stored 

input values are shown in equation (1), calculating the t epoch is expressed by equation (9) where  𝑛𝑢𝑚 

is the number of neurons. 

In comparison to large-scale neural networks, machine learning models require less computation. Its 

main computational focus is on the extraction of features. By assuming an average calculation amount 

of 2𝑛3 for each feature extraction, we can directly estimate the number of matrix multiplications, we can 

get the memory space and storage space required for the model. Support vector machines as in equation 

(10). 

Where 𝛼 is the step size, and 𝑏 is the bias, the computational resources required for one iteration are  

𝑎𝑛4 × 4𝐹𝐿𝑂𝑃𝑠 . The larger the n size, the greater the memory resources required to run it once. 

However, the computing capabilities for extracting eigenvalues account for the majority and which 

needs to be estimated in detail. Knowing the computing resources required to run the model, it is also 

necessary to calculate the resources that each participant can provide. Here it is represented by equation 

(1). From the CPU model, we can determine the general computing power of the CPU. High-

performance computing capabilities are represented by GPUs. In order to represent the arithmetic 

𝐰𝑖 ← 𝐰𝑖 − 𝜂∇ℓ(𝑃, 𝐷𝑖, 𝐰𝑖)𝑘 = 1,2,⋯ ,𝐾 (7) 

2𝑛3 + 𝑛2 + 4𝑛𝐹𝐿𝑂𝑃𝑠 (8) 

𝑀(𝑛,𝑚) = 4𝑛𝑢𝑚 × (2𝑛3 + 𝑛2 + 𝑚)𝐵 

𝑙 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏) 
(9) 

𝐿 =
1

2
|𝑤⃗⃗ |2 − ∑ 𝛼𝑛

𝑖=1 [𝑦𝑖(𝑥 𝑖 ⋅ 𝑤⃗⃗ + 𝑏) − 1]  (10) 
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capabilities of the participants, we uniformly use CPUs since they are all end-side devices and not all 

GPUs are present. The storage capacity is expressed as hard disk space, and the network capacity is 

expressed as bandwidth. 

3.2.2.  Edge device selection. The above data indicate that when selecting participants for the central 

server, it is necessary to estimate the maximum amount of memory the algorithm model needs, which 

is verified by Table 1 [26]. Make sure the machine has more memory than the algorithm requires. Then, 

sort the devices by their storage capacity and network capacities, and select a participant with the higher 

ranking. In this way, we can avoid slowed-down federation learning due to the insufficient resources of 

some participants, insufficient network bandwidth, and other factors. This can guarantee the smooth 

progress of the FL and the stability of the model, and it can also speed up the efficiency of the federation 

learning. 

The amount of data, and data quality varies across participants in affective computing, selecting 

participants for model training in this way allows the selection of participants with better equipment 

parameters. And remove the effect of noise on the model, ensuring smooth affective computing. 

Table 1. Intel mainstream CPUS server computing 

No. CUP TYPE FP32  

1 Intel©  Xeon©  Processor E7 Family 1.8 TFLOPS  

2 Intel©  Xeon©  Processor E5 Family 1.5 TFLOPS  

3 Intel©  Xeon©  D Processors 1.8 TFLOPS  

4 Intel©  Xeon©  W Processors 2.4 TFLOPS  

5 Intel©  Xeon©  Scalable Processors 3.2 TFLOPS  

3.2.3.  Training and parameter aggregation. Each participant receives the initial model from the central 

server after the parameters are initialized. Participants input their own data into the model network, train 

their own models, and execute the gradient update formula as equation (11). 

where  𝜔𝑘  is the model parameter of the k-th client, 𝛻𝑔(𝜔𝑘 , 𝑏𝑖)   is the derivative of the loss function,  

𝜂  is the update step, and 𝑏𝑖   is the bias. The model stopped training when the loss values stabilized.  In 

order to determine the pros and cons of each participant’s training model, the model parameters with the 

lowest loss values were extracted and denoted as equation (12): 

