Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

RRT algorithm learning and optimization

Jiajun Yao

School of mechanical engineering, Zhejiang Sci-tech University, Hangzhou, China

1172363168(@qq.com

Abstract. LWith the increasing maturity of RRT algorithm, more and more fields are starting to
use this algorithm. For example, in path planning problems, this algorithm has been well applied
because it has good performance and real-time performance. The RRT algorithm is a path
planning algorithm based on tree structure. It continuously explores unknown regions, finds
feasible paths, and ultimately connects the starting point and target point by randomly expanding
the nodes of the tree. The RRT algorithm has good fast exploration ability and low computational
complexity, making it suitable for path planning problems in various environments. This article
focuses on studying the parameters in various RRT algorithms. Through analysis and comparison,
more reasonable parameters were ultimately found. This article also involves optimizing and
improving the RRT algorithm using the RRT * algorithm. The research in this article can further
understand the application scenarios of the RRT algorithm. It is expected that this algorithm will
be better applied in the field of autonomous driving in the future.

Keywords: RRT Algorithm, RRT* Algorithm, Path Searching

1. Introduction
Due to the development and application of computer technology, mobile robots are widely used in
today's production fields, especially in warehousing and logistics. For the design and development of
mobile robots, path planning is crucial because it is necessary to reach a set destination from a known
starting point while satisfying certain conditions. In real-world environments, it is crucial for mobile
robots to accomplish tasks through path planning, e.g., mobile robots avoiding obstacles in dynamic
fields, self-driving vehicles, or drones [1-3]. Common path planning algorithms fall into three categories
based on various sampling techniques. Dijkstra algorithm [4], A* algorithm [5], and other graph-based
search algorithms are examples. Planning techniques based on sampling include the RRT algorithm [6],
the RRT* algorithm [7], and so on. Ant colony algorithm, genetic algorithm, and other heuristic-based
planning algorithms are examples. Among them, for example, heuristic information is used by the A *
algorithm, a heuristic algorithm, to choose the best course of action.Its disadvantages include low real-
time performance, large computational complexity, and lengthy computation times for each node.
Additionally, the algorithm's search efficiency declines with the number of nodes. Furthermore, not
every possible solution is explored by the A * algorithm, and the outcomes might not always be the best
option. So this article chose the RRT algorithm to improve the accuracy and reliability of path search as
much as possible.

Lavalle introduced the RRT method in 1998.By choosing sampling locations at random inside the
sampling area of the RRT algorithm, one can plan the route from the start point to the destination point.

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

296

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

Because the RRT algorithm is probabilistic, it can determine the path if there is a viable path in the
surroundings and there is sufficient time available. But the route that it chooses isn't always the best
one.By reselecting the parent node and pruning, the RRT* algorithm was developed to shorten the
generated path [8]. RRT * also has some drawbacks, such as blind node expansion and slow convergence
rate. The reselection of the parent node has significant randomness and cannot quickly achieve the
optimal result.

RRT * performs parent node comparison on the basis of RRT, ensuring that the parent node closest
to the root node within the specified range is selected. At the same time, the algorithm also adds path
optimization, which does not stop traversing after finding a feasible path for the first time, but does not
stop until the specified number of iterations. During this process, as long as there is a new feasible path
and the distance is shorter than the previous feasible path, the path is updated. Theoretically, the path
obtained by the algorithm is Asymptotically optimal algorithm. If the number of iterations is unlimited,
the path obtained will be infinitely close to the optimal path. Karaman et al. proposed the RRT*
algorithm with progressive optimization, which effectively improves the searched path quality by
reselecting the parent node and rewiring it in the exploration process.[9]

This article uses the most basic control variable method to control several basic variables in the RRT
algorithm. And through multiple experiments, different experimental images and times were obtained
to compare the advantages and disadvantages of the path and the amount of time. Among them, research
is conducted on variables such as node number, step size, and observer number one by one, striving to
find the most reasonable parameters to obtain the optimal path planning. The research results of this
paper can be used to build the model of autonomous vehicle path planning. By limiting some variables,
the computational complexity is reduced, making it easier to find the optimal path planning.

2. Related work

2.1. RRT Algorithm

Algorithm 1: RRT Algorithm
Input: M, Zinit, % goal
Result: A path ' from 2, 10 Zyou
T .init();
fori=1tondo
ZTyand +— Sample(M) ;
Zpear — Near(Zegnd, T):

Tnew — Steer(Trand; Tnear, StepSize);

E; <« Edge(Tnew; Tnear):

if CollisionFree(M, E;) then
T .addNode(Tpew):
T .addEdge(E;);

L Tyt then
Success():

Figure 1. The principle of RRT algorithm

First, the algorithm produces random points to create a space-filling tree. Then, the enlargement of the
random sample point expands to a gigantic unsearched area in order to find the path. Therefore, RRT
can handle complicated and in-deterministic spaces with random obstacles, high-dimension and
dynamic spaces, like reality.[10]

2.2. Programming

This article will implement the RRT algorithm in MATLAB and complete the construction of a visual
model. And optimize the constructed model by changing multiple variables separately. Fully experiment
and understand the characteristics of the RRT algorithm. Timing each debugging run also helps provide
performance feedback. The acquisition of each time is based on the average of three repeated
experiments. During the process of running the RRT algorithm, built-in parameters should also be

297

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

changed to observe changes in performance time and search accuracy. After running the RRT algorithm,
you should also compile the RRT * algorithm, optimize it from a theoretical perspective, and check the
differences between the two.