Since the calculation of the correlation coefficient between model parameters is very computationally 

intensive, the correlation coefficient will be calculated each time the loss value decreases, thereby 

reducing the computational complexity of the algorithm. The correlation coefficient between each 

participant and the minimum loss value model is obtained, expressed as (13): 

𝑝𝑒𝑎𝑟𝑠𝑜𝑛 =
∑ (𝑊𝑖−𝑊̄)𝑛

𝑖=1 (𝑊𝑖−𝑊̄)

√∑ (𝑊𝑖−𝑊̄)2𝑛
𝑖=1 √∑ (𝑊𝑖−𝑊̄)2𝑛

𝑖=1

   (13) 

Where 𝑊̄  denotes the average value of the weights. With this value, when the calculation task 

reselects the aggregation node, based on Pearson and Bayesian theorem to determine the probability of 

each participant being selected to participate in the aggregation next time express as equation (14): 

𝜔𝑘+1 = 𝜔𝑘 − 𝜂∇𝑔(𝜔𝑘 , 𝑏𝑖) (11) 

 

   (12) 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/51/20241600

281



𝑃( 𝑡 ∣ 𝑡 − 1) = {
0 → 𝑝𝑒𝑎𝑟𝑠𝑜𝑛 < 0

 𝑝𝑒𝑎𝑟𝑠𝑜𝑛 ∗ (𝑡 − 1) → 𝑝𝑒𝑎𝑟𝑠𝑜𝑛 > 0
  

𝑠. 𝑡. 𝑃( 0) = 1, 𝑃( 𝑥) > 0 
(14) 

For each aggregation, the one with the larger probability value is selected as the aggregation 

parameter. The correlation coefficients of each participant's model parameters and loss value are used 

to select the participants for aggregation. Firstly, participants who may have a negative impact on the 

entire model recognition due to poor data quality are eliminated, and secondly, the model convergence 

is accelerated by a theory similar to greedy thinking, thereby realizing the optimization of the federated 

learning accuracy dimension. 

Physiological data are all non-IID relationships in affective computing, the distribution of emotional 

data varies by age, gender and region. Selecting participants for aggregation in this way ensures a high 

degree of data similarity among participants involved in aggregation, thus, indirectly improving the 

accuracy of the central model and reducing the time for affective computing. 

3.3.  Model update strategy for assigning weights 

By updating the parameters using the mean method according to the avgFL(Average Federal Learning), 

the entire algorithm model may deviate too much, and this will result in unnecessary calculations 

generated by federated learning. By taking into account the training effectiveness and response time of 

each participant model, the better performing participant model can be effectively selected and assigned 

a higher weighting. Poorer performers are assigned less weight. Here the model loss value  𝐹𝑘
′ (𝑤) is 

used to measure the model. Response time is also an essential factor in speeding up model convergence. 

The overall feedback time t is the maximum value of the running time of each participant model plus 

the communication time in FL. The weight given to the participant model is also particularly important 

in the optimized federated learning model. We propose that the weight parameter can be expressed as 

(15): 

𝛥𝑙is the average loss value of all participants, and 𝐷𝑡𝑖   is the  i-th round training delay, aggregating 

the central model parameters as (16): 

 

 

According to the weight, the difference of each participant's data over time is obtained. If the updated 

global parameters of the central server did not converge, participants underwent the next round of local 

training. Therefore, the objective function is (17)[27]. 

 

Where 𝐺(𝑓)  represents the central model,  𝑓(𝑥) represents the local model, 𝑖 represents the i-th 

training round,  represents the training data set, and 𝜆 represents the weight value. The central server 

decides whether to stop training based on the comparison of loss functions. After (17) is satisfied, the 

training is stopped and the model is successfully trained. Where 𝐹(𝜔) is the current loss value of the 

central server and 𝑓𝑘
′ (𝜔) is the loss value of the last training round of the k-th participant. The entire 

training process is outlined in Figure 1 below. 

 

𝑅 =
Δ𝑙

𝐷𝑡𝑖
=

1

𝑘
∑  loss 𝑘

𝑘=1

𝐷𝑡𝑖
       (15) 

∑
Δ𝑙

𝐷𝑡𝑖

𝐾
𝑘=1 𝑤(𝑡+1)

𝑘      (16) 

𝑚𝑖𝑛𝑥1,…,𝑥𝑛∈ℝ𝑑{𝐹(𝑥):= 𝑓(𝑥) + 𝜆𝜓(𝑥)} 

𝑓(𝑥):=
 loss 

𝐷𝑡𝑖
∑ 𝑓𝑛

𝑖=1 (𝑥𝑖) 

𝜓(𝑥): =
1

2𝑛
∑ ‖𝑥𝑖 − 𝑥̄‖2𝑛

𝑖=1   

𝑠. 𝑡. 𝑤∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝐺 (𝐹1(𝑤), …𝐹𝐾(𝑤))) 

(17) 
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Figure 1. The process of optimized federal learning training strategy. 

The entire optimized FL algorithm process can be expressed as algorithm 1 and algorithm 2. 

Table 2. Heterogeneous federated learning algorithm for time domain optimization. 

Algorithm 1 Fed-Client 

1. 𝑁𝑅 = 𝑓(𝐶,𝑀)𝐹𝐿𝑂𝑃       By formula (1) 

2.The participant sends to the server NR 

3.Model training based on local data to obtain loss values Fk
 
 
(ω)  

4.Extraction Parameters of minLossFi
 
 
(ω) ω𝑙 

5. for ω in  {ω1, ω2, … , ω𝑘}: 
6.    pearson = pearson(minloss, ω)     By equation(5)  

7.      if pearson > 0  then 

8.       𝑃𝑖(𝑡|𝑡 − 1) = 𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑤𝑖 , 𝑤𝑗) ∗
1

𝑘
    

9.       Higher probability of selection Set 𝑃𝑖          

10.Sending parameters to the central server ω = ∑  K
k=1

∆l

Dtk
wt+1

k        By formula(6) 

11. end for  

 

Firstly, 1-2 calculates the computing power possessed by the participants, and 3-4 extracts the model 

parameters of the participants' local models and perform model similarity calculation with the best 

performing model in this training round. 5–9 are the probabilities that the current iteration will 

participate in aggregation by model similarity. 9-10 are the values of sending own delay and loss, which 

are used as weight values for parameter updates by the central server. 

Table 3. Personality federated learning algorithm for time domain optimization for central server. 

Algorithm 2 Fed-Server 

1. sort(NR)                 

2. Select topk As an effective participant 

3. Send ω0 to each client 

4. Receive 𝜔𝑗,Loss value from each client j𝑗 ∈ (1,2, . . , 𝑁),and compute 𝑅 =
𝛥𝑙

𝐷𝑡𝑖
=

1

𝑘
∑  loss 𝑘

𝑘=1

𝐷𝑡𝑖
 

5. Choose small loss value 𝛥𝑙 and small time delay 𝐷𝑡𝑖 get the ω 

6. for k=1,2,...k do: 
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7.    𝑤 ← ∑
𝛥𝑙

𝐷𝑡𝑖

𝐾
𝑘=1 𝑤(𝑡+1)

𝑘  

8. end for 

 

1-3 Selecting Computationally Appropriate Participants for Greedy Strategies, 4-5 are the 

participants with better performance (loss value/computation delay) selected for parameter update, and 

6-7 are central model parameter updates. 

Based on the weight coefficients of the participants, the central server determines the loss function 

(18). 

Which  
𝐷𝑘

𝐷
 is the weight coefficient of the k-th participant.  

Participants' loss values represent their performance on the training model. And the latency of the 

participants' feedback to the central server indicates the timeliness of the training. Considering these two 

values into the parameter update of the model can create an effective balance between timeliness and 

accuracy. Using this method, the service timeout is avoided due to the high accuracy, which is time-

consuming to calculate, but also the problem of fast calculation but low accuracy is also resolved. A 

good balance has been made between model accuracy and training time, which improves the scientific 

nature and stability of federated learning. 