In the process of programming in MATLAB, it is mainly divided into the following blocks: 1. Define
the starting and ending points of obstacles; 2. Define RRT parameters (node number and step size); 3.
Initialize and construct RRT; 4. Find the nearest node; 5. Expand and draw the tree; 6. Traverse back to
the starting point from the endpoint, construct the path; 7. Draw the path; 8. Collision detection function
and drawing function.

During code debugging, timing can be performed to visually view performance differences. This
article will study the performance of the RRT algorithm by changing conditions such as the number of
nodes, step size, and number of objects. The performance here includes runtime and path accuracy.
Finally, the RRT * algorithm will be used to further optimize the entire program and display the results.
In the visualization model below, the green dot is the starting point, the red dot is the ending point, the
pink line is the path, and the blue line is the path branch. The original number of nodes is 500, and the
original step size is 0.5.

3. Methods

This article uses code for simulation under basic parameters. The node number is 500, the step size is
0.5, the starting point is (0.5, 0.5), and the focus is (4.5, 4.5). Obstacles are two circles with a radius of
0.5 at the centers of (1, 1) and (3, 3).

Figure 2-11 shows the final result of the simulation and the steps of the algorithm using MATLAB.
The green dots are the starting points, the red dots are the end points, the pink lines are the paths after
this simulation, and the blue lines are the branches in the search process. In addition, the horizontal and
vertical coordinates in the icons are the location parameters, respectively.

Fig. 2 shows the original process of a complete path search. In this case, the paths appear to be
extremely cluttered, and the blue lines in Figure 2 are cluttered and disorganized. Secondly, the number
of' nodes is adjusted based on the original process, and the result is shown in Figure 3 without affecting
the changes in other values. Doubling the number of nodes and holding other variables constant
increases the search time considerably, but the path accuracy is not significantly improved. The overall
change does not differ much from Figure 2. In addition, the step size was adjusted. The authors chose
to reduce the step size to 0.1, and with other variables unchanged, the results are shown in Figure 4. The
accuracy of the path is improved relative to Figure 3.

Figure. 5 shows the insignificant change in the accuracy of the path in the case where the obstacles
are merged as linked obstacles but with the same area and other variables are kept constant. Therefore,
the authors have reduced the step size to 0.1 based on Figure 5, with linked obstacles and ensuring the
same area while keeping other variables constant. The result is shown in Figure 6. Based on the change
in the above pairs, the authors further adjusted the step size by reducing the step size to 0.01, linked
obstacles to the same area while keeping all other variables unchanged. The results are shown in Figure
7 with improved accuracy.

The experiment was then further upgraded by increasing the number of obstacles to 3 and ensuring
that each obstacle had the same area. When the number of obstacles was adjusted and all other conditions
remained the same, the accuracy of the paths did not change much (Figure 8).

Following this, the authors chose to continue adding obstacles, increasing the number of obstacles to
4 and ensuring that the obstacles had the same area. Figure 9 shows a plot of the simulation results when
the number of obstacles is 4 (each with the same area) with no change in their conditions and no
significant change in the accuracy of the path. Based on Figure 9, the step size was further adjusted and
reduced to 0.1 to produce Figure 10, which shows the simulation results when the number of obstacles
is increased to 4 and each obstacle has the same area, and the step size is reduced to 0.1, with no change
in the other conditions. According to the picture, it can be seen that the accuracy of the path is improved
compared to Figure 9.

298

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

In figure 11, it shows the situation when uses RRT* algorithm to optimize the program.The pink and
light blue lines are the final paths, and it can be seen that both paths are quite close to the optimal path.

Figure 2. Original situation

5

4.5

4

3.5

3

25

2

15

1

0.5

0

0 0.5 1 15 2 25 3 3.5 4 4.5 5

Figure 4. Decrease step size Figure 5. Link the obstacles

45 45
4 4
s s
& 3
25 ok
2 2
15 T
| 1
S 05
05 1 15 2 26 3 35 4 4§

1] 05 1 15 2 25 3 as 4 45 5 0

5

Figure 6. Link the obstacles and decrease the Figure 7. Link the obstacles and decrease the
step size to 0.1 step size to 0.01

299

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

: AN
’ 4.5 S a0
45 <)
: f\k\ O " L= @)™
35 ‘ = A “ 35 | BZ J

=}
15 15 ~J (|
’.‘P . F. ; .; 159\.
osf IR AL . 05 i 2] 4
Av _‘-‘ ‘Q_ 5
Y9 62 i 95 3 @5 4 ap 4 5 B 05 1 45 2 ©E 8 55 4 45 &

Figure 10. Divide the obstacles into 4 pieces ~ Figure 11. Result using RRT*
and decrease the step size

This table displays the average running time after three tests under different conditions. It can be
seen that in the figure of number 5, the average time is the lowest at 90s. However, in figure 11, the
average time is 1028s, which is almost 11 times than the former one.