4.  Experiments 

4.1.  Dataset, model and setup 

We chose the publicly available affective compute dataset AMIGOS [28] to validate the feasibility, and 

advantages of the optimized FL paradigm. Electroencephalographic (EEG) signals were recorded by 

AMIGOS utilizing a 14-channel Emotiv Epoc wireless headset, while frontal video (RGB) and 

peripheral physiological signals were captured using a non-invasive device. Recording using the 

MAHNOB-HCI [29] dataset as the stimulus source. The dataset included both individual and group 

settings. 40 participants saw 16 brief movies (250s in length), but the second dataset, 17 individuals 

watched extended videos (>14 min in length) in both an individual and group setting. A total of 12,580 

video clips were annotated (340 clips from 37 participants in both short- and long-video experiments). 

The arousal and valence used for these annotations were based on the SAM mood rating scale [30], 

which is from 1 (low arousal and low valence) to 9 (high arousal and high valence).  

There were 800 records in the dataset. As shown in Figure 2, data labels can be divided into four 

states by coarsening arousal and validity into binary labels (positive and negative) with a separation 

point of 5. Due to the difference in the physical state of each person, when the physiological signal data 

of the subject is sent to each participant separately, the data set is IID, because each machine processes 

only the physiological signals of a single person, whereas when the data is processed on the same 

machine, it is non-IID, it is because the data contain physiological signals of multiple individuals, and 

the physiological signals of individual subjects are Non-IID. Here, we used EEG and ECG collected 

from single-person short videos as training data, and the dichotomy method for emotion recognition. In 

order to fully reflect the characteristics of the optimized federated learning, we selected two commonly 

used emotion recognition models for experiments, which are deep neural network and SVM. According 

to the calculation method in Chapter 3, the deep neural network is set to a 6-layer structure [31], and it 

can be predicted that the required memory is 862M FLOPs, the support vector machine algorithm [32] 

estimates that the required memory is 364M FLOPs. Using machine learning methods, extract time-

domain features, frequency-domain features and nonlinear features of physiological signals, such as 

EEG and ECG. The number of features extracted for each participant is shown in Figure 3. 

𝐹𝑘(𝜔, 𝑥𝑘1, 𝑦𝑘1, … , 𝑥𝑘𝐷𝑘
, 𝑦𝑘𝐷𝑘

) = ∑
𝐷𝑘

𝐷
𝑘
𝑘=1 𝐹𝑘

′(𝜔, 𝑥𝑘𝑙 , 𝑦𝑘𝑙)    (18) 

Table 3. (continued). 
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Figure 2. Distribution of AMIGOS data 

after k-means processing. 

 
Figure 3. Number of features extracted from each part 

of the data. 

The experimental environment is three computers and one server, the configuration is shown in table 

2. Using the server, participants are selected and intermediate variables are calculated, acting as the 

central model placement. Based on physiological signal data volume, use the virtualization software 

(VM WorkStation) to virtualize the three computers into 15 virtual machines with 0.8G FLOPs, 1G 

FLOPs, 1.5G FLOPs of memory, and 1G or 1.5G disk space. The specific configuration is shown in 

Table 4. 

Table 4. Information on the configuration of the central equipment used for the experiment. 

Central server configuration 

Intel(R)Core(TM) i7-4790CPU,3.60GHz, eight cores,16GB RAM, 

NVIDIA GeForce GTX 1080Ti(11 GB) GPU 

Table 5. Configuration information of the participant devices used for the experiment. 

Client Configuration 

Intel(R)Core(TM) i7-4790CPU,3.60GHz, Quad Core,0.8GB RAM 

 

Intel(R)Core(TM) i7-4790CPU,3.60GHz, Quad Core,1GB RAM 

 

Intel(R)Core(TM) i7-4790CPU,3.60GHz, Quad Core,1.5GB RAM 

 

 

According to the method proposed in Section 3, iteration by stochastic gradient descent, the value of   

are set to (0.05,0.1,0.15), and the loss function is Equation (3-13) . With a sliding window of 3s to 

intercept the data, each window has (3*128*14) data. Select 80% of each data as the training set and 

20% as the validation set for a 5-fold cross-validation. Therefore, the corresponding minimum loss after 

each measured participant's first stage run is 0.632, and according to the matrix of model parameters of 

this participant and the model parameters of other participants, the posterior probability of each 

participant joining the aggregation can be calculated by bringing into equation (11) the result as in Fig. 

4. 
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Figure 4. The experiments were based on the Pearson correlation coefficient of the 

first round of training, the posterior probability of each participant participating in 

the global model update in the next round. 

4.2.  Result Analysis 

After the training of FL, 20% of the data was used as the validation set, and the recognition accuracy 

and training time were compared with traditional FL in the time domain dimension, and the results 

performed as in Figure 5. 

 

Figure 5. Comparison of the time required to train a model. 

From figure 5, the proposed FL framework in this paper has a greater advantage in model training 

timeliness compared to conventional FL. The reason for this is that while the goal of conventional FL is 

to train a global model, optimized FL considers that a single global model is difficult to converge and 

does not perform well on every client. The suggested aggregate, assessed in terms of Pearson Correlation 

coefficients, and allocating various coefficients to participants with various performances when the 

parameters are changed, speed up convergence. 

Here we design experiments to demonstrate a better performance, converges quickly and capable of 

heterogeneity data of FL model, we conducted further experiments to replicate three similar research 

with the different model but same dataset. The results shown in Table 6, indicate that FEDDISTILL [33] 

optimizes the algorithmic model through a knowledge distillation approach, and directly controls the 

update of the local model through extract knowledge from the local model to impose an inductive bias. 
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In terms of time-domain optimization, it does not perform well because it fails to account for the slow 

operation of a single node and the participants' inability to always meet the arithmetic requirements. 

While the other two proposed FL paradigms FEDBN [10] and FENAVG [9] share the same problem 

(that is, algorithm recognition accuracy is unstable, and both timeliness and model optimization are 

difficult to balance). 

Table 6. Summary table of model effectiveness and time-domain optimization compared to other studies. 

 FEDDISTILL[30] FEDBN[10] FEDAVG[33] Our Work 

Client 

Number

s(n) 

5 10 15 5 10 15 5 10 15 5 10 15 

Emotion 

recognit

ion 

accurac

y(100%

) 

70.2

3±1.

2 

64.53

±2.14 

76.04

±0.36 

78.3

±0.5

9 

75.16

±0.65 

75.35

±1.27 

81.51

±1.08 

78.3

5±1.

6 

82.31

±1.33 

80.16

±1.15 

82.12

±1.45 

85.06

±1.86 

Time 

taken 

for 

model 

converg

ence(t/s) 

 

20.3

5 
16.84 13.23 

22.1

2 
15.3 12.56 19.32 

14.2

8 
9.56 18.26 12.35 9.18 

 

The proposed optimization approach has a smoother performance in recognition accuracy compared 

with the others, introduce the idea of Bayesian posterior probability to reduce the calculation cost and 

improve the recognition accuracy of the model. As participants increase, there is no model shift or 

overfitting problem, and timeliness is improved as well, so it is possible to take into account both the 

time domain and the algorithmic model. It is clear that the optimization carried out in this study is better 

than other similar works in the recognition accuracy dimension. One reason is that during the 

aggregation stage, Pearson correlation coefficients are used to eliminate participants with insufficient 

data quality, so as to prevent bias in the central model, correctly handles the situation of Non-IID and 

homogeneous data distribution with different data quality. Introduce the idea of Bayesian Posterior 

Probability, which reduces the calculation cost, and improves the recognition accuracy of the model. In 

addition, due to the chain rule, the delay and the loss value of the participant are the focus of our attention 

in the parameter update phase. When the loss value is low, it proves that the model training is efficient 

[34] (the two are directly proportional), thus these two parameters are used as the update weight ratio, 

which can not only accelerate the convergence, but also reduce the delay and improve the accuracy. In 

general, compared to other federated learning frameworks, the optimized training method proposed in 

this paper improves accuracy by about 8% and reduces training delay significantly 