Table 1. Time Table

Figure number Average time(s)
108
338
106
90
93
93
94
95
96

11 1028

O X0 [Q|| |

—_
(=]

4. Result

When using the RRT algorithm for path planning, there are many situations that can occur due to
excessive randomness. However, based on the experimental results mentioned above, it can be seen that

300

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

the factors affecting the results include setting the number of nodes, modifying the step size, and setting
obstacles. Among them, the setting of the number of nodes has a great impact on the running speed, but
it does not necessarily provide a more accurate path. Modifying the step length also optimizes the
running time, but at the same time produces a limited final result. In addition, according to the runtime
comparison in Table 1, the setting of obstacles on the map also has an impact on the program's runtime
speed.

In general, reducing the step size can indeed improve the search accuracy, regardless of whether the
obstacles are connected or split. With respect to the modeling experiments established in this paper, it
can be seen that the path accuracy is higher when the step size is 0.1. Too small a step can actually lead
to the inability to complete a complete path search.

The RRT * algorithm can theoretically be used to optimize the entire path search process. Specifically,
the RRT * algorithm will reconnect the shorter path between the new node and its parent node based on
the original RRT algorithm to obtain a better path. However, it also takes a relatively longer time. This
also shows that the RRT* algorithm needs more optimization and adjustment in practical applications.
However, the current experimental findings can also be applied to the field of autonomous driving to
allow vehicles to find better paths in a shorter time.

5. Conclusion

This article investigates many basic parameters of the RRT algorithm in path planning. We used the
MATLAB platform for simulation experiments, using the most basic control variable method and the
method of averaging multiple experiments to avoid randomness. Firstly, divide the RRT algorithm into
multiple parts and complete the entire program writing work. Then start changing the various variables
in the algorithm, and observe the time of the final path and measure the running time. This includes
variables such as number of nodes, step size, and obstacles. Among them, step size has a significant
impact on the accuracy of the generated path. The conclusion drawn in this article is that finding the
appropriate step size can greatly improve the accuracy of path planning. Of course, the RRT algorithm
is not perfect and can also be optimized using the RRT * algorithm, but this requires multiple times to
improve the accuracy of the path. This indicates that the RRT * algorithm still needs more optimization.
These conclusions can be applied to the field of autonomous driving, allowing vehicles to find better
paths in a shorter time.

However, this article also has certain limitations. The application improvement of RRT algorithm
can only stay at the qualitative level, and cannot build an adaptive learning machine model. The
continuous optimization of various parameters in the RRT algorithm based on artificial intelligence
machine models is the direction that this article can optimize. The research on RRT * algorithm is not
very sufficient, and in-depth research on this advanced algorithm is also the optimization direction of
this article. Finally, due to the high randomness of the RRT algorithm, the various legends presented in
this article may not represent a common situation and may have some chance. In the future, the
advantages and disadvantages of the path can be visualized by measuring the length of the path. The
obstacles used in this article are relatively simple, only a few circular obstacles, and there is no in-depth
exploration of more complex obstacle situations. In the future, the performance of the RRT algorithm
can also be tested by changing the shape of the obstacles, such as setting a maze.

References

[1] B. K Patle B. Babu L, A. Pandey, D. R. Parhi, and A. Jagadeesh, “A review: On path planning
strategies for navigation of mobile robot,” Defence Technology, vol. 15, no. 4, pp. 582-606,
2019.

[2] C. Badue, R. Guidolini, R. V. Cameiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus, R.
Berriel, T. M. Paixao, F. Mutz, L. de P> Veronese, T. Oliveira-Santos, and A. F. de Souza,
“Self-driving cars: A survey,” Expert Systems with Applications, vol. 165, 2021.

[3] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A review,
solutions, and challenges,” Computer Communications, vol. 149, pp. 270-299, 2020.

301

[10]

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/53/20241614

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
mathematik, 1(1), 269-271.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 100-107.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7), 846-894.

Benxue Liu & Chong Liu (2022). Path planning of mobile robots based on improved RRT
algorithm.J. Phys.: Conf. Ser. 2216 012020

Xuewu W Jin G ,Xin Z , et al. Path Planning for the Gantry Welding Robot System Based on
Improved RRT*[J]. Robotics and Computer-Integrated Manufacturing, 2024, 85.

Qianshi Z ,Minyu L ,Yizhe S . RRT path planning algorithm with enhanced sampling[J]. Journal
of Physics: Conference Series, 2023, 2580(1).

302