5.  Conclusion 

In this paper, we propose a federated learning model with greater advantages in terms of training time 

consumption and handling heterogeneous data, and apply it to affective computing scenarios, where 

model construction for sentiment computing, and recognition accuracy are optimized. Variants of FL 

and related optimization ideas have been proposed continuously. However, there are relatively few 

studies that can improve both accuracy and timeliness. Federated learning as a distributed computing 

paradigm can effectively improve the efficiency of model training whereas addressing data security 

issues. FL is a distributed computing paradigm, which can speed up the learning of models and combine 

data security. In this study, algorithms based on the theory of greed are used to optimize the steps of 

federation learning, that is, the selection of participants, the aggregation process, and the updating of 
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parameters. We demonstrate that the proposed method has a good optimization effect, ensuring the 

effectiveness of the FL training model while reducing training latency. The emphasis on improving the 

methodological stages is on consuming fewer computer resources, which effectively enhances the 

efficiency of FL. In the optimization method steps, we focus on reducing the computing resource 

consumption and thereby increasing federated learning efficiency. 

Traditional federated learning performs poorly on non-IID data because of its unified model. The 

average parameter update rule trains the model, resulting in a different performance for different 

distributions of data, which loses dynamic information. All participant model parameters are integrated 

into the central model, resulting in unstable model training [7]. In this paper, we use the Pearson 

correlation coefficient to exclude models with poor data quality, and experiments have shown that non-

IID data perform better. Furthermore, this paper proposes to use the model arithmetic prediction method 

in FL to estimate how much computation will be required to run the model, as well as to estimate how 

much power each participant can provide. Select clients with sufficient memory, high-level computing 

power, and better network bandwidth as participants, which avoids affecting the normal training of the 

entire federated learning process due to insufficient computing power of a single participant or excessive 

task load. In the aggregation process, considering the different quality of participants' data, the Pearson 

correlation coefficient is used to measure the quality of the model, which can promote model 

optimization and improve training quality. Using the ratio of the estimated delay value and loss value 

of the participant as the weight coefficient for parameter updating is proposed, which not only takes into 

account federated learning timeliness, but also optimizes the model's performance. Generally, our 

research has improved the training quality of federated learning, reduced the training time, and improved 

its performance. 

The paper proposes to optimize the corresponding steps in FL training by effectively combining 

greedy ideas and algorithms. Using the model arithmetic prediction method to predict the maximum 

computation required for model operation, and estimating the computation capacity of each participant 

using the arithmetic formula, then choosing the participant who has fulfilled memory and superior 

advanced arithmetic, disk memory, and network bandwidth to prevent the issue of insufficient 

computing resources caused by a single participant, and to avoid situations where the participants 

themselves are overloaded with tasks that make them unable to work properly. For the aggregation 

process, inconsistent local training results due to inconsistent participant data quality are considered. 

And the use of Pearson Correlation Coefficients to measure model quality, rather than using poor quality 

data, which can lead to model optimization and improved training quality. For the parameter update, it’s 

proposed using the participants' time delay prediction and loss values as the weight coefficients for 

updating parameters, which takes into account both the timeliness of FL and the training quality of the 

model. It successfully increases the level for federated learning training, cuts the training time in half, 

and improves the effectiveness of the models that are being trained. However, our experiments are still 

lacking in terms of data security for FL, and the combination of federal learning and affective computing 

is not comprehensive enough. 

When employing the AMIGOS dataset for validation purposes, this study assesses the impact of 

optimized FL on emotion recognition. The experimental findings indicate that the optimized FL 

framework surpasses alternative methods for the purpose of affective computing scenarios. The 

idiosyncrasies of affective computing scenarios are methodically incorporated into each phase of FL 

training. As a result, in contrast to other approaches, the optimized FL framework leads to a reduction 

in training time delay by approximately 4 seconds and an increase in model accuracy by an average of 

10% when handling non-IID physiological signal data for affective computing. 
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In forthcoming research endeavors, the investigation of data encryption within the context of federated 

learning (FL) will be conducted with a focus on fortifying data security. Additionally, the 

implementation of advanced routing algorithms in FL will be explored with the aim of augmenting the 

performance attributes of FL. The present study proposes novel techniques that can be potentially 

employed in recommender systems to bolster data security, enhance recommender architecture, and 

generate innovative ideas pertaining to the promptness, precision, and confidentiality of 

recommendations. 
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